| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "sysemu/hw_accel.h" |
| #include "sysemu/sysemu.h" |
| #include "qemu/log.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "helper_regs.h" |
| #include "hw/ppc/spapr.h" |
| #include "mmu-hash64.h" |
| #include "cpu-models.h" |
| #include "trace.h" |
| #include "kvm_ppc.h" |
| #include "hw/ppc/spapr_ovec.h" |
| #include "qemu/error-report.h" |
| #include "mmu-book3s-v3.h" |
| |
| struct SPRSyncState { |
| int spr; |
| target_ulong value; |
| target_ulong mask; |
| }; |
| |
| static void do_spr_sync(CPUState *cs, run_on_cpu_data arg) |
| { |
| struct SPRSyncState *s = arg.host_ptr; |
| PowerPCCPU *cpu = POWERPC_CPU(cs); |
| CPUPPCState *env = &cpu->env; |
| |
| cpu_synchronize_state(cs); |
| env->spr[s->spr] &= ~s->mask; |
| env->spr[s->spr] |= s->value; |
| } |
| |
| static void set_spr(CPUState *cs, int spr, target_ulong value, |
| target_ulong mask) |
| { |
| struct SPRSyncState s = { |
| .spr = spr, |
| .value = value, |
| .mask = mask |
| }; |
| run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s)); |
| } |
| |
| static bool has_spr(PowerPCCPU *cpu, int spr) |
| { |
| /* We can test whether the SPR is defined by checking for a valid name */ |
| return cpu->env.spr_cb[spr].name != NULL; |
| } |
| |
| static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex) |
| { |
| /* |
| * hash value/pteg group index is normalized by HPT mask |
| */ |
| if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) { |
| return false; |
| } |
| return true; |
| } |
| |
| static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr) |
| { |
| MachineState *machine = MACHINE(spapr); |
| MemoryHotplugState *hpms = &spapr->hotplug_memory; |
| |
| if (addr < machine->ram_size) { |
| return true; |
| } |
| if ((addr >= hpms->base) |
| && ((addr - hpms->base) < memory_region_size(&hpms->mr))) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong ptex = args[1]; |
| target_ulong pteh = args[2]; |
| target_ulong ptel = args[3]; |
| unsigned apshift; |
| target_ulong raddr; |
| target_ulong slot; |
| const ppc_hash_pte64_t *hptes; |
| |
| apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel); |
| if (!apshift) { |
| /* Bad page size encoding */ |
| return H_PARAMETER; |
| } |
| |
| raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1); |
| |
| if (is_ram_address(spapr, raddr)) { |
| /* Regular RAM - should have WIMG=0010 */ |
| if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) { |
| return H_PARAMETER; |
| } |
| } else { |
| target_ulong wimg_flags; |
| /* Looks like an IO address */ |
| /* FIXME: What WIMG combinations could be sensible for IO? |
| * For now we allow WIMG=010x, but are there others? */ |
| /* FIXME: Should we check against registered IO addresses? */ |
| wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M)); |
| |
| if (wimg_flags != HPTE64_R_I && |
| wimg_flags != (HPTE64_R_I | HPTE64_R_M)) { |
| return H_PARAMETER; |
| } |
| } |
| |
| pteh &= ~0x60ULL; |
| |
| if (!valid_ptex(cpu, ptex)) { |
| return H_PARAMETER; |
| } |
| |
| slot = ptex & 7ULL; |
| ptex = ptex & ~7ULL; |
| |
| if (likely((flags & H_EXACT) == 0)) { |
| hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP); |
| for (slot = 0; slot < 8; slot++) { |
| if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) { |
| break; |
| } |
| } |
| ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP); |
| if (slot == 8) { |
| return H_PTEG_FULL; |
| } |
| } else { |
| hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1); |
| if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) { |
| ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1); |
| return H_PTEG_FULL; |
| } |
| ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); |
| } |
| |
| ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel); |
| |
| args[0] = ptex + slot; |
| return H_SUCCESS; |
| } |
| |
| typedef enum { |
| REMOVE_SUCCESS = 0, |
| REMOVE_NOT_FOUND = 1, |
| REMOVE_PARM = 2, |
| REMOVE_HW = 3, |
| } RemoveResult; |
| |
| static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex, |
| target_ulong avpn, |
| target_ulong flags, |
| target_ulong *vp, target_ulong *rp) |
| { |
