| /* |
| * ARM helper routines |
| * |
| * Copyright (c) 2005-2007 CodeSourcery, LLC |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu/units.h" |
| #include "qemu/log.h" |
| #include "qemu/main-loop.h" |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| #include "internals.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| |
| #define SIGNBIT (uint32_t)0x80000000 |
| #define SIGNBIT64 ((uint64_t)1 << 63) |
| |
| static CPUState *do_raise_exception(CPUARMState *env, uint32_t excp, |
| uint32_t syndrome, uint32_t target_el) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) { |
| /* |
| * Redirect NS EL1 exceptions to NS EL2. These are reported with |
| * their original syndrome register value, with the exception of |
| * SIMD/FP access traps, which are reported as uncategorized |
| * (see DDI0478C.a D1.10.4) |
| */ |
| target_el = 2; |
| if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) { |
| syndrome = syn_uncategorized(); |
| } |
| } |
| |
| assert(!excp_is_internal(excp)); |
| cs->exception_index = excp; |
| env->exception.syndrome = syndrome; |
| env->exception.target_el = target_el; |
| |
| return cs; |
| } |
| |
| void raise_exception(CPUARMState *env, uint32_t excp, |
| uint32_t syndrome, uint32_t target_el) |
| { |
| CPUState *cs = do_raise_exception(env, excp, syndrome, target_el); |
| cpu_loop_exit(cs); |
| } |
| |
| void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome, |
| uint32_t target_el, uintptr_t ra) |
| { |
| CPUState *cs = do_raise_exception(env, excp, syndrome, target_el); |
| cpu_loop_exit_restore(cs, ra); |
| } |
| |
| uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn, |
| uint32_t maxindex) |
| { |
| uint32_t val, shift; |
| uint64_t *table = vn; |
| |
| val = 0; |
| for (shift = 0; shift < 32; shift += 8) { |
| uint32_t index = (ireg >> shift) & 0xff; |
| if (index < maxindex) { |
| uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff; |
| val |= tmp << shift; |
| } else { |
| val |= def & (0xff << shift); |
| } |
| } |
| return val; |
| } |
| |
| void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue) |
| { |
| /* |
| * Perform the v8M stack limit check for SP updates from translated code, |
| * raising an exception if the limit is breached. |
| */ |
| if (newvalue < v7m_sp_limit(env)) { |
| CPUState *cs = env_cpu(env); |
| |
| /* |
| * Stack limit exceptions are a rare case, so rather than syncing |
| * PC/condbits before the call, we use cpu_restore_state() to |
| * get them right before raising the exception. |
| */ |
| cpu_restore_state(cs, GETPC(), true); |
| raise_exception(env, EXCP_STKOF, 0, 1); |
| } |
| } |
| |
| uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| uint32_t res = a + b; |
| if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) |
| env->QF = 1; |
| return res; |
| } |
| |
| uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| uint32_t res = a + b; |
| if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { |
| env->QF = 1; |
| res = ~(((int32_t)a >> 31) ^ SIGNBIT); |
| } |
| return res; |
| } |
| |
| uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| uint32_t res = a - b; |
| if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { |
| env->QF = 1; |
| res = ~(((int32_t)a >> 31) ^ SIGNBIT); |
| } |
| return res; |
| } |
| |
| uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| uint32_t res = a + b; |
| if (res < a) { |
| env->QF = 1; |
| res = ~0; |
| } |
| return res; |
| } |
| |
| uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b) |
| { |
| uint32_t res = a - b; |
| if (res > a) { |
| env->QF = 1; |
| res = 0; |
| } |
| return res; |
| } |
| |
| /* Signed saturation. */ |
| static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift) |
| { |
| int32_t top; |
| uint32_t mask; |
| |
| top = val >> shift; |
| mask = (1u << shift) - 1; |
| if (top > 0) { |
| env->QF = 1; |
| return mask; |
| } else if (top < -1) { |
| env->QF = 1; |
| return ~mask; |
| } |
| return val; |
| } |
| |
| /* Unsigned saturation. */ |
