| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "sysemu/hw_accel.h" |
| #include "sysemu/runstate.h" |
| #include "qemu/log.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/module.h" |
| #include "qemu/error-report.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "helper_regs.h" |
| #include "hw/ppc/spapr.h" |
| #include "hw/ppc/spapr_cpu_core.h" |
| #include "mmu-hash64.h" |
| #include "cpu-models.h" |
| #include "trace.h" |
| #include "kvm_ppc.h" |
| #include "hw/ppc/spapr_ovec.h" |
| #include "mmu-book3s-v3.h" |
| #include "hw/mem/memory-device.h" |
| |
| static bool has_spr(PowerPCCPU *cpu, int spr) |
| { |
| /* We can test whether the SPR is defined by checking for a valid name */ |
| return cpu->env.spr_cb[spr].name != NULL; |
| } |
| |
| static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex) |
| { |
| /* |
| * hash value/pteg group index is normalized by HPT mask |
| */ |
| if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) { |
| return false; |
| } |
| return true; |
| } |
| |
| static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr) |
| { |
| MachineState *machine = MACHINE(spapr); |
| DeviceMemoryState *dms = machine->device_memory; |
| |
| if (addr < machine->ram_size) { |
| return true; |
| } |
| if ((addr >= dms->base) |
| && ((addr - dms->base) < memory_region_size(&dms->mr))) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong ptex = args[1]; |
| target_ulong pteh = args[2]; |
| target_ulong ptel = args[3]; |
| unsigned apshift; |
| target_ulong raddr; |
| target_ulong slot; |
| const ppc_hash_pte64_t *hptes; |
| |
| apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel); |
| if (!apshift) { |
| /* Bad page size encoding */ |
| return H_PARAMETER; |
| } |
| |
| raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1); |
| |
| if (is_ram_address(spapr, raddr)) { |
| /* Regular RAM - should have WIMG=0010 */ |
| if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) { |
| return H_PARAMETER; |
| } |
| } else { |
| target_ulong wimg_flags; |
| /* Looks like an IO address */ |
| /* FIXME: What WIMG combinations could be sensible for IO? |
| * For now we allow WIMG=010x, but are there others? */ |
| /* FIXME: Should we check against registered IO addresses? */ |
| wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M)); |
| |
| if (wimg_flags != HPTE64_R_I && |
| wimg_flags != (HPTE64_R_I | HPTE64_R_M)) { |
| return H_PARAMETER; |
| } |
| } |
| |
| pteh &= ~0x60ULL; |
| |
| if (!valid_ptex(cpu, ptex)) { |
| return H_PARAMETER; |
| } |
| |
| slot = ptex & 7ULL; |
| ptex = ptex & ~7ULL; |
| |
| if (likely((flags & H_EXACT) == 0)) { |
| hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); |
| for (slot = 0; slot < 8; slot++) { |
| if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) { |
| break; |
| } |
| } |
| ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); |
| if (slot == 8) { |
| return H_PTEG_FULL; |
| } |
| } else { |
| hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1); |
| if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) { |
| ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1); |
| return H_PTEG_FULL; |
| } |
| ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); |
| } |
| |
| spapr_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel); |
| |
| args[0] = ptex + slot; |
| return H_SUCCESS; |
| } |
| |
| typedef enum { |
| REMOVE_SUCCESS = 0, |
| REMOVE_NOT_FOUND = 1, |
| REMOVE_PARM = 2, |
| REMOVE_HW = 3, |
| } RemoveResult; |
| |
| static RemoveResult remove_hpte(PowerPCCPU *cpu |
| , target_ulong ptex, |
| target_ulong avpn, |
| target_ulong flags, |
| target_ulong *vp, target_ulong *rp) |
| { |
| const ppc_hash_pte64_t *hptes; |
| target_ulong v, r; |
| |
| if (!valid_ptex(cpu, ptex)) { |
| return REMOVE_PARM; |
| } |
| |
| hptes = ppc_hash64_map_hptes(cpu, ptex, 1); |
| v = ppc_hash64_hpte0(cpu, hptes, 0); |
| r = ppc_hash64_hpte1(cpu, hptes, 0); |
| ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); |
| |
| if ((v & HPTE64_V_VALID) == 0 || |
| ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) || |
| ((flags & H_ANDCOND) && (v & avpn) != 0)) { |
| return REMOVE_NOT_FOUND; |
| } |
| *vp = v; |
| *rp = r; |
| spapr_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0); |
| ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); |
| return REMOVE_SUCCESS; |
| } |
| |
| static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUPPCState *env = &cpu->env; |
| target_ulong flags = args[0]; |
| target_ulong ptex = args[1]; |
| target_ulong avpn = args[2]; |
| RemoveResult ret; |
| |
| ret = remove_hpte(cpu, ptex, avpn, flags, |
| &args[0], &args[1]); |
| |
| switch (ret) { |
| case REMOVE_SUCCESS: |
| check_tlb_flush(env, true); |
| return H_SUCCESS; |
| |
| case REMOVE_NOT_FOUND: |
| return H_NOT_FOUND; |
| |
| case REMOVE_PARM: |
| return H_PARAMETER; |
| |
| case REMOVE_HW: |
| return H_HARDWARE; |
| } |
| |
| g_assert_not_reached(); |
| } |
| |
| #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL |
| #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL |
| #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL |
| #define H_BULK_REMOVE_END 0xc000000000000000ULL |
| #define H_BULK_REMOVE_CODE 0x3000000000000000ULL |
| #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL |
| #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL |
| #define H_BULK_REMOVE_PARM 0x2000000000000000ULL |
| #define H_BULK_REMOVE_HW 0x3000000000000000ULL |
| #define H_BULK_REMOVE_RC 0x0c00000000000000ULL |
| #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL |
| #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL |
| #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL |
| #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL |
| #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL |
| |
| #define H_BULK_REMOVE_MAX_BATCH 4 |
| |
| static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUPPCState *env = &cpu->env; |
| int i; |
| target_ulong rc = H_SUCCESS; |
| |
| for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) { |
| target_ulong *tsh = &args[i*2]; |
| target_ulong tsl = args[i*2 + 1]; |
| target_ulong v, r, ret; |
| |
| if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) { |
| break; |
| } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) { |
| return H_PARAMETER; |
| } |
| |
| *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS; |
| *tsh |= H_BULK_REMOVE_RESPONSE; |
| |
| if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) { |
| *tsh |= H_BULK_REMOVE_PARM; |
| return H_PARAMETER; |
| } |
| |
| ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl, |
| (*tsh & H_BULK_REMOVE_FLAGS) >> 26, |
| &v, &r); |
| |
| *tsh |= ret << 60; |
| |
| switch (ret) { |
| case REMOVE_SUCCESS: |
| *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43; |
| break; |
| |