| const ppc_hash_pte64_t *hptes; |
| target_ulong v, r; |
| |
| if (!valid_ptex(cpu, ptex)) { |
| return REMOVE_PARM; |
| } |
| |
| hptes = ppc_hash64_map_hptes(cpu, ptex, 1); |
| v = ppc_hash64_hpte0(cpu, hptes, 0); |
| r = ppc_hash64_hpte1(cpu, hptes, 0); |
| ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); |
| |
| if ((v & HPTE64_V_VALID) == 0 || |
| ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) || |
| ((flags & H_ANDCOND) && (v & avpn) != 0)) { |
| return REMOVE_NOT_FOUND; |
| } |
| *vp = v; |
| *rp = r; |
| ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0); |
| ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); |
| return REMOVE_SUCCESS; |
| } |
| |
| static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUPPCState *env = &cpu->env; |
| target_ulong flags = args[0]; |
| target_ulong ptex = args[1]; |
| target_ulong avpn = args[2]; |
| RemoveResult ret; |
| |
| ret = remove_hpte(cpu, ptex, avpn, flags, |
| &args[0], &args[1]); |
| |
| switch (ret) { |
| case REMOVE_SUCCESS: |
| check_tlb_flush(env, true); |
| return H_SUCCESS; |
| |
| case REMOVE_NOT_FOUND: |
| return H_NOT_FOUND; |
| |
| case REMOVE_PARM: |
| return H_PARAMETER; |
| |
| case REMOVE_HW: |
| return H_HARDWARE; |
| } |
| |
| g_assert_not_reached(); |
| } |
| |
| #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL |
| #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL |
| #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL |
| #define H_BULK_REMOVE_END 0xc000000000000000ULL |
| #define H_BULK_REMOVE_CODE 0x3000000000000000ULL |
| #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL |
| #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL |
| #define H_BULK_REMOVE_PARM 0x2000000000000000ULL |
| #define H_BULK_REMOVE_HW 0x3000000000000000ULL |
| #define H_BULK_REMOVE_RC 0x0c00000000000000ULL |
| #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL |
| #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL |
| #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL |
| #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL |
| #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL |
| |
| #define H_BULK_REMOVE_MAX_BATCH 4 |
| |
| static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUPPCState *env = &cpu->env; |
| int i; |
| target_ulong rc = H_SUCCESS; |
| |
| for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) { |
| target_ulong *tsh = &args[i*2]; |
| target_ulong tsl = args[i*2 + 1]; |
| target_ulong v, r, ret; |
| |
| if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) { |
| break; |
| } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) { |
| return H_PARAMETER; |
| } |
| |
| *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS; |
| *tsh |= H_BULK_REMOVE_RESPONSE; |
| |
| if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) { |
| *tsh |= H_BULK_REMOVE_PARM; |
| return H_PARAMETER; |
| } |
| |
| ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl, |
| (*tsh & H_BULK_REMOVE_FLAGS) >> 26, |
| &v, &r); |
| |
| *tsh |= ret << 60; |
| |
| switch (ret) { |
| case REMOVE_SUCCESS: |
| *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43; |
| break; |
| |
| case REMOVE_PARM: |
| rc = H_PARAMETER; |
| goto exit; |
| |
| case REMOVE_HW: |
| rc = H_HARDWARE; |
| goto exit; |
| } |
| } |
| exit: |
| check_tlb_flush(env, true); |
| |
| return rc; |
| } |
| |
| static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUPPCState *env = &cpu->env; |
| target_ulong flags = args[0]; |
| target_ulong ptex = args[1]; |
| target_ulong avpn = args[2]; |
| const ppc_hash_pte64_t *hptes; |
| target_ulong v, r; |
| |
| if (!valid_ptex(cpu, ptex)) { |
| return H_PARAMETER; |
| } |
| |
| hptes = ppc_hash64_map_hptes(cpu, ptex, 1); |
| v = ppc_hash64_hpte0(cpu, hptes, 0); |
| r = ppc_hash64_hpte1(cpu, hptes, 0); |
| ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1); |
| |
| if ((v & HPTE64_V_VALID) == 0 || |
| ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) { |
| return H_NOT_FOUND; |
| } |
| |
| r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N | |
| HPTE64_R_KEY_HI | HPTE64_R_KEY_LO); |
| r |= (flags << 55) & HPTE64_R_PP0; |