| static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift) |
| { |
| uint32_t max; |
| |
| max = (1u << shift) - 1; |
| if (val < 0) { |
| env->QF = 1; |
| return 0; |
| } else if (val > max) { |
| env->QF = 1; |
| return max; |
| } |
| return val; |
| } |
| |
| /* Signed saturate. */ |
| uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift) |
| { |
| return do_ssat(env, x, shift); |
| } |
| |
| /* Dual halfword signed saturate. */ |
| uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift) |
| { |
| uint32_t res; |
| |
| res = (uint16_t)do_ssat(env, (int16_t)x, shift); |
| res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16; |
| return res; |
| } |
| |
| /* Unsigned saturate. */ |
| uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift) |
| { |
| return do_usat(env, x, shift); |
| } |
| |
| /* Dual halfword unsigned saturate. */ |
| uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift) |
| { |
| uint32_t res; |
| |
| res = (uint16_t)do_usat(env, (int16_t)x, shift); |
| res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16; |
| return res; |
| } |
| |
| void HELPER(setend)(CPUARMState *env) |
| { |
| env->uncached_cpsr ^= CPSR_E; |
| arm_rebuild_hflags(env); |
| } |
| |
| /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped. |
| * The function returns the target EL (1-3) if the instruction is to be trapped; |
| * otherwise it returns 0 indicating it is not trapped. |
| */ |
| static inline int check_wfx_trap(CPUARMState *env, bool is_wfe) |
| { |
| int cur_el = arm_current_el(env); |
| uint64_t mask; |
| |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| /* M profile cores can never trap WFI/WFE. */ |
| return 0; |
| } |
| |
| /* If we are currently in EL0 then we need to check if SCTLR is set up for |
| * WFx instructions being trapped to EL1. These trap bits don't exist in v7. |
| */ |
| if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) { |
| int target_el; |
| |
| mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI; |
| if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) { |
| /* Secure EL0 and Secure PL1 is at EL3 */ |
| target_el = 3; |
| } else { |
| target_el = 1; |
| } |
| |
| if (!(env->cp15.sctlr_el[target_el] & mask)) { |
| return target_el; |
| } |
| } |
| |
| /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it |
| * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the |
| * bits will be zero indicating no trap. |
| */ |
| if (cur_el < 2) { |
| mask = is_wfe ? HCR_TWE : HCR_TWI; |
| if (arm_hcr_el2_eff(env) & mask) { |
| return 2; |
| } |
| } |
| |
| /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */ |
| if (cur_el < 3) { |
| mask = (is_wfe) ? SCR_TWE : SCR_TWI; |
| if (env->cp15.scr_el3 & mask) { |
| return 3; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void HELPER(wfi)(CPUARMState *env, uint32_t insn_len) |
| { |
| CPUState *cs = env_cpu(env); |
| int target_el = check_wfx_trap(env, false); |
| |
| if (cpu_has_work(cs)) { |
| /* Don't bother to go into our "low power state" if |
| * we would just wake up immediately. |
| */ |
| return; |
| } |
| |
| if (target_el) { |
| env->pc -= insn_len; |
| raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2), |
| target_el); |
| } |
| |
| cs->exception_index = EXCP_HLT; |
| cs->halted = 1; |
| cpu_loop_exit(cs); |
| } |
| |
| void HELPER(wfe)(CPUARMState *env) |
| { |
| /* This is a hint instruction that is semantically different |
| * from YIELD even though we currently implement it identically. |
| * Don't actually halt the CPU, just yield back to top |
| * level loop. This is not going into a "low power state" |
| * (ie halting until some event occurs), so we never take |
| * a configurable trap to a different exception level. |
| */ |
| HELPER(yield)(env); |
| } |
| |
| void HELPER(yield)(CPUARMState *env) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| /* This is a non-trappable hint instruction that generally indicates |
| * that the guest is currently busy-looping. Yield control back to the |
| * top level loop so that a more deserving VCPU has a chance to run. |