| case REMOVE_PARM: |
| rc = H_PARAMETER; |
| goto exit; |
| |
| case REMOVE_HW: |
| rc = H_HARDWARE; |
| goto exit; |
| } |
| } |
| exit: |
| check_tlb_flush(env, true); |
| |
| return rc; |
| } |
| |
| static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUPPCState *env = &cpu->env; |
| target_ulong flags = args[0]; |
| target_ulong ptex = args[1]; |
| target_ulong avpn = args[2]; |
| const ppc_hash_pte64_t *hptes; |
| target_ulong v, r; |
| |
| if (!valid_ptex(cpu, ptex)) { |
| return H_PARAMETER; |
| } |
| |
| hptes = ppc_hash64_map_hptes(cpu, ptex, 1); |
| v = ppc_hash64_hpte0(cpu, hptes, 0); |
| r = ppc_hash64_hpte1(cpu, hptes, 0); |
| ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); |
| |
| if ((v & HPTE64_V_VALID) == 0 || |
| ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) { |
| return H_NOT_FOUND; |
| } |
| |
| r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N | |
| HPTE64_R_KEY_HI | HPTE64_R_KEY_LO); |
| r |= (flags << 55) & HPTE64_R_PP0; |
| r |= (flags << 48) & HPTE64_R_KEY_HI; |
| r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO); |
| spapr_store_hpte(cpu, ptex, |
| (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0); |
| ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); |
| /* Flush the tlb */ |
| check_tlb_flush(env, true); |
| /* Don't need a memory barrier, due to qemu's global lock */ |
| spapr_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r); |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong ptex = args[1]; |
| int i, ridx, n_entries = 1; |
| const ppc_hash_pte64_t *hptes; |
| |
| if (!valid_ptex(cpu, ptex)) { |
| return H_PARAMETER; |
| } |
| |
| if (flags & H_READ_4) { |
| /* Clear the two low order bits */ |
| ptex &= ~(3ULL); |
| n_entries = 4; |
| } |
| |
| hptes = ppc_hash64_map_hptes(cpu, ptex, n_entries); |
| for (i = 0, ridx = 0; i < n_entries; i++) { |
| args[ridx++] = ppc_hash64_hpte0(cpu, hptes, i); |
| args[ridx++] = ppc_hash64_hpte1(cpu, hptes, i); |
| } |
| ppc_hash64_unmap_hptes(cpu, hptes, ptex, n_entries); |
| |
| return H_SUCCESS; |
| } |
| |
| struct SpaprPendingHpt { |
| /* These fields are read-only after initialization */ |
| int shift; |
| QemuThread thread; |
| |
| /* These fields are protected by the BQL */ |
| bool complete; |
| |
| /* These fields are private to the preparation thread if |
| * !complete, otherwise protected by the BQL */ |
| int ret; |
| void *hpt; |
| }; |
| |
| static void free_pending_hpt(SpaprPendingHpt *pending) |
| { |
| if (pending->hpt) { |
| qemu_vfree(pending->hpt); |
| } |
| |
| g_free(pending); |
| } |
| |
| static void *hpt_prepare_thread(void *opaque) |
| { |
| SpaprPendingHpt *pending = opaque; |
| size_t size = 1ULL << pending->shift; |
| |
| pending->hpt = qemu_memalign(size, size); |
| if (pending->hpt) { |
| memset(pending->hpt, 0, size); |
| pending->ret = H_SUCCESS; |
| } else { |
| pending->ret = H_NO_MEM; |
| } |
| |
| qemu_mutex_lock_iothread(); |
| |
| if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) { |
| /* Ready to go */ |
| pending->complete = true; |
| } else { |
| /* We've been cancelled, clean ourselves up */ |
| free_pending_hpt(pending); |
| } |
| |
| qemu_mutex_unlock_iothread(); |
| return NULL; |
| } |
| |
| /* Must be called with BQL held */ |
| static void cancel_hpt_prepare(SpaprMachineState *spapr) |
| { |
| SpaprPendingHpt *pending = spapr->pending_hpt; |
| |
| /* Let the thread know it's cancelled */ |
| spapr->pending_hpt = NULL; |
| |
| if (!pending) { |
| /* Nothing to do */ |
| return; |
| } |
| |
| if (!pending->complete) { |
| /* thread will clean itself up */ |
| return; |
| } |
| |
| free_pending_hpt(pending); |
| } |
| |
| /* Convert a return code from the KVM ioctl()s implementing resize HPT |
| * into a PAPR hypercall return code */ |
| static target_ulong resize_hpt_convert_rc(int ret) |
| { |
| if (ret >= 100000) { |
| return H_LONG_BUSY_ORDER_100_SEC; |
| } else if (ret >= 10000) { |
| return H_LONG_BUSY_ORDER_10_SEC; |
| } else if (ret >= 1000) { |
| return H_LONG_BUSY_ORDER_1_SEC; |
| } else if (ret >= 100) { |
| return H_LONG_BUSY_ORDER_100_MSEC; |
| } else if (ret >= 10) { |
| return H_LONG_BUSY_ORDER_10_MSEC; |
| } else if (ret > 0) { |
| return H_LONG_BUSY_ORDER_1_MSEC; |
| } |
| |
| switch (ret) { |
| case 0: |
| return H_SUCCESS; |
| case -EPERM: |
| return H_AUTHORITY; |
| case -EINVAL: |
| return H_PARAMETER; |
| case -ENXIO: |
| return H_CLOSED; |
| case -ENOSPC: |
| return H_PTEG_FULL; |
| case -EBUSY: |
| return H_BUSY; |
| case -ENOMEM: |
| return H_NO_MEM; |
| default: |
| return H_HARDWARE; |
| } |
| } |
| |
| static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| int shift = args[1]; |
| SpaprPendingHpt *pending = spapr->pending_hpt; |
| uint64_t current_ram_size; |
| int rc; |
| |
| if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { |
| return H_AUTHORITY; |
| } |
| |
| if (!spapr->htab_shift) { |
| /* Radix guest, no HPT */ |
| return H_NOT_AVAILABLE; |
| } |
| |
| trace_spapr_h_resize_hpt_prepare(flags, shift); |
| |
| if (flags != 0) { |
| return H_PARAMETER; |
| } |
| |
| if (shift && ((shift < 18) || (shift > 46))) { |
| return H_PARAMETER; |
| } |
| |
| current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); |
| |
| /* We only allow the guest to allocate an HPT one order above what |
| * we'd normally give them (to stop a small guest claiming a huge |
| * chunk of resources in the HPT */ |
| if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) { |
| return H_RESOURCE; |
| } |
| |
| rc = kvmppc_resize_hpt_prepare(cpu, flags, shift); |
| if (rc != -ENOSYS) { |
| return resize_hpt_convert_rc(rc); |
| } |
| |
| if (pending) { |
| /* something already in progress */ |
| if (pending->shift == shift) { |
| /* and it's suitable */ |
| if (pending->complete) { |
| return pending->ret; |
| } else { |
| return H_LONG_BUSY_ORDER_100_MSEC; |
| } |
| } |
| |
| /* not suitable, cancel and replace */ |
| cancel_hpt_prepare(spapr); |
| } |
| |
| if (!shift) { |
| /* nothing to do */ |
| return H_SUCCESS; |
| } |
| |
| /* start new prepare */ |
| |
| pending = g_new0(SpaprPendingHpt, 1); |
| pending->shift = shift; |
| pending->ret = H_HARDWARE; |
| |
| qemu_thread_create(&pending->thread, "sPAPR HPT prepare", |
| hpt_prepare_thread, pending, QEMU_THREAD_DETACHED); |
| |
| spapr->pending_hpt = pending; |
| |
| /* In theory we could estimate the time more accurately based on |
| * the new size, but there's not much point */ |
| return H_LONG_BUSY_ORDER_100_MSEC; |
| } |
| |
| static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot) |
| { |
| uint8_t *addr = htab; |
| |
| addr += pteg * HASH_PTEG_SIZE_64; |
| addr += slot * HASH_PTE_SIZE_64; |
| return ldq_p(addr); |
| } |
| |
| static void new_hpte_store(void *htab, uint64_t pteg, int slot, |
| uint64_t pte0, uint64_t pte1) |
| { |