| r |= (flags << 48) & HPTE64_R_KEY_HI; |
| r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO); |
| ppc_hash64_store_hpte(cpu, ptex, |
| (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0); |
| ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r); |
| /* Flush the tlb */ |
| check_tlb_flush(env, true); |
| /* Don't need a memory barrier, due to qemu's global lock */ |
| ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r); |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong ptex = args[1]; |
| uint8_t *hpte; |
| int i, ridx, n_entries = 1; |
| |
| if (!valid_ptex(cpu, ptex)) { |
| return H_PARAMETER; |
| } |
| |
| if (flags & H_READ_4) { |
| /* Clear the two low order bits */ |
| ptex &= ~(3ULL); |
| n_entries = 4; |
| } |
| |
| hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64); |
| |
| for (i = 0, ridx = 0; i < n_entries; i++) { |
| args[ridx++] = ldq_p(hpte); |
| args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2)); |
| hpte += HASH_PTE_SIZE_64; |
| } |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| cpu_synchronize_state(CPU(cpu)); |
| cpu->env.spr[SPR_SPRG0] = args[0]; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| if (!has_spr(cpu, SPR_DABR)) { |
| return H_HARDWARE; /* DABR register not available */ |
| } |
| cpu_synchronize_state(CPU(cpu)); |
| |
| if (has_spr(cpu, SPR_DABRX)) { |
| cpu->env.spr[SPR_DABRX] = 0x3; /* Use Problem and Privileged state */ |
| } else if (!(args[0] & 0x4)) { /* Breakpoint Translation set? */ |
| return H_RESERVED_DABR; |
| } |
| |
| cpu->env.spr[SPR_DABR] = args[0]; |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong dabrx = args[1]; |
| |
| if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) { |
| return H_HARDWARE; |
| } |
| |
| if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0 |
| || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) { |
| return H_PARAMETER; |
| } |
| |
| cpu_synchronize_state(CPU(cpu)); |
| cpu->env.spr[SPR_DABRX] = dabrx; |
| cpu->env.spr[SPR_DABR] = args[0]; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| hwaddr dst = args[1]; |
| hwaddr src = args[2]; |
| hwaddr len = TARGET_PAGE_SIZE; |
| uint8_t *pdst, *psrc; |
| target_long ret = H_SUCCESS; |
| |
| if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE |
| | H_COPY_PAGE | H_ZERO_PAGE)) { |
| qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n", |
| flags); |
| return H_PARAMETER; |
| } |
| |
| /* Map-in destination */ |
| if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) { |
| return H_PARAMETER; |
| } |
| pdst = cpu_physical_memory_map(dst, &len, 1); |
| if (!pdst || len != TARGET_PAGE_SIZE) { |
| return H_PARAMETER; |
| } |
| |
| if (flags & H_COPY_PAGE) { |
| /* Map-in source, copy to destination, and unmap source again */ |
| if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) { |
| ret = H_PARAMETER; |
| goto unmap_out; |
| } |
| psrc = cpu_physical_memory_map(src, &len, 0); |
| if (!psrc || len != TARGET_PAGE_SIZE) { |
| ret = H_PARAMETER; |
| goto unmap_out; |
| } |
| memcpy(pdst, psrc, len); |
| cpu_physical_memory_unmap(psrc, len, 0, len); |
| } else if (flags & H_ZERO_PAGE) { |
| memset(pdst, 0, len); /* Just clear the destination page */ |
| } |
| |
| if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) { |
| kvmppc_dcbst_range(cpu, pdst, len); |
| } |
| if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) { |
| if (kvm_enabled()) { |
| kvmppc_icbi_range(cpu, pdst, len); |
| } else { |
| tb_flush(CPU(cpu)); |
| } |
| } |
| |
| unmap_out: |
| cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len); |
| return ret; |
| } |
| |
| #define FLAGS_REGISTER_VPA 0x0000200000000000ULL |
| #define FLAGS_REGISTER_DTL 0x0000400000000000ULL |
| #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL |
| #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL |
| #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL |
| #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL |
| |
| #define VPA_MIN_SIZE 640 |
| #define VPA_SIZE_OFFSET 0x4 |
| #define VPA_SHARED_PROC_OFFSET 0x9 |
| #define VPA_SHARED_PROC_VAL 0x2 |
| |
| static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa) |
| { |