| */ |
| cs->exception_index = EXCP_YIELD; |
| cpu_loop_exit(cs); |
| } |
| |
| /* Raise an internal-to-QEMU exception. This is limited to only |
| * those EXCP values which are special cases for QEMU to interrupt |
| * execution and not to be used for exceptions which are passed to |
| * the guest (those must all have syndrome information and thus should |
| * use exception_with_syndrome). |
| */ |
| void HELPER(exception_internal)(CPUARMState *env, uint32_t excp) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| assert(excp_is_internal(excp)); |
| cs->exception_index = excp; |
| cpu_loop_exit(cs); |
| } |
| |
| /* Raise an exception with the specified syndrome register value */ |
| void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp, |
| uint32_t syndrome, uint32_t target_el) |
| { |
| raise_exception(env, excp, syndrome, target_el); |
| } |
| |
| /* Raise an EXCP_BKPT with the specified syndrome register value, |
| * targeting the correct exception level for debug exceptions. |
| */ |
| void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome) |
| { |
| int debug_el = arm_debug_target_el(env); |
| int cur_el = arm_current_el(env); |
| |
| /* FSR will only be used if the debug target EL is AArch32. */ |
| env->exception.fsr = arm_debug_exception_fsr(env); |
| /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing |
| * values to the guest that it shouldn't be able to see at its |
| * exception/security level. |
| */ |
| env->exception.vaddress = 0; |
| /* |
| * Other kinds of architectural debug exception are ignored if |
| * they target an exception level below the current one (in QEMU |
| * this is checked by arm_generate_debug_exceptions()). Breakpoint |
| * instructions are special because they always generate an exception |
| * to somewhere: if they can't go to the configured debug exception |
| * level they are taken to the current exception level. |
| */ |
| if (debug_el < cur_el) { |
| debug_el = cur_el; |
| } |
| raise_exception(env, EXCP_BKPT, syndrome, debug_el); |
| } |
| |
| uint32_t HELPER(cpsr_read)(CPUARMState *env) |
| { |
| return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED); |
| } |
| |
| void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask) |
| { |
| cpsr_write(env, val, mask, CPSRWriteByInstr); |
| /* TODO: Not all cpsr bits are relevant to hflags. */ |
| arm_rebuild_hflags(env); |
| } |
| |
| /* Write the CPSR for a 32-bit exception return */ |
| void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val) |
| { |
| qemu_mutex_lock_iothread(); |
| arm_call_pre_el_change_hook(env_archcpu(env)); |
| qemu_mutex_unlock_iothread(); |
| |
| cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn); |
| |
| /* Generated code has already stored the new PC value, but |
| * without masking out its low bits, because which bits need |
| * masking depends on whether we're returning to Thumb or ARM |
| * state. Do the masking now. |
| */ |
| env->regs[15] &= (env->thumb ? ~1 : ~3); |
| arm_rebuild_hflags(env); |
| |
| qemu_mutex_lock_iothread(); |
| arm_call_el_change_hook(env_archcpu(env)); |
| qemu_mutex_unlock_iothread(); |
| } |
| |
| /* Access to user mode registers from privileged modes. */ |
| uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno) |
| { |
| uint32_t val; |
| |
| if (regno == 13) { |
| val = env->banked_r13[BANK_USRSYS]; |
| } else if (regno == 14) { |
| val = env->banked_r14[BANK_USRSYS]; |
| } else if (regno >= 8 |
| && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { |
| val = env->usr_regs[regno - 8]; |
| } else { |
| val = env->regs[regno]; |
| } |
| return val; |
| } |
| |
| void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val) |
| { |
| if (regno == 13) { |
| env->banked_r13[BANK_USRSYS] = val; |
| } else if (regno == 14) { |
| env->banked_r14[BANK_USRSYS] = val; |
| } else if (regno >= 8 |
| && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { |
| env->usr_regs[regno - 8] = val; |
| } else { |
| env->regs[regno] = val; |
| } |
| } |
| |