| uint8_t *addr = htab; |
| |
| addr += pteg * HASH_PTEG_SIZE_64; |
| addr += slot * HASH_PTE_SIZE_64; |
| |
| stq_p(addr, pte0); |
| stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1); |
| } |
| |
| static int rehash_hpte(PowerPCCPU *cpu, |
| const ppc_hash_pte64_t *hptes, |
| void *old_hpt, uint64_t oldsize, |
| void *new_hpt, uint64_t newsize, |
| uint64_t pteg, int slot) |
| { |
| uint64_t old_hash_mask = (oldsize >> 7) - 1; |
| uint64_t new_hash_mask = (newsize >> 7) - 1; |
| target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot); |
| target_ulong pte1; |
| uint64_t avpn; |
| unsigned base_pg_shift; |
| uint64_t hash, new_pteg, replace_pte0; |
| |
| if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) { |
| return H_SUCCESS; |
| } |
| |
| pte1 = ppc_hash64_hpte1(cpu, hptes, slot); |
| |
| base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1); |
| assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */ |
| avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23); |
| |
| if (pte0 & HPTE64_V_SECONDARY) { |
| pteg = ~pteg; |
| } |
| |
| if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) { |
| uint64_t offset, vsid; |
| |
| /* We only have 28 - 23 bits of offset in avpn */ |
| offset = (avpn & 0x1f) << 23; |
| vsid = avpn >> 5; |
| /* We can find more bits from the pteg value */ |
| if (base_pg_shift < 23) { |
| offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift; |
| } |
| |
| hash = vsid ^ (offset >> base_pg_shift); |
| } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) { |
| uint64_t offset, vsid; |
| |
| /* We only have 40 - 23 bits of seg_off in avpn */ |
| offset = (avpn & 0x1ffff) << 23; |
| vsid = avpn >> 17; |
| if (base_pg_shift < 23) { |
| offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) |
| << base_pg_shift; |
| } |
| |
| hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift); |
| } else { |
| error_report("rehash_pte: Bad segment size in HPTE"); |
| return H_HARDWARE; |
| } |
| |
| new_pteg = hash & new_hash_mask; |
| if (pte0 & HPTE64_V_SECONDARY) { |
| assert(~pteg == (hash & old_hash_mask)); |
| new_pteg = ~new_pteg; |
| } else { |
| assert(pteg == (hash & old_hash_mask)); |
| } |
| assert((oldsize != newsize) || (pteg == new_pteg)); |
| replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot); |
| /* |
| * Strictly speaking, we don't need all these tests, since we only |
| * ever rehash bolted HPTEs. We might in future handle non-bolted |
| * HPTEs, though so make the logic correct for those cases as |
| * well. |
| */ |
| if (replace_pte0 & HPTE64_V_VALID) { |
| assert(newsize < oldsize); |
| if (replace_pte0 & HPTE64_V_BOLTED) { |
| if (pte0 & HPTE64_V_BOLTED) { |
| /* Bolted collision, nothing we can do */ |
| return H_PTEG_FULL; |
| } else { |
| /* Discard this hpte */ |
| return H_SUCCESS; |
| } |
| } |
| } |
| |
| new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1); |
| return H_SUCCESS; |
| } |
| |
| static int rehash_hpt(PowerPCCPU *cpu, |
| void *old_hpt, uint64_t oldsize, |
| void *new_hpt, uint64_t newsize) |
| { |
| uint64_t n_ptegs = oldsize >> 7; |
| uint64_t pteg; |
| int slot; |
| int rc; |
| |
| for (pteg = 0; pteg < n_ptegs; pteg++) { |
| hwaddr ptex = pteg * HPTES_PER_GROUP; |
| const ppc_hash_pte64_t *hptes |
| = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); |
| |
| if (!hptes) { |
| return H_HARDWARE; |
| } |
| |
| for (slot = 0; slot < HPTES_PER_GROUP; slot++) { |
| rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize, |
| pteg, slot); |
| if (rc != H_SUCCESS) { |
| ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); |
| return rc; |
| } |
| } |
| ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); |
| } |
| |
| return H_SUCCESS; |
| } |
| |
| static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data) |
| { |
| int ret; |
| |
| cpu_synchronize_state(cs); |
| |
| ret = kvmppc_put_books_sregs(POWERPC_CPU(cs)); |
| if (ret < 0) { |
| error_report("failed to push sregs to KVM: %s", strerror(-ret)); |
| exit(1); |
| } |
| } |
| |
| static void push_sregs_to_kvm_pr(SpaprMachineState *spapr) |
| { |
| CPUState *cs; |
| |
| /* |
| * This is a hack for the benefit of KVM PR - it abuses the SDR1 |
| * slot in kvm_sregs to communicate the userspace address of the |
| * HPT |
| */ |
| if (!kvm_enabled() || !spapr->htab) { |
| return; |
| } |
| |
| CPU_FOREACH(cs) { |
| run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL); |
| } |
| } |
| |
| static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong shift = args[1]; |
| SpaprPendingHpt *pending = spapr->pending_hpt; |
| int rc; |
| size_t newsize; |
| |
| if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { |
| return H_AUTHORITY; |
| } |
| |
| if (!spapr->htab_shift) { |
| /* Radix guest, no HPT */ |
| return H_NOT_AVAILABLE; |
| } |
| |
| trace_spapr_h_resize_hpt_commit(flags, shift); |
| |
| rc = kvmppc_resize_hpt_commit(cpu, flags, shift); |
| if (rc != -ENOSYS) { |
| rc = resize_hpt_convert_rc(rc); |
| if (rc == H_SUCCESS) { |
| /* Need to set the new htab_shift in the machine state */ |
| spapr->htab_shift = shift; |
| } |
| return rc; |
| } |
| |
| if (flags != 0) { |
| return H_PARAMETER; |
| } |
| |
| if (!pending || (pending->shift != shift)) { |
| /* no matching prepare */ |
| return H_CLOSED; |
| } |
| |
| if (!pending->complete) { |
| /* prepare has not completed */ |
| return H_BUSY; |
| } |
| |
| /* Shouldn't have got past PREPARE without an HPT */ |
| g_assert(spapr->htab_shift); |
| |
| newsize = 1ULL << pending->shift; |
| rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr), |
| pending->hpt, newsize); |
| if (rc == H_SUCCESS) { |
| qemu_vfree(spapr->htab); |
| spapr->htab = pending->hpt; |
| spapr->htab_shift = pending->shift; |
| |
| push_sregs_to_kvm_pr(spapr); |
| |
| pending->hpt = NULL; /* so it's not free()d */ |
| } |
| |
| /* Clean up */ |
| spapr->pending_hpt = NULL; |
| free_pending_hpt(pending); |
| |
| return rc; |
| } |
| |
| static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| cpu_synchronize_state(CPU(cpu)); |
| cpu->env.spr[SPR_SPRG0] = args[0]; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| if (!has_spr(cpu, SPR_DABR)) { |
| return H_HARDWARE; /* DABR register not available */ |
| } |
| cpu_synchronize_state(CPU(cpu)); |
| |
| if (has_spr(cpu, SPR_DABRX)) { |
| cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */ |
| } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */ |
| return H_RESERVED_DABR; |
| } |
| |
| cpu->env.spr[SPR_DABR] = args[0]; |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong dabrx = args[1]; |
| |
| if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) { |
| return H_HARDWARE; |
| } |
| |
| if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 |
| || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { |
| return H_PARAMETER; |
| } |