| CPUState *cs = CPU(ppc_env_get_cpu(env)); |
| uint16_t size; |
| uint8_t tmp; |
| |
| if (vpa == 0) { |
| hcall_dprintf("Can't cope with registering a VPA at logical 0\n"); |
| return H_HARDWARE; |
| } |
| |
| if (vpa % env->dcache_line_size) { |
| return H_PARAMETER; |
| } |
| /* FIXME: bounds check the address */ |
| |
| size = lduw_be_phys(cs->as, vpa + 0x4); |
| |
| if (size < VPA_MIN_SIZE) { |
| return H_PARAMETER; |
| } |
| |
| /* VPA is not allowed to cross a page boundary */ |
| if ((vpa / 4096) != ((vpa + size - 1) / 4096)) { |
| return H_PARAMETER; |
| } |
| |
| env->vpa_addr = vpa; |
| |
| tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET); |
| tmp |= VPA_SHARED_PROC_VAL; |
| stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp); |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa) |
| { |
| if (env->slb_shadow_addr) { |
| return H_RESOURCE; |
| } |
| |
| if (env->dtl_addr) { |
| return H_RESOURCE; |
| } |
| |
| env->vpa_addr = 0; |
| return H_SUCCESS; |
| } |
| |
| static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr) |
| { |
| CPUState *cs = CPU(ppc_env_get_cpu(env)); |
| uint32_t size; |
| |
| if (addr == 0) { |
| hcall_dprintf("Can't cope with SLB shadow at logical 0\n"); |
| return H_HARDWARE; |
| } |
| |
| size = ldl_be_phys(cs->as, addr + 0x4); |
| if (size < 0x8) { |
| return H_PARAMETER; |
| } |
| |
| if ((addr / 4096) != ((addr + size - 1) / 4096)) { |
| return H_PARAMETER; |
| } |
| |
| if (!env->vpa_addr) { |
| return H_RESOURCE; |
| } |
| |
| env->slb_shadow_addr = addr; |
| env->slb_shadow_size = size; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr) |
| { |
| env->slb_shadow_addr = 0; |
| env->slb_shadow_size = 0; |
| return H_SUCCESS; |
| } |
| |
| static target_ulong register_dtl(CPUPPCState *env, target_ulong addr) |
| { |
| CPUState *cs = CPU(ppc_env_get_cpu(env)); |
| uint32_t size; |
| |
| if (addr == 0) { |
| hcall_dprintf("Can't cope with DTL at logical 0\n"); |
| return H_HARDWARE; |
| } |
| |
| size = ldl_be_phys(cs->as, addr + 0x4); |
| |
| if (size < 48) { |
| return H_PARAMETER; |
| } |
| |
| if (!env->vpa_addr) { |
| return H_RESOURCE; |
| } |
| |
| env->dtl_addr = addr; |
| env->dtl_size = size; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr) |
| { |
| env->dtl_addr = 0; |
| env->dtl_size = 0; |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong flags = args[0]; |
| target_ulong procno = args[1]; |
| target_ulong vpa = args[2]; |
| target_ulong ret = H_PARAMETER; |
| CPUPPCState *tenv; |
| PowerPCCPU *tcpu; |
| |
| tcpu = ppc_get_vcpu_by_dt_id(procno); |
| if (!tcpu) { |
| return H_PARAMETER; |
| } |
| tenv = &tcpu->env; |
| |
| switch (flags) { |
| case FLAGS_REGISTER_VPA: |
| ret = register_vpa(tenv, vpa); |
| break; |
| |
| case FLAGS_DEREGISTER_VPA: |
| ret = deregister_vpa(tenv, vpa); |
| break; |
| |
| case FLAGS_REGISTER_SLBSHADOW: |
| ret = register_slb_shadow(tenv, vpa); |
| break; |
| |
| case FLAGS_DEREGISTER_SLBSHADOW: |
| ret = deregister_slb_shadow(tenv, vpa); |
| break; |
| |
| case FLAGS_REGISTER_DTL: |
| ret = register_dtl(tenv, vpa); |
| break; |
| |
| case FLAGS_DEREGISTER_DTL: |
| ret = deregister_dtl(tenv, vpa); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUPPCState *env = &cpu->env; |
| CPUState *cs = CPU(cpu); |
| |
| env->msr |= (1ULL << MSR_EE); |
| hreg_compute_hflags(env); |
| if (!cpu_has_work(cs)) { |
| cs->halted = 1; |
| cs->exception_index = EXCP_HLT; |
| cs->exit_request = 1; |
| } |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong rtas_r3 = args[0]; |
| uint32_t token = rtas_ld(rtas_r3, 0); |
| uint32_t nargs = rtas_ld(rtas_r3, 1); |
| uint32_t nret = rtas_ld(rtas_r3, 2); |
| |
| return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12, |
| nret, rtas_r3 + 12 + 4*nargs); |
| } |
| |
| static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUState *cs = CPU(cpu); |
| target_ulong size = args[0]; |
| target_ulong addr = args[1]; |
| |
| switch (size) { |
| case 1: |
| args[0] = ldub_phys(cs->as, addr); |
| return H_SUCCESS; |
| case 2: |
| args[0] = lduw_phys(cs->as, addr); |
| return H_SUCCESS; |
| case 4: |
| args[0] = ldl_phys(cs->as, addr); |
| return H_SUCCESS; |