| void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val) |
| { |
| if ((env->uncached_cpsr & CPSR_M) == mode) { |
| env->regs[13] = val; |
| } else { |
| env->banked_r13[bank_number(mode)] = val; |
| } |
| } |
| |
| uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode) |
| { |
| if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) { |
| /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF. |
| * Other UNPREDICTABLE and UNDEF cases were caught at translate time. |
| */ |
| raise_exception(env, EXCP_UDEF, syn_uncategorized(), |
| exception_target_el(env)); |
| } |
| |
| if ((env->uncached_cpsr & CPSR_M) == mode) { |
| return env->regs[13]; |
| } else { |
| return env->banked_r13[bank_number(mode)]; |
| } |
| } |
| |
| static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode, |
| uint32_t regno) |
| { |
| /* Raise an exception if the requested access is one of the UNPREDICTABLE |
| * cases; otherwise return. This broadly corresponds to the pseudocode |
| * BankedRegisterAccessValid() and SPSRAccessValid(), |
| * except that we have already handled some cases at translate time. |
| */ |
| int curmode = env->uncached_cpsr & CPSR_M; |
| |
| if (regno == 17) { |
| /* ELR_Hyp: a special case because access from tgtmode is OK */ |
| if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) { |
| goto undef; |
| } |
| return; |
| } |
| |
| if (curmode == tgtmode) { |
| goto undef; |
| } |
| |
| if (tgtmode == ARM_CPU_MODE_USR) { |
| switch (regno) { |
| case 8 ... 12: |
| if (curmode != ARM_CPU_MODE_FIQ) { |
| goto undef; |
| } |
| break; |
| case 13: |
| if (curmode == ARM_CPU_MODE_SYS) { |
| goto undef; |
| } |
| break; |
| case 14: |
| if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) { |
| goto undef; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (tgtmode == ARM_CPU_MODE_HYP) { |
| /* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */ |
| if (curmode != ARM_CPU_MODE_MON) { |
| goto undef; |
| } |
| } |
| |
| return; |
| |
| undef: |
| raise_exception(env, EXCP_UDEF, syn_uncategorized(), |
| exception_target_el(env)); |
| } |
| |
| void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode, |
| uint32_t regno) |
| { |
| msr_mrs_banked_exc_checks(env, tgtmode, regno); |
| |
| switch (regno) { |
| case 16: /* SPSRs */ |
| env->banked_spsr[bank_number(tgtmode)] = value; |
| break; |
| case 17: /* ELR_Hyp */ |
| env->elr_el[2] = value; |
| break; |
| case 13: |
| env->banked_r13[bank_number(tgtmode)] = value; |
| break; |
| case 14: |
| env->banked_r14[r14_bank_number(tgtmode)] = value; |
| break; |
| case 8 ... 12: |
| switch (tgtmode) { |
| case ARM_CPU_MODE_USR: |
| env->usr_regs[regno - 8] = value; |
| break; |
| case ARM_CPU_MODE_FIQ: |
| env->fiq_regs[regno - 8] = value; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno) |
| { |
| msr_mrs_banked_exc_checks(env, tgtmode, regno); |
| |
| switch (regno) { |
| case 16: /* SPSRs */ |
| return env->banked_spsr[bank_number(tgtmode)]; |
| case 17: /* ELR_Hyp */ |
| return env->elr_el[2]; |
| case 13: |
| return env->banked_r13[bank_number(tgtmode)]; |
| case 14: |
| return env->banked_r14[r14_bank_number(tgtmode)]; |
| case 8 ... 12: |
| switch (tgtmode) { |
| case ARM_CPU_MODE_USR: |
| return env->usr_regs[regno - 8]; |
| case ARM_CPU_MODE_FIQ: |
| return env->fiq_regs[regno - 8]; |
| default: |
| g_assert_not_reached(); |
| } |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome, |
| uint32_t isread) |
| { |
| const ARMCPRegInfo *ri = rip; |
| int target_el; |
| |
| if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14 |
| && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) { |
| raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env)); |
| } |
| |
| /* |
| * Check for an EL2 trap due to HSTR_EL2. We expect EL0 accesses |
| * to sysregs non accessible at EL0 to have UNDEF-ed already. |
| */ |
| if (!is_a64(env) && arm_current_el(env) < 2 && ri->cp == 15 && |
| (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { |
| uint32_t mask = 1 << ri->crn; |
| |
| if (ri->type & ARM_CP_64BIT) { |