| |
| cpu_synchronize_state(CPU(cpu)); |
| cpu->env.spr[SPR_DABRX] = dabrx; |
| cpu->env.spr[SPR_DABR] = args[0]; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| hwaddr dst = args[1]; |
| hwaddr src = args[2]; |
| hwaddr len = TARGET_PAGE_SIZE; |
| uint8_t *pdst, *psrc; |
| target_long ret = H_SUCCESS; |
| |
| if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE |
| | H_COPY_PAGE | H_ZERO_PAGE)) { |
| qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", |
| flags); |
| return H_PARAMETER; |
| } |
| |
| /* Map-in destination */ |
| if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { |
| return H_PARAMETER; |
| } |
| pdst = cpu_physical_memory_map(dst, &len, 1); |
| if (!pdst || len != TARGET_PAGE_SIZE) { |
| return H_PARAMETER; |
| } |
| |
| if (flags & H_COPY_PAGE) { |
| /* Map-in source, copy to destination, and unmap source again */ |
| if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { |
| ret = H_PARAMETER; |
| goto unmap_out; |
| } |
| psrc = cpu_physical_memory_map(src, &len, 0); |
| if (!psrc || len != TARGET_PAGE_SIZE) { |
| ret = H_PARAMETER; |
| goto unmap_out; |
| } |
| memcpy(pdst, psrc, len); |
| cpu_physical_memory_unmap(psrc, len, 0, len); |
| } else if (flags & H_ZERO_PAGE) { |
| memset(pdst, 0, len); /* Just clear the destination page */ |
| } |
| |
| if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { |
| kvmppc_dcbst_range(cpu, pdst, len); |
| } |
| if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { |
| if (kvm_enabled()) { |
| kvmppc_icbi_range(cpu, pdst, len); |
| } else { |
| tb_flush(CPU(cpu)); |
| } |
| } |
| |
| unmap_out: |
| cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); |
| return ret; |
| } |
| |
| #define FLAGS_REGISTER_VPA 0x0000200000000000ULL |
| #define FLAGS_REGISTER_DTL 0x0000400000000000ULL |
| #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL |
| #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL |
| #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL |
| #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL |
| |
| static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| uint16_t size; |
| uint8_t tmp; |
| |
| if (vpa == 0) { |
| hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); |
| return H_HARDWARE; |
| } |
| |
| if (vpa % env->dcache_line_size) { |
| return H_PARAMETER; |
| } |
| /* FIXME: bounds check the address */ |
| |
| size = lduw_be_phys(cs->as, vpa + 0x4); |
| |
| if (size < VPA_MIN_SIZE) { |
| return H_PARAMETER; |
| } |
| |
| /* VPA is not allowed to cross a page boundary */ |
| if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { |
| return H_PARAMETER; |
| } |
| |
| spapr_cpu->vpa_addr = vpa; |
| |
| tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET); |
| tmp |= VPA_SHARED_PROC_VAL; |
| stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa) |
| { |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| |
| if (spapr_cpu->slb_shadow_addr) { |
| return H_RESOURCE; |
| } |
| |
| if (spapr_cpu->dtl_addr) { |
| return H_RESOURCE; |
| } |
| |
| spapr_cpu->vpa_addr = 0; |
| return H_SUCCESS; |
| } |
| |
| static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr) |
| { |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| uint32_t size; |
| |
| if (addr == 0) { |
| hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); |
| return H_HARDWARE; |
| } |
| |
| size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); |
| if (size < 0x8) { |
| return H_PARAMETER; |
| } |
| |
| if ((addr / 4096) != ((addr + size - 1) / 4096)) { |
| return H_PARAMETER; |
| } |
| |
| if (!spapr_cpu->vpa_addr) { |
| return H_RESOURCE; |
| } |
| |
| spapr_cpu->slb_shadow_addr = addr; |
| spapr_cpu->slb_shadow_size = size; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr) |
| { |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| |
| spapr_cpu->slb_shadow_addr = 0; |
| spapr_cpu->slb_shadow_size = 0; |
| return H_SUCCESS; |
| } |
| |
| static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr) |
| { |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| uint32_t size; |
| |
| if (addr == 0) { |
| hcall_dprintf("Can't cope with DTL at logical 0\n"); |
| return H_HARDWARE; |
| } |
| |
| size = ldl_be_phys(CPU(cpu)->as, addr + 0x4); |
| |
| if (size < 48) { |
| return H_PARAMETER; |
| } |
| |
| if (!spapr_cpu->vpa_addr) { |
| return H_RESOURCE; |
| } |
| |
| spapr_cpu->dtl_addr = addr; |
| spapr_cpu->dtl_size = size; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr) |
| { |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| |
| spapr_cpu->dtl_addr = 0; |
| spapr_cpu->dtl_size = 0; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong procno = args[1]; |
| target_ulong vpa = args[2]; |
| target_ulong ret = H_PARAMETER; |
| PowerPCCPU *tcpu; |
| |
| tcpu = spapr_find_cpu(procno); |
| if (!tcpu) { |
| return H_PARAMETER; |
| } |
| |
| switch (flags) { |
| case FLAGS_REGISTER_VPA: |
| ret = register_vpa(tcpu, vpa); |
| break; |
| |
| case FLAGS_DEREGISTER_VPA: |
| ret = deregister_vpa(tcpu, vpa); |
| break; |
| |
| case FLAGS_REGISTER_SLBSHADOW: |
| ret = register_slb_shadow(tcpu, vpa); |
| break; |
| |
| case FLAGS_DEREGISTER_SLBSHADOW: |
| ret = deregister_slb_shadow(tcpu, vpa); |
| break; |
| |
| case FLAGS_REGISTER_DTL: |
| ret = register_dtl(tcpu, vpa); |
| break; |
| |
| case FLAGS_DEREGISTER_DTL: |
| ret = deregister_dtl(tcpu, vpa); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUPPCState *env = &cpu->env; |
| CPUState *cs = CPU(cpu); |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| |
| env->msr |= (1ULL << MSR_EE); |
| hreg_compute_hflags(env); |
| |
| if (spapr_cpu->prod) { |
| spapr_cpu->prod = false; |
| return H_SUCCESS; |
| } |
| |
| if (!cpu_has_work(cs)) { |
| cs->halted = 1; |
| cs->exception_index = EXCP_HLT; |
| cs->exit_request = 1; |
| } |
| |
| return H_SUCCESS; |
| } |
| |
| /* |
| * Confer to self, aka join. Cede could use the same pattern as well, if |
| * EXCP_HLT can be changed to ECXP_HALTED. |
| */ |
| static target_ulong h_confer_self(PowerPCCPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); |
| |
| if (spapr_cpu->prod) { |
| spapr_cpu->prod = false; |
| return H_SUCCESS; |
| } |
| cs->halted = 1; |
| cs->exception_index = EXCP_HALTED; |
| cs->exit_request = 1; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUPPCState *env = &cpu->env; |
| CPUState *cs; |
| bool last_unjoined = true; |
| |
| if (env->msr & (1ULL << MSR_EE)) { |
| return H_BAD_MODE; |
| } |
| |
| /* |
| * Must not join the last CPU running. Interestingly, no such restriction |
| * for H_CONFER-to-self, but that is probably not intended to be used |
| * when H_JOIN is available. |
| */ |
| CPU_FOREACH(cs) { |
| PowerPCCPU *c = POWERPC_CPU(cs); |
| CPUPPCState *e = &c->env; |
| if (c == cpu) { |
| continue; |
| } |
| |
| /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */ |
| if (!cs->halted || (e->msr & (1ULL << MSR_EE))) { |
| last_unjoined = false; |
| break; |
| } |
| } |
| if (last_unjoined) { |
| return H_CONTINUE; |
| } |
| |
| return h_confer_self(cpu); |
| } |
| |
| static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_long target = args[0]; |
| uint32_t dispatch = args[1]; |
| CPUState *cs = CPU(cpu); |
| SpaprCpuState *spapr_cpu; |
| |
| /* |
| * -1 means confer to all other CPUs without dispatch counter check, |
| * otherwise it's a targeted confer. |
| */ |
| if (target != -1) { |
| PowerPCCPU *target_cpu = spapr_find_cpu(target); |
| uint32_t target_dispatch; |
| |
| if (!target_cpu) { |
| return H_PARAMETER; |
| } |
| |
| /* |
| * target == self is a special case, we wait until prodded, without |
| * dispatch counter check. |
| */ |
| if (cpu == target_cpu) { |
| return h_confer_self(cpu); |
| } |
| |
| spapr_cpu = spapr_cpu_state(target_cpu); |
| if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) { |
| return H_SUCCESS; |
| } |
| |
| target_dispatch = ldl_be_phys(cs->as, |
| spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); |
| if (target_dispatch != dispatch) { |
| return H_SUCCESS; |
| } |
| |
| /* |
| * The targeted confer does not do anything special beyond yielding |
| * the current vCPU, but even this should be better than nothing. |
| * At least for single-threaded tcg, it gives the target a chance to |
| * run before we run again. Multi-threaded tcg does not really do |
| * anything with EXCP_YIELD yet. |
| */ |
| } |
| |
| cs->exception_index = EXCP_YIELD; |
| cs->exit_request = 1; |
| cpu_loop_exit(cs); |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_long target = args[0]; |
| PowerPCCPU *tcpu; |
| CPUState *cs; |
| SpaprCpuState *spapr_cpu; |
| |
| tcpu = spapr_find_cpu(target); |
| cs = CPU(tcpu); |
| if (!cs) { |
| return H_PARAMETER; |
| } |
| |
| spapr_cpu = spapr_cpu_state(tcpu); |
| spapr_cpu->prod = true; |
| cs->halted = 0; |
| qemu_cpu_kick(cs); |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong rtas_r3 = args[0]; |
| uint32_t token = rtas_ld(rtas_r3, 0); |
| uint32_t nargs = rtas_ld(rtas_r3, 1); |
| uint32_t nret = rtas_ld(rtas_r3, 2); |
| |
| return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, |
| nret, rtas_r3 + 12 + 4*nargs); |
| } |
| |
| static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUState *cs = CPU(cpu); |
| target_ulong size = args[0]; |
| target_ulong addr = args[1]; |
| |
| switch (size) { |
| case 1: |
| args[0] = ldub_phys(cs->as, addr); |
| return H_SUCCESS; |
| case 2: |
| args[0] = lduw_phys(cs->as, addr); |
| return H_SUCCESS; |
| case 4: |
| args[0] = ldl_phys(cs->as, addr); |
| return H_SUCCESS; |
| case 8: |
| args[0] = ldq_phys(cs->as, addr); |
| return H_SUCCESS; |
| } |
| return H_PARAMETER; |
| } |
| |
| static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUState *cs = CPU(cpu); |
| |
| target_ulong size = args[0]; |
| target_ulong addr = args[1]; |
| target_ulong val = args[2]; |
| |
| switch (size) { |
| case 1: |
| stb_phys(cs->as, addr, val); |
| return H_SUCCESS; |
| case 2: |
| stw_phys(cs->as, addr, val); |
| return H_SUCCESS; |
| case 4: |
| stl_phys(cs->as, addr, val); |
| return H_SUCCESS; |
| case 8: |
| stq_phys(cs->as, addr, val); |
| return H_SUCCESS; |
| } |
| return H_PARAMETER; |
| } |
| |
| static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUState *cs = CPU(cpu); |
| |
| target_ulong dst = args[0]; /* Destination address */ |
| target_ulong src = args[1]; /* Source address */ |
| target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ |
| target_ulong count = args[3]; /* Element count */ |
| target_ulong op = args[4]; /* 0 = copy, 1 = invert */ |
| uint64_t tmp; |
| unsigned int mask = (1 << esize) - 1; |
| int step = 1 << esize; |
| |
| if (count > 0x80000000) { |
| return H_PARAMETER; |
| } |
| |
| if ((dst & mask) || (src & mask) || (op > 1)) { |
| return H_PARAMETER; |
| } |
| |
| if (dst >= src && dst < (src + (count << esize))) { |
| dst = dst + ((count - 1) << esize); |
| src = src + ((count - 1) << esize); |
| step = -step; |
| } |
| |
| while (count--) { |
| switch (esize) { |
| case 0: |
| tmp = ldub_phys(cs->as, src); |
| break; |
| case 1: |
| tmp = lduw_phys(cs->as, src); |
| break; |
| case 2: |
| tmp = ldl_phys(cs->as, src); |
| break; |
| case 3: |
| tmp = ldq_phys(cs->as, src); |
| break; |
| default: |
| return H_PARAMETER; |
| } |
| if (op == 1) { |
| tmp = ~tmp; |
| } |
| switch (esize) { |
| case 0: |
| stb_phys(cs->as, dst, tmp); |
| break; |
| case 1: |
| stw_phys(cs->as, dst, tmp); |
| break; |
| case 2: |
| stl_phys(cs->as, dst, tmp); |
| break; |
| case 3: |
| stq_phys(cs->as, dst, tmp); |
| break; |
| } |
| dst = dst + step; |
| src = src + step; |
| } |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| /* Nothing to do on emulation, KVM will trap this in the kernel */ |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| /* Nothing to do on emulation, KVM will trap this in the kernel */ |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, |
| target_ulong mflags, |
| target_ulong value1, |
| target_ulong value2) |
| { |
| if (value1) { |
| return H_P3; |
| } |
| if (value2) { |
| return H_P4; |
| } |
| |
| switch (mflags) { |
| case H_SET_MODE_ENDIAN_BIG: |
| spapr_set_all_lpcrs(0, LPCR_ILE); |
| spapr_pci_switch_vga(true); |
| return H_SUCCESS; |
| |
| case H_SET_MODE_ENDIAN_LITTLE: |
| spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE); |
| spapr_pci_switch_vga(false); |
| return H_SUCCESS; |
| } |
| |
| return H_UNSUPPORTED_FLAG; |
| } |
| |
| static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, |
| target_ulong mflags, |
| target_ulong value1, |
| target_ulong value2) |
| { |
| PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); |
| |
| if (!(pcc->insns_flags2 & PPC2_ISA207S)) { |
| return H_P2; |
| } |
| if (value1) { |
| return H_P3; |
| } |
| if (value2) { |
| return H_P4; |
| } |
| |
| if (mflags == AIL_RESERVED) { |
| return H_UNSUPPORTED_FLAG; |
| } |
| |
| spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL); |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong resource = args[1]; |
| target_ulong ret = H_P2; |
| |
| switch (resource) { |
| case H_SET_MODE_RESOURCE_LE: |
| ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]); |
| break; |
| case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: |
| ret = h_set_mode_resource_addr_trans_mode(cpu, args[0], |
| args[2], args[3]); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", |
| opcode, " (H_CLEAN_SLB)"); |
| return H_FUNCTION; |
| } |
| |
| static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", |
| opcode, " (H_INVALIDATE_PID)"); |
| return H_FUNCTION; |
| } |
| |
| static void spapr_check_setup_free_hpt(SpaprMachineState *spapr, |
| uint64_t patbe_old, uint64_t patbe_new) |