| case 8: |
| args[0] = ldq_phys(cs->as, addr); |
| return H_SUCCESS; |
| } |
| return H_PARAMETER; |
| } |
| |
| static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUState *cs = CPU(cpu); |
| |
| target_ulong size = args[0]; |
| target_ulong addr = args[1]; |
| target_ulong val = args[2]; |
| |
| switch (size) { |
| case 1: |
| stb_phys(cs->as, addr, val); |
| return H_SUCCESS; |
| case 2: |
| stw_phys(cs->as, addr, val); |
| return H_SUCCESS; |
| case 4: |
| stl_phys(cs->as, addr, val); |
| return H_SUCCESS; |
| case 8: |
| stq_phys(cs->as, addr, val); |
| return H_SUCCESS; |
| } |
| return H_PARAMETER; |
| } |
| |
| static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| CPUState *cs = CPU(cpu); |
| |
| target_ulong dst = args[0]; /* Destination address */ |
| target_ulong src = args[1]; /* Source address */ |
| target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */ |
| target_ulong count = args[3]; /* Element count */ |
| target_ulong op = args[4]; /* 0 = copy, 1 = invert */ |
| uint64_t tmp; |
| unsigned int mask = (1 << esize) - 1; |
| int step = 1 << esize; |
| |
| if (count > 0x80000000) { |
| return H_PARAMETER; |
| } |
| |
| if ((dst & mask) || (src & mask) || (op > 1)) { |
| return H_PARAMETER; |
| } |
| |
| if (dst >= src && dst < (src + (count << esize))) { |
| dst = dst + ((count - 1) << esize); |
| src = src + ((count - 1) << esize); |
| step = -step; |
| } |
| |
| while (count--) { |
| switch (esize) { |
| case 0: |
| tmp = ldub_phys(cs->as, src); |
| break; |
| case 1: |
| tmp = lduw_phys(cs->as, src); |
| break; |
| case 2: |
| tmp = ldl_phys(cs->as, src); |
| break; |
| case 3: |
| tmp = ldq_phys(cs->as, src); |
| break; |
| default: |
| return H_PARAMETER; |
| } |
| if (op == 1) { |
| tmp = ~tmp; |
| } |
| switch (esize) { |
| case 0: |
| stb_phys(cs->as, dst, tmp); |
| break; |
| case 1: |
| stw_phys(cs->as, dst, tmp); |
| break; |
| case 2: |
| stl_phys(cs->as, dst, tmp); |
| break; |
| case 3: |
| stq_phys(cs->as, dst, tmp); |
| break; |
| } |
| dst = dst + step; |
| src = src + step; |
| } |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| /* Nothing to do on emulation, KVM will trap this in the kernel */ |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| /* Nothing to do on emulation, KVM will trap this in the kernel */ |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu, |
| target_ulong mflags, |
| target_ulong value1, |
| target_ulong value2) |
| { |
| CPUState *cs; |
| |
| if (value1) { |
| return H_P3; |
| } |
| if (value2) { |
| return H_P4; |
| } |
| |
| switch (mflags) { |
| case H_SET_MODE_ENDIAN_BIG: |
| CPU_FOREACH(cs) { |
| set_spr(cs, SPR_LPCR, 0, LPCR_ILE); |
| } |
| spapr_pci_switch_vga(true); |
| return H_SUCCESS; |
| |
| case H_SET_MODE_ENDIAN_LITTLE: |
| CPU_FOREACH(cs) { |
| set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE); |
| } |
| spapr_pci_switch_vga(false); |
| return H_SUCCESS; |
| } |
| |
| return H_UNSUPPORTED_FLAG; |
| } |
| |
| static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu, |
| target_ulong mflags, |
| target_ulong value1, |
| target_ulong value2) |
| { |
| CPUState *cs; |
| PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); |
| |
| if (!(pcc->insns_flags2 & PPC2_ISA207S)) { |
| return H_P2; |
| } |
| if (value1) { |
| return H_P3; |
| } |
| if (value2) { |
| return H_P4; |
| } |
| |
| if (mflags == AIL_RESERVED) { |
| return H_UNSUPPORTED_FLAG; |
| } |
| |
| CPU_FOREACH(cs) { |
| set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL); |
| } |
| |
| return H_SUCCESS; |
| } |
| |
| static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_ulong resource = args[1]; |
| target_ulong ret = H_P2; |
| |
| switch (resource) { |
| case H_SET_MODE_RESOURCE_LE: |
| ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]); |
| break; |
| case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE: |
| ret = h_set_mode_resource_addr_trans_mode(cpu, args[0], |
| args[2], args[3]); |
| break; |
| } |
| |
| return ret; |
| } |
| |
| static target_ulong h_clean_slb(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", |
| opcode, " (H_CLEAN_SLB)"); |
| return H_FUNCTION; |
| } |
| |