| mask = 1 << ri->crm; |
| } |
| |
| /* T4 and T14 are RES0 */ |
| mask &= ~((1 << 4) | (1 << 14)); |
| |
| if (env->cp15.hstr_el2 & mask) { |
| target_el = 2; |
| goto exept; |
| } |
| } |
| |
| if (!ri->accessfn) { |
| return; |
| } |
| |
| switch (ri->accessfn(env, ri, isread)) { |
| case CP_ACCESS_OK: |
| return; |
| case CP_ACCESS_TRAP: |
| target_el = exception_target_el(env); |
| break; |
| case CP_ACCESS_TRAP_EL2: |
| /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is |
| * a bug in the access function. |
| */ |
| assert(!arm_is_secure(env) && arm_current_el(env) != 3); |
| target_el = 2; |
| break; |
| case CP_ACCESS_TRAP_EL3: |
| target_el = 3; |
| break; |
| case CP_ACCESS_TRAP_UNCATEGORIZED: |
| target_el = exception_target_el(env); |
| syndrome = syn_uncategorized(); |
| break; |
| case CP_ACCESS_TRAP_UNCATEGORIZED_EL2: |
| target_el = 2; |
| syndrome = syn_uncategorized(); |
| break; |
| case CP_ACCESS_TRAP_UNCATEGORIZED_EL3: |
| target_el = 3; |
| syndrome = syn_uncategorized(); |
| break; |
| case CP_ACCESS_TRAP_FP_EL2: |
| target_el = 2; |
| /* Since we are an implementation that takes exceptions on a trapped |
| * conditional insn only if the insn has passed its condition code |
| * check, we take the IMPDEF choice to always report CV=1 COND=0xe |
| * (which is also the required value for AArch64 traps). |
| */ |
| syndrome = syn_fp_access_trap(1, 0xe, false); |
| break; |
| case CP_ACCESS_TRAP_FP_EL3: |
| target_el = 3; |
| syndrome = syn_fp_access_trap(1, 0xe, false); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| exept: |
| raise_exception(env, EXCP_UDEF, syndrome, target_el); |
| } |
| |
| void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value) |
| { |
| const ARMCPRegInfo *ri = rip; |
| |
| if (ri->type & ARM_CP_IO) { |
| qemu_mutex_lock_iothread(); |
| ri->writefn(env, ri, value); |
| qemu_mutex_unlock_iothread(); |
| } else { |
| ri->writefn(env, ri, value); |
| } |
| } |
| |
| uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip) |
| { |
| const ARMCPRegInfo *ri = rip; |
| uint32_t res; |
| |
| if (ri->type & ARM_CP_IO) { |
| qemu_mutex_lock_iothread(); |
| res = ri->readfn(env, ri); |
| qemu_mutex_unlock_iothread(); |
| } else { |
| res = ri->readfn(env, ri); |
| } |
| |
| return res; |
| } |
| |
| void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value) |
| { |
| const ARMCPRegInfo *ri = rip; |
| |
| if (ri->type & ARM_CP_IO) { |
| qemu_mutex_lock_iothread(); |
| ri->writefn(env, ri, value); |
| qemu_mutex_unlock_iothread(); |
| } else { |
| ri->writefn(env, ri, value); |
| } |
| } |
| |
| uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip) |
| { |
| const ARMCPRegInfo *ri = rip; |
| uint64_t res; |
| |
| if (ri->type & ARM_CP_IO) { |
| qemu_mutex_lock_iothread(); |
| res = ri->readfn(env, ri); |
| qemu_mutex_unlock_iothread(); |
| } else { |
| res = ri->readfn(env, ri); |
| } |
| |
| return res; |
| } |
| |
| void HELPER(pre_hvc)(CPUARMState *env) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| int cur_el = arm_current_el(env); |
| /* FIXME: Use actual secure state. */ |
| bool secure = false; |
| bool undef; |
| |
| if (arm_is_psci_call(cpu, EXCP_HVC)) { |
| /* If PSCI is enabled and this looks like a valid PSCI call then |
| * that overrides the architecturally mandated HVC behaviour. |
| */ |
| return; |
| } |
| |
| if (!arm_feature(env, ARM_FEATURE_EL2)) { |
| /* If EL2 doesn't exist, HVC always UNDEFs */ |
| undef = true; |
| } else if (arm_feature(env, ARM_FEATURE_EL3)) { |
| /* EL3.HCE has priority over EL2.HCD. */ |
| undef = !(env->cp15.scr_el3 & SCR_HCE); |
| } else { |
| undef = env->cp15.hcr_el2 & HCR_HCD; |
| } |
| |
| /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state. |
| * For ARMv8/AArch64, HVC is allowed in EL3. |
| * Note that we've already trapped HVC from EL0 at translation |
| * time. |
| */ |
| if (secure && (!is_a64(env) || cur_el == 1)) { |
| undef = true; |
| } |
| |
| if (undef) { |
| raise_exception(env, EXCP_UDEF, syn_uncategorized(), |