| { |
| /* |
| * We have 4 Options: |
| * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing |
| * HASH->RADIX : Free HPT |
| * RADIX->HASH : Allocate HPT |
| * NOTHING->HASH : Allocate HPT |
| * Note: NOTHING implies the case where we said the guest could choose |
| * later and so assumed radix and now it's called H_REG_PROC_TBL |
| */ |
| |
| if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) { |
| /* We assume RADIX, so this catches all the "Do Nothing" cases */ |
| } else if (!(patbe_old & PATE1_GR)) { |
| /* HASH->RADIX : Free HPT */ |
| spapr_free_hpt(spapr); |
| } else if (!(patbe_new & PATE1_GR)) { |
| /* RADIX->HASH || NOTHING->HASH : Allocate HPT */ |
| spapr_setup_hpt_and_vrma(spapr); |
| } |
| return; |
| } |
| |
| #define FLAGS_MASK 0x01FULL |
| #define FLAG_MODIFY 0x10 |
| #define FLAG_REGISTER 0x08 |
| #define FLAG_RADIX 0x04 |
| #define FLAG_HASH_PROC_TBL 0x02 |
| #define FLAG_GTSE 0x01 |
| |
| static target_ulong h_register_process_table(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong proc_tbl = args[1]; |
| target_ulong page_size = args[2]; |
| target_ulong table_size = args[3]; |
| target_ulong update_lpcr = 0; |
| uint64_t cproc; |
| |
| if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */ |
| return H_PARAMETER; |
| } |
| if (flags & FLAG_MODIFY) { |
| if (flags & FLAG_REGISTER) { |
| if (flags & FLAG_RADIX) { /* Register new RADIX process table */ |
| if (proc_tbl & 0xfff || proc_tbl >> 60) { |
| return H_P2; |
| } else if (page_size) { |
| return H_P3; |
| } else if (table_size > 24) { |
| return H_P4; |
| } |
| cproc = PATE1_GR | proc_tbl | table_size; |
| } else { /* Register new HPT process table */ |
| if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */ |
| /* TODO - Not Supported */ |
| /* Technically caused by flag bits => H_PARAMETER */ |
| return H_PARAMETER; |
| } else { /* Hash with SLB */ |
| if (proc_tbl >> 38) { |
| return H_P2; |
| } else if (page_size & ~0x7) { |
| return H_P3; |
| } else if (table_size > 24) { |
| return H_P4; |
| } |
| } |
| cproc = (proc_tbl << 25) | page_size << 5 | table_size; |
| } |
| |
| } else { /* Deregister current process table */ |
| /* |
| * Set to benign value: (current GR) | 0. This allows |
| * deregistration in KVM to succeed even if the radix bit |
| * in flags doesn't match the radix bit in the old PATE. |
| */ |
| cproc = spapr->patb_entry & PATE1_GR; |
| } |
| } else { /* Maintain current registration */ |
| if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) { |
| /* Technically caused by flag bits => H_PARAMETER */ |
| return H_PARAMETER; /* Existing Process Table Mismatch */ |
| } |
| cproc = spapr->patb_entry; |
| } |
| |
| /* Check if we need to setup OR free the hpt */ |
| spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc); |
| |
| spapr->patb_entry = cproc; /* Save new process table */ |
| |
| /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */ |
| if (flags & FLAG_RADIX) /* Radix must use process tables, also set HR */ |
| update_lpcr |= (LPCR_UPRT | LPCR_HR); |
| else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */ |
| update_lpcr |= LPCR_UPRT; |
| if (flags & FLAG_GTSE) /* Guest translation shootdown enable */ |
| update_lpcr |= LPCR_GTSE; |
| |
| spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE); |
| |
| if (kvm_enabled()) { |
| return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX, |
| flags & FLAG_GTSE, cproc); |
| } |
| return H_SUCCESS; |
| } |
| |
| #define H_SIGNAL_SYS_RESET_ALL -1 |
| #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2 |
| |
| static target_ulong h_signal_sys_reset(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_long target = args[0]; |
| CPUState *cs; |
| |
| if (target < 0) { |
| /* Broadcast */ |
| if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) { |
| return H_PARAMETER; |
| } |
| |
| CPU_FOREACH(cs) { |
| PowerPCCPU *c = POWERPC_CPU(cs); |
| |
| if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) { |
| if (c == cpu) { |
| continue; |
| } |
| } |
| run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); |
| } |
| return H_SUCCESS; |
| |
| } else { |
| /* Unicast */ |
| cs = CPU(spapr_find_cpu(target)); |
| if (cs) { |
| run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); |
| return H_SUCCESS; |
| } |
| return H_PARAMETER; |
| } |
| } |
| |
| static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu, |
| target_ulong *addr, bool *raw_mode_supported, |
| Error **errp) |
| { |
| bool explicit_match = false; /* Matched the CPU's real PVR */ |
| uint32_t max_compat = spapr->max_compat_pvr; |
| uint32_t best_compat = 0; |
| int i; |
| |
| /* |
| * We scan the supplied table of PVRs looking for two things |
| * 1. Is our real CPU PVR in the list? |
| * 2. What's the "best" listed logical PVR |
| */ |
| for (i = 0; i < 512; ++i) { |
| uint32_t pvr, pvr_mask; |
| |
| pvr_mask = ldl_be_phys(&address_space_memory, *addr); |
| pvr = ldl_be_phys(&address_space_memory, *addr + 4); |
| *addr += 8; |
| |
| if (~pvr_mask & pvr) { |
| break; /* Terminator record */ |
| } |
| |
| if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) { |
| explicit_match = true; |
| } else { |
| if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) { |
| best_compat = pvr; |
| } |
| } |
| } |
| |
| if ((best_compat == 0) && (!explicit_match || max_compat)) { |
| /* We couldn't find a suitable compatibility mode, and either |
| * the guest doesn't support "raw" mode for this CPU, or raw |
| * mode is disabled because a maximum compat mode is set */ |
| error_setg(errp, "Couldn't negotiate a suitable PVR during CAS"); |
| return 0; |
| } |
| |
| *raw_mode_supported = explicit_match; |
| |
| /* Parsing finished */ |
| trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat); |
| |
| return best_compat; |
| } |
| |
| static target_ulong h_client_architecture_support(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| /* Working address in data buffer */ |
| target_ulong addr = ppc64_phys_to_real(args[0]); |
| target_ulong ov_table; |
| uint32_t cas_pvr; |
| SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates; |
| bool guest_radix; |
| Error *local_err = NULL; |
| bool raw_mode_supported = false; |
| bool guest_xive; |
| |
| cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err); |
| if (local_err) { |
| error_report_err(local_err); |
| return H_HARDWARE; |
| } |
| |
| /* Update CPUs */ |
| if (cpu->compat_pvr != cas_pvr) { |
| ppc_set_compat_all(cas_pvr, &local_err); |
| if (local_err) { |
| /* We fail to set compat mode (likely because running with KVM PR), |
| * but maybe we can fallback to raw mode if the guest supports it. |
| */ |
| if (!raw_mode_supported) { |
| error_report_err(local_err); |
| return H_HARDWARE; |
| } |
| error_free(local_err); |
| local_err = NULL; |
| } |
| } |
| |