| static target_ulong h_invalidate_pid(PowerPCCPU *cpu, sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n", |
| opcode, " (H_INVALIDATE_PID)"); |
| return H_FUNCTION; |
| } |
| |
| static void spapr_check_setup_free_hpt(sPAPRMachineState *spapr, |
| uint64_t patbe_old, uint64_t patbe_new) |
| { |
| /* |
| * We have 4 Options: |
| * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing |
| * HASH->RADIX : Free HPT |
| * RADIX->HASH : Allocate HPT |
| * NOTHING->HASH : Allocate HPT |
| * Note: NOTHING implies the case where we said the guest could choose |
| * later and so assumed radix and now it's called H_REG_PROC_TBL |
| */ |
| |
| if ((patbe_old & PATBE1_GR) == (patbe_new & PATBE1_GR)) { |
| /* We assume RADIX, so this catches all the "Do Nothing" cases */ |
| } else if (!(patbe_old & PATBE1_GR)) { |
| /* HASH->RADIX : Free HPT */ |
| g_free(spapr->htab); |
| spapr->htab = NULL; |
| spapr->htab_shift = 0; |
| close_htab_fd(spapr); |
| } else if (!(patbe_new & PATBE1_GR)) { |
| /* RADIX->HASH || NOTHING->HASH : Allocate HPT */ |
| spapr_setup_hpt_and_vrma(spapr); |
| } |
| return; |
| } |
| |
| #define FLAGS_MASK 0x01FULL |
| #define FLAG_MODIFY 0x10 |
| #define FLAG_REGISTER 0x08 |
| #define FLAG_RADIX 0x04 |
| #define FLAG_HASH_PROC_TBL 0x02 |
| #define FLAG_GTSE 0x01 |
| |
| static target_ulong h_register_process_table(PowerPCCPU *cpu, |
| sPAPRMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| CPUState *cs; |
| target_ulong flags = args[0]; |
| target_ulong proc_tbl = args[1]; |
| target_ulong page_size = args[2]; |
| target_ulong table_size = args[3]; |
| uint64_t cproc; |
| |
| if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */ |
| return H_PARAMETER; |
| } |
| if (flags & FLAG_MODIFY) { |
| if (flags & FLAG_REGISTER) { |
| if (flags & FLAG_RADIX) { /* Register new RADIX process table */ |
| if (proc_tbl & 0xfff || proc_tbl >> 60) { |
| return H_P2; |
| } else if (page_size) { |
| return H_P3; |
| } else if (table_size > 24) { |
| return H_P4; |
| } |
| cproc = PATBE1_GR | proc_tbl | table_size; |
| } else { /* Register new HPT process table */ |
| if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */ |
| /* TODO - Not Supported */ |
| /* Technically caused by flag bits => H_PARAMETER */ |
| return H_PARAMETER; |
| } else { /* Hash with SLB */ |
| if (proc_tbl >> 38) { |
| return H_P2; |
| } else if (page_size & ~0x7) { |
| return H_P3; |
| } else if (table_size > 24) { |
| return H_P4; |
| } |
| } |
| cproc = (proc_tbl << 25) | page_size << 5 | table_size; |
| } |
| |
| } else { /* Deregister current process table */ |
| /* Set to benign value: (current GR) | 0. This allows |
| * deregistration in KVM to succeed even if the radix bit in flags |
| * doesn't match the radix bit in the old PATB. */ |
| cproc = spapr->patb_entry & PATBE1_GR; |
| } |
| } else { /* Maintain current registration */ |
| if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATBE1_GR)) { |
| /* Technically caused by flag bits => H_PARAMETER */ |
| return H_PARAMETER; /* Existing Process Table Mismatch */ |
| } |
| cproc = spapr->patb_entry; |
| } |
| |
| /* Check if we need to setup OR free the hpt */ |
| spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc); |
| |
| spapr->patb_entry = cproc; /* Save new process table */ |
| |
| /* Update the UPRT and GTSE bits in the LPCR for all cpus */ |
| CPU_FOREACH(cs) { |
| set_spr(cs, SPR_LPCR, LPCR_UPRT | LPCR_GTSE, |
| ((flags & (FLAG_RADIX | FLAG_HASH_PROC_TBL)) ? LPCR_UPRT : 0) | |
| ((flags & FLAG_GTSE) ? LPCR_GTSE : 0)); |
| } |
| |
| if (kvm_enabled()) { |
| return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX, |
| flags & FLAG_GTSE, cproc); |
| } |
| return H_SUCCESS; |
| } |
| |
| #define H_SIGNAL_SYS_RESET_ALL -1 |
| #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2 |
| |
| static target_ulong h_signal_sys_reset(PowerPCCPU *cpu, |
| sPAPRMachineState *spapr, |
| target_ulong opcode, target_ulong *args) |
| { |
| target_long target = args[0]; |
| CPUState *cs; |
| |
| if (target < 0) { |
| /* Broadcast */ |
| if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) { |
| return H_PARAMETER; |
| } |
| |
| CPU_FOREACH(cs) { |