| exception_target_el(env)); |
| } |
| } |
| |
| void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome) |
| { |
| ARMCPU *cpu = env_archcpu(env); |
| int cur_el = arm_current_el(env); |
| bool secure = arm_is_secure(env); |
| bool smd_flag = env->cp15.scr_el3 & SCR_SMD; |
| |
| /* |
| * SMC behaviour is summarized in the following table. |
| * This helper handles the "Trap to EL2" and "Undef insn" cases. |
| * The "Trap to EL3" and "PSCI call" cases are handled in the exception |
| * helper. |
| * |
| * -> ARM_FEATURE_EL3 and !SMD |
| * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1 |
| * |
| * Conduit SMC, valid call Trap to EL2 PSCI Call |
| * Conduit SMC, inval call Trap to EL2 Trap to EL3 |
| * Conduit not SMC Trap to EL2 Trap to EL3 |
| * |
| * |
| * -> ARM_FEATURE_EL3 and SMD |
| * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1 |
| * |
| * Conduit SMC, valid call Trap to EL2 PSCI Call |
| * Conduit SMC, inval call Trap to EL2 Undef insn |
| * Conduit not SMC Trap to EL2 Undef insn |
| * |
| * |
| * -> !ARM_FEATURE_EL3 |
| * HCR_TSC && NS EL1 !HCR_TSC || !NS EL1 |
| * |
| * Conduit SMC, valid call Trap to EL2 PSCI Call |
| * Conduit SMC, inval call Trap to EL2 Undef insn |
| * Conduit not SMC Undef insn Undef insn |
| */ |
| |
| /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state. |
| * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization |
| * extensions, SMD only applies to NS state. |
| * On ARMv7 without the Virtualization extensions, the SMD bit |
| * doesn't exist, but we forbid the guest to set it to 1 in scr_write(), |
| * so we need not special case this here. |
| */ |
| bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag |
| : smd_flag && !secure; |
| |
| if (!arm_feature(env, ARM_FEATURE_EL3) && |
| cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { |
| /* If we have no EL3 then SMC always UNDEFs and can't be |
| * trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3 |
| * firmware within QEMU, and we want an EL2 guest to be able |
| * to forbid its EL1 from making PSCI calls into QEMU's |
| * "firmware" via HCR.TSC, so for these purposes treat |
| * PSCI-via-SMC as implying an EL3. |
| * This handles the very last line of the previous table. |
| */ |
| raise_exception(env, EXCP_UDEF, syn_uncategorized(), |
| exception_target_el(env)); |
| } |
| |
| if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) { |
| /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. |
| * We also want an EL2 guest to be able to forbid its EL1 from |
| * making PSCI calls into QEMU's "firmware" via HCR.TSC. |
| * This handles all the "Trap to EL2" cases of the previous table. |
| */ |
| raise_exception(env, EXCP_HYP_TRAP, syndrome, 2); |
| } |
| |
| /* Catch the two remaining "Undef insn" cases of the previous table: |
| * - PSCI conduit is SMC but we don't have a valid PCSI call, |
| * - We don't have EL3 or SMD is set. |
| */ |
| if (!arm_is_psci_call(cpu, EXCP_SMC) && |
| (smd || !arm_feature(env, ARM_FEATURE_EL3))) { |
| raise_exception(env, EXCP_UDEF, syn_uncategorized(), |
| exception_target_el(env)); |
| } |
| } |
| |
| /* ??? Flag setting arithmetic is awkward because we need to do comparisons. |
| The only way to do that in TCG is a conditional branch, which clobbers |
| all our temporaries. For now implement these as helper functions. */ |
| |
| /* Similarly for variable shift instructions. */ |
| |
| uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
| { |
| int shift = i & 0xff; |
| if (shift >= 32) { |
| if (shift == 32) |
| env->CF = x & 1; |
| else |
| env->CF = 0; |
| return 0; |
| } else if (shift != 0) { |
| env->CF = (x >> (32 - shift)) & 1; |
| return x << shift; |
| } |
| return x; |
| } |
| |
| uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
| { |
| int shift = i & 0xff; |
| if (shift >= 32) { |
| if (shift == 32) |
| env->CF = (x >> 31) & 1; |
| else |
| env->CF = 0; |
| return 0; |
| } else if (shift != 0) { |
| env->CF = (x >> (shift - 1)) & 1; |
| return x >> shift; |
| } |
| return x; |
| } |