| /* For the future use: here @ov_table points to the first option vector */ |
| ov_table = addr; |
| |
| ov1_guest = spapr_ovec_parse_vector(ov_table, 1); |
| ov5_guest = spapr_ovec_parse_vector(ov_table, 5); |
| if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) { |
| error_report("guest requested hash and radix MMU, which is invalid."); |
| exit(EXIT_FAILURE); |
| } |
| if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) { |
| error_report("guest requested an invalid interrupt mode"); |
| exit(EXIT_FAILURE); |
| } |
| |
| /* The radix/hash bit in byte 24 requires special handling: */ |
| guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300); |
| spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300); |
| |
| guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT); |
| |
| /* |
| * HPT resizing is a bit of a special case, because when enabled |
| * we assume an HPT guest will support it until it says it |
| * doesn't, instead of assuming it won't support it until it says |
| * it does. Strictly speaking that approach could break for |
| * guests which don't make a CAS call, but those are so old we |
| * don't care about them. Without that assumption we'd have to |
| * make at least a temporary allocation of an HPT sized for max |
| * memory, which could be impossibly difficult under KVM HV if |
| * maxram is large. |
| */ |
| if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) { |
| int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); |
| |
| if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) { |
| error_report( |
| "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required"); |
| exit(1); |
| } |
| |
| if (spapr->htab_shift < maxshift) { |
| /* Guest doesn't know about HPT resizing, so we |
| * pre-emptively resize for the maximum permitted RAM. At |
| * the point this is called, nothing should have been |
| * entered into the existing HPT */ |
| spapr_reallocate_hpt(spapr, maxshift, &error_fatal); |
| push_sregs_to_kvm_pr(spapr); |
| } |
| } |
| |
| /* NOTE: there are actually a number of ov5 bits where input from the |
| * guest is always zero, and the platform/QEMU enables them independently |
| * of guest input. To model these properly we'd want some sort of mask, |
| * but since they only currently apply to memory migration as defined |
| * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need |
| * to worry about this for now. |
| */ |
| ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas); |
| |
| /* also clear the radix/hash bit from the current ov5_cas bits to |
| * be in sync with the newly ov5 bits. Else the radix bit will be |
| * seen as being removed and this will generate a reset loop |
| */ |
| spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300); |
| |
| /* full range of negotiated ov5 capabilities */ |
| spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); |
| spapr_ovec_cleanup(ov5_guest); |
| /* capabilities that have been added since CAS-generated guest reset. |
| * if capabilities have since been removed, generate another reset |
| */ |
| ov5_updates = spapr_ovec_new(); |
| spapr->cas_reboot = spapr_ovec_diff(ov5_updates, |
| ov5_cas_old, spapr->ov5_cas); |
| spapr_ovec_cleanup(ov5_cas_old); |
| /* Now that processing is finished, set the radix/hash bit for the |
| * guest if it requested a valid mode; otherwise terminate the boot. */ |
| if (guest_radix) { |
| if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { |
| error_report("Guest requested unavailable MMU mode (radix)."); |
| exit(EXIT_FAILURE); |
| } |
| spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300); |
| } else { |
| if (kvm_enabled() && kvmppc_has_cap_mmu_radix() |
| && !kvmppc_has_cap_mmu_hash_v3()) { |
| error_report("Guest requested unavailable MMU mode (hash)."); |
| exit(EXIT_FAILURE); |
| } |
| } |
| spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00); |
| spapr_ovec_cleanup(ov1_guest); |
| if (!spapr->cas_reboot) { |
| /* If spapr_machine_reset() did not set up a HPT but one is necessary |
| * (because the guest isn't going to use radix) then set it up here. */ |
| if ((spapr->patb_entry & PATE1_GR) && !guest_radix) { |
| /* legacy hash or new hash: */ |
| spapr_setup_hpt_and_vrma(spapr); |
| } |
| spapr->cas_reboot = |
| (spapr_h_cas_compose_response(spapr, args[1], args[2], |
| ov5_updates) != 0); |
| } |
| |
| /* |
| * Ensure the guest asks for an interrupt mode we support; otherwise |
| * terminate the boot. |
| */ |
| if (guest_xive) { |
| if (!spapr->irq->xive) { |
| error_report( |
| "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property"); |
| exit(EXIT_FAILURE); |
| } |
| } else { |
| if (!spapr->irq->xics) { |
| error_report( |
| "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual"); |
| exit(EXIT_FAILURE); |
| } |
| } |
| |
| /* |
| * Generate a machine reset when we have an update of the |
| * interrupt mode. Only required when the machine supports both |
| * modes. |
| */ |
| if (!spapr->cas_reboot) { |
| spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT) |
| && spapr->irq->xics && spapr->irq->xive; |
| } |
| |
| spapr_ovec_cleanup(ov5_updates); |
| |
| if (spapr->cas_reboot) { |
| qemu_system_reset_request(SHUTDOWN_CAUSE_SUBSYSTEM_RESET); |
| } |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_home_node_associativity(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong procno = args[1]; |
| PowerPCCPU *tcpu; |
| int idx; |
| |
| /* only support procno from H_REGISTER_VPA */ |
| if (flags != 0x1) { |
| return H_FUNCTION; |
| } |
| |
| tcpu = spapr_find_cpu(procno); |
| if (tcpu == NULL) { |
| return H_P2; |
| } |
| |
| /* sequence is the same as in the "ibm,associativity" property */ |
| |
| idx = 0; |
| #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \ |
| ((uint64_t)(b) & 0xffffffff)) |
| args[idx++] = ASSOCIATIVITY(0, 0); |
| args[idx++] = ASSOCIATIVITY(0, tcpu->node_id); |
| args[idx++] = ASSOCIATIVITY(procno, -1); |
| for ( ; idx < 6; idx++) { |
| args[idx] = -1; |
| } |
| #undef ASSOCIATIVITY |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu, |
| SpaprMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS & |
| ~H_CPU_CHAR_THR_RECONF_TRIG; |
| uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY; |
| uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC); |
| uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC); |
| uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS); |
| uint8_t count_cache_flush_assist = spapr_get_cap(spapr, |
| SPAPR_CAP_CCF_ASSIST); |
| |
| switch (safe_cache) { |
| case SPAPR_CAP_WORKAROUND: |
| characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30; |
| characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2; |
| characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV; |
| behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; |