| PowerPCCPU *c = POWERPC_CPU(cs); |
| |
| if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) { |
| if (c == cpu) { |
| continue; |
| } |
| } |
| run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); |
| } |
| return H_SUCCESS; |
| |
| } else { |
| /* Unicast */ |
| CPU_FOREACH(cs) { |
| if (cpu->cpu_dt_id == target) { |
| run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); |
| return H_SUCCESS; |
| } |
| } |
| return H_PARAMETER; |
| } |
| } |
| |
| static target_ulong h_client_architecture_support(PowerPCCPU *cpu, |
| sPAPRMachineState *spapr, |
| target_ulong opcode, |
| target_ulong *args) |
| { |
| target_ulong list = ppc64_phys_to_real(args[0]); |
| target_ulong ov_table; |
| bool explicit_match = false; /* Matched the CPU's real PVR */ |
| uint32_t max_compat = cpu->max_compat; |
| uint32_t best_compat = 0; |
| int i; |
| sPAPROptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates; |
| bool guest_radix; |
| |
| /* |
| * We scan the supplied table of PVRs looking for two things |
| * 1. Is our real CPU PVR in the list? |
| * 2. What's the "best" listed logical PVR |
| */ |
| for (i = 0; i < 512; ++i) { |
| uint32_t pvr, pvr_mask; |
| |
| pvr_mask = ldl_be_phys(&address_space_memory, list); |
| pvr = ldl_be_phys(&address_space_memory, list + 4); |
| list += 8; |
| |
| if (~pvr_mask & pvr) { |
| break; /* Terminator record */ |
| } |
| |
| if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) { |
| explicit_match = true; |
| } else { |
| if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) { |
| best_compat = pvr; |
| } |
| } |
| } |
| |
| if ((best_compat == 0) && (!explicit_match || max_compat)) { |
| /* We couldn't find a suitable compatibility mode, and either |
| * the guest doesn't support "raw" mode for this CPU, or raw |
| * mode is disabled because a maximum compat mode is set */ |
| return H_HARDWARE; |
| } |
| |
| /* Parsing finished */ |
| trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat); |
| |
| /* Update CPUs */ |
| if (cpu->compat_pvr != best_compat) { |
| Error *local_err = NULL; |
| |
| ppc_set_compat_all(best_compat, &local_err); |
| if (local_err) { |
| error_report_err(local_err); |
| return H_HARDWARE; |
| } |
| } |
| |
| /* For the future use: here @ov_table points to the first option vector */ |
| ov_table = list; |
| |
| ov1_guest = spapr_ovec_parse_vector(ov_table, 1); |
| ov5_guest = spapr_ovec_parse_vector(ov_table, 5); |
| if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) { |
| error_report("guest requested hash and radix MMU, which is invalid."); |
| exit(EXIT_FAILURE); |
| } |
| /* The radix/hash bit in byte 24 requires special handling: */ |
| guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300); |
| spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300); |
| |
| /* NOTE: there are actually a number of ov5 bits where input from the |
| * guest is always zero, and the platform/QEMU enables them independently |
| * of guest input. To model these properly we'd want some sort of mask, |
| * but since they only currently apply to memory migration as defined |
| * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need |
| * to worry about this for now. |
| */ |
| ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas); |
| /* full range of negotiated ov5 capabilities */ |
| spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest); |
| spapr_ovec_cleanup(ov5_guest); |
| /* capabilities that have been added since CAS-generated guest reset. |
| * if capabilities have since been removed, generate another reset |
| */ |
| ov5_updates = spapr_ovec_new(); |
| spapr->cas_reboot = spapr_ovec_diff(ov5_updates, |
| ov5_cas_old, spapr->ov5_cas); |
| /* Now that processing is finished, set the radix/hash bit for the |
| * guest if it requested a valid mode; otherwise terminate the boot. */ |
| if (guest_radix) { |
| if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { |
| error_report("Guest requested unavailable MMU mode (radix)."); |
| exit(EXIT_FAILURE); |
| } |
| spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300); |
| } else { |
| if (kvm_enabled() && kvmppc_has_cap_mmu_radix() |