| |
| uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
| { |
| int shift = i & 0xff; |
| if (shift >= 32) { |
| env->CF = (x >> 31) & 1; |
| return (int32_t)x >> 31; |
| } else if (shift != 0) { |
| env->CF = (x >> (shift - 1)) & 1; |
| return (int32_t)x >> shift; |
| } |
| return x; |
| } |
| |
| uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i) |
| { |
| int shift1, shift; |
| shift1 = i & 0xff; |
| shift = shift1 & 0x1f; |
| if (shift == 0) { |
| if (shift1 != 0) |
| env->CF = (x >> 31) & 1; |
| return x; |
| } else { |
| env->CF = (x >> (shift - 1)) & 1; |
| return ((uint32_t)x >> shift) | (x << (32 - shift)); |
| } |
| } |
| |
| void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) |
| { |
| /* |
| * Implement DC ZVA, which zeroes a fixed-length block of memory. |
| * Note that we do not implement the (architecturally mandated) |
| * alignment fault for attempts to use this on Device memory |
| * (which matches the usual QEMU behaviour of not implementing either |
| * alignment faults or any memory attribute handling). |
| */ |
| |
| ARMCPU *cpu = env_archcpu(env); |
| uint64_t blocklen = 4 << cpu->dcz_blocksize; |
| uint64_t vaddr = vaddr_in & ~(blocklen - 1); |
| |
| #ifndef CONFIG_USER_ONLY |
| { |
| /* |
| * Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than |
| * the block size so we might have to do more than one TLB lookup. |
| * We know that in fact for any v8 CPU the page size is at least 4K |
| * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only |
| * 1K as an artefact of legacy v5 subpage support being present in the |
| * same QEMU executable. So in practice the hostaddr[] array has |
| * two entries, given the current setting of TARGET_PAGE_BITS_MIN. |
| */ |
| int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); |
| void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)]; |
| int try, i; |
| unsigned mmu_idx = cpu_mmu_index(env, false); |
| TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); |
| |
| assert(maxidx <= ARRAY_SIZE(hostaddr)); |
| |
| for (try = 0; try < 2; try++) { |
| |
| for (i = 0; i < maxidx; i++) { |
| hostaddr[i] = tlb_vaddr_to_host(env, |
| vaddr + TARGET_PAGE_SIZE * i, |
| 1, mmu_idx); |
| if (!hostaddr[i]) { |
| break; |
| } |
| } |
| if (i == maxidx) { |
| /* |
| * If it's all in the TLB it's fair game for just writing to; |
| * we know we don't need to update dirty status, etc. |
| */ |
| for (i = 0; i < maxidx - 1; i++) { |
| memset(hostaddr[i], 0, TARGET_PAGE_SIZE); |
| } |
| memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); |
| return; |
| } |
| /* |
| * OK, try a store and see if we can populate the tlb. This |
| * might cause an exception if the memory isn't writable, |
| * in which case we will longjmp out of here. We must for |
| * this purpose use the actual register value passed to us |
| * so that we get the fault address right. |
| */ |
| helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); |
| /* Now we can populate the other TLB entries, if any */ |
| for (i = 0; i < maxidx; i++) { |
| uint64_t va = vaddr + TARGET_PAGE_SIZE * i; |
| if (va != (vaddr_in & TARGET_PAGE_MASK)) { |
| helper_ret_stb_mmu(env, va, 0, oi, GETPC()); |
| } |
| } |
| } |
| |
| /* |
| * Slow path (probably attempt to do this to an I/O device or |
| * similar, or clearing of a block of code we have translations |
| * cached for). Just do a series of byte writes as the architecture |
| * demands. It's not worth trying to use a cpu_physical_memory_map(), |
| * memset(), unmap() sequence here because: |
| * + we'd need to account for the blocksize being larger than a page |
| * + the direct-RAM access case is almost always going to be dealt |
| * with in the fastpath code above, so there's no speed benefit |
| * + we would have to deal with the map returning NULL because the |
| * bounce buffer was in use |
| */ |
| for (i = 0; i < blocklen; i++) { |
| helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); |
| } |
| } |
| #else |
| memset(g2h(vaddr), 0, blocklen); |
| #endif |
| } |