| break; |
| case SPAPR_CAP_FIXED: |
| break; |
| default: /* broken */ |
| assert(safe_cache == SPAPR_CAP_BROKEN); |
| behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR; |
| break; |
| } |
| |
| switch (safe_bounds_check) { |
| case SPAPR_CAP_WORKAROUND: |
| characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31; |
| behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; |
| break; |
| case SPAPR_CAP_FIXED: |
| break; |
| default: /* broken */ |
| assert(safe_bounds_check == SPAPR_CAP_BROKEN); |
| behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR; |
| break; |
| } |
| |
| switch (safe_indirect_branch) { |
| case SPAPR_CAP_FIXED_NA: |
| break; |
| case SPAPR_CAP_FIXED_CCD: |
| characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS; |
| break; |
| case SPAPR_CAP_FIXED_IBS: |
| characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED; |
| break; |
| case SPAPR_CAP_WORKAROUND: |
| behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE; |
| if (count_cache_flush_assist) { |
| characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST; |
| } |
| break; |
| default: /* broken */ |
| assert(safe_indirect_branch == SPAPR_CAP_BROKEN); |
| break; |
| } |
| |
| args[0] = characteristics; |
| args[1] = behaviour; |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong dt = ppc64_phys_to_real(args[0]); |
| struct fdt_header hdr = { 0 }; |
| unsigned cb; |
| SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); |
| void *fdt; |
| |
| cpu_physical_memory_read(dt, &hdr, sizeof(hdr)); |
| cb = fdt32_to_cpu(hdr.totalsize); |
| |
| if (!smc->update_dt_enabled) { |
| return H_SUCCESS; |
| } |
| |
| /* Check that the fdt did not grow out of proportion */ |
| if (cb > spapr->fdt_initial_size * 2) { |
| trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb, |
| fdt32_to_cpu(hdr.magic)); |
| return H_PARAMETER; |
| } |
| |
| fdt = g_malloc0(cb); |
| cpu_physical_memory_read(dt, fdt, cb); |
| |
| /* Check the fdt consistency */ |
| if (fdt_check_full(fdt, cb)) { |
| trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb, |
| fdt32_to_cpu(hdr.magic)); |
| return H_PARAMETER; |
| } |
| |
| g_free(spapr->fdt_blob); |
| spapr->fdt_size = cb; |
| spapr->fdt_blob = fdt; |
| trace_spapr_update_dt(cb); |
| |
| return H_SUCCESS; |
| } |
| |
| static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; |
| static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; |
| static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1]; |
| |
| void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) |
| { |
| spapr_hcall_fn *slot; |
| |
| if (opcode <= MAX_HCALL_OPCODE) { |
| assert((opcode & 0x3) == 0); |
| |
| slot = &papr_hypercall_table[opcode / 4]; |
| } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) { |
| /* we only have SVM-related hcall numbers assigned in multiples of 4 */ |
| assert((opcode & 0x3) == 0); |
| |
| slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; |
| } else { |
| assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); |
| |
| slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; |
| } |
| |
| assert(!(*slot)); |
| *slot = fn; |
| } |
| |
| target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, |
| target_ulong *args) |
| { |
| SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); |
| |
| if ((opcode <= MAX_HCALL_OPCODE) |
| && ((opcode & 0x3) == 0)) { |
| spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; |
| |
| if (fn) { |
| return fn(cpu, spapr, opcode, args); |
| } |
| } else if ((opcode >= SVM_HCALL_BASE) && |
| (opcode <= SVM_HCALL_MAX)) { |
| spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4]; |
| |
| if (fn) { |
| return fn(cpu, spapr, opcode, args); |
| } |
| } else if ((opcode >= KVMPPC_HCALL_BASE) && |
| (opcode <= KVMPPC_HCALL_MAX)) { |
| spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; |
| |
| if (fn) { |
| return fn(cpu, spapr, opcode, args); |
| } |
| } |
| |
| qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", |
| opcode); |
| return H_FUNCTION; |
| } |
| |
| static void hypercall_register_types(void) |
| { |
| /* hcall-pft */ |
| spapr_register_hypercall(H_ENTER, h_enter); |
| spapr_register_hypercall(H_REMOVE, h_remove); |
| spapr_register_hypercall(H_PROTECT, h_protect); |
| spapr_register_hypercall(H_READ, h_read); |
| |
| /* hcall-bulk */ |
| spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove); |
| |
| /* hcall-hpt-resize */ |
| spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare); |
| spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit); |
| |
| /* hcall-splpar */ |
| spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); |
| spapr_register_hypercall(H_CEDE, h_cede); |
| spapr_register_hypercall(H_CONFER, h_confer); |
| spapr_register_hypercall(H_PROD, h_prod); |
| |
| /* hcall-join */ |
| spapr_register_hypercall(H_JOIN, h_join); |
| |
| spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset); |
| |
| /* processor register resource access h-calls */ |
| spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); |
| spapr_register_hypercall(H_SET_DABR, h_set_dabr); |
| spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); |
| spapr_register_hypercall(H_PAGE_INIT, h_page_init); |
| spapr_register_hypercall(H_SET_MODE, h_set_mode); |
| |
| /* In Memory Table MMU h-calls */ |
| spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb); |
| spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid); |
| spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table); |
| |
| /* hcall-get-cpu-characteristics */ |
| spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS, |
| h_get_cpu_characteristics); |
| |
| /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate |
| * here between the "CI" and the "CACHE" variants, they will use whatever |
| * mapping attributes qemu is using. When using KVM, the kernel will |
| * enforce the attributes more strongly |
| */ |
| spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); |
| spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); |
| spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); |
| spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); |
| spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); |
| spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); |
| spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); |
| |
| /* qemu/KVM-PPC specific hcalls */ |
| spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); |
| |
| /* ibm,client-architecture-support support */ |
| spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); |
| |
| spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt); |
| |
| /* Virtual Processor Home Node */ |
| spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY, |
| h_home_node_associativity); |
| } |
| |
| type_init(hypercall_register_types) |