| && !kvmppc_has_cap_mmu_hash_v3()) { |
| error_report("Guest requested unavailable MMU mode (hash)."); |
| exit(EXIT_FAILURE); |
| } |
| } |
| spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest, |
| OV1_PPC_3_00); |
| if (!spapr->cas_reboot) { |
| spapr->cas_reboot = |
| (spapr_h_cas_compose_response(spapr, args[1], args[2], |
| ov5_updates) != 0); |
| } |
| spapr_ovec_cleanup(ov5_updates); |
| |
| if (spapr->cas_reboot) { |
| qemu_system_reset_request(); |
| } else { |
| /* If ppc_spapr_reset() did not set up a HPT but one is necessary |
| * (because the guest isn't going to use radix) then set it up here. */ |
| if ((spapr->patb_entry & PATBE1_GR) && !guest_radix) { |
| /* legacy hash or new hash: */ |
| spapr_setup_hpt_and_vrma(spapr); |
| } |
| } |
| |
| return H_SUCCESS; |
| } |
| |
| static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1]; |
| static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1]; |
| |
| void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn) |
| { |
| spapr_hcall_fn *slot; |
| |
| if (opcode <= MAX_HCALL_OPCODE) { |
| assert((opcode & 0x3) == 0); |
| |
| slot = &papr_hypercall_table[opcode / 4]; |
| } else { |
| assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX)); |
| |
| slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; |
| } |
| |
| assert(!(*slot)); |
| *slot = fn; |
| } |
| |
| target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode, |
| target_ulong *args) |
| { |
| sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); |
| |
| if ((opcode <= MAX_HCALL_OPCODE) |
| && ((opcode & 0x3) == 0)) { |
| spapr_hcall_fn fn = papr_hypercall_table[opcode / 4]; |
| |
| if (fn) { |
| return fn(cpu, spapr, opcode, args); |
| } |
| } else if ((opcode >= KVMPPC_HCALL_BASE) && |
| (opcode <= KVMPPC_HCALL_MAX)) { |
| spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE]; |
| |
| if (fn) { |
| return fn(cpu, spapr, opcode, args); |
| } |
| } |
| |
| qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n", |
| opcode); |
| return H_FUNCTION; |
| } |
| |
| static void hypercall_register_types(void) |
| { |
| /* hcall-pft */ |
| spapr_register_hypercall(H_ENTER, h_enter); |
| spapr_register_hypercall(H_REMOVE, h_remove); |
| spapr_register_hypercall(H_PROTECT, h_protect); |
| spapr_register_hypercall(H_READ, h_read); |
| |
| /* hcall-bulk */ |
| spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove); |
| |
| /* hcall-splpar */ |
| spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa); |
| spapr_register_hypercall(H_CEDE, h_cede); |
| spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset); |
| |
| /* processor register resource access h-calls */ |
| spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0); |
| spapr_register_hypercall(H_SET_DABR, h_set_dabr); |
| spapr_register_hypercall(H_SET_XDABR, h_set_xdabr); |
| spapr_register_hypercall(H_PAGE_INIT, h_page_init); |
| spapr_register_hypercall(H_SET_MODE, h_set_mode); |
| |
| /* In Memory Table MMU h-calls */ |
| spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb); |
| spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid); |
| spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table); |
| |
| /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate |
| * here between the "CI" and the "CACHE" variants, they will use whatever |
| * mapping attributes qemu is using. When using KVM, the kernel will |
| * enforce the attributes more strongly |
| */ |
| spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load); |
| spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store); |
| spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load); |
| spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store); |
| spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi); |
| spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf); |
| spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop); |
| |
| /* qemu/KVM-PPC specific hcalls */ |
| spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas); |
| |
| /* ibm,client-architecture-support support */ |
| spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support); |
| } |
| |
| type_init(hypercall_register_types) |