|  | /* | 
|  | * QEMU KVM support | 
|  | * | 
|  | * Copyright IBM, Corp. 2008 | 
|  | *           Red Hat, Inc. 2008 | 
|  | * | 
|  | * Authors: | 
|  | *  Anthony Liguori   <aliguori@us.ibm.com> | 
|  | *  Glauber Costa     <gcosta@redhat.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
|  | * See the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include <sys/ioctl.h> | 
|  | #include <poll.h> | 
|  |  | 
|  | #include <linux/kvm.h> | 
|  |  | 
|  | #include "qemu/atomic.h" | 
|  | #include "qemu/option.h" | 
|  | #include "qemu/config-file.h" | 
|  | #include "qemu/error-report.h" | 
|  | #include "qapi/error.h" | 
|  | #include "hw/pci/msi.h" | 
|  | #include "hw/pci/msix.h" | 
|  | #include "hw/s390x/adapter.h" | 
|  | #include "exec/gdbstub.h" | 
|  | #include "sysemu/kvm_int.h" | 
|  | #include "sysemu/runstate.h" | 
|  | #include "sysemu/cpus.h" | 
|  | #include "sysemu/accel-blocker.h" | 
|  | #include "qemu/bswap.h" | 
|  | #include "exec/memory.h" | 
|  | #include "exec/ram_addr.h" | 
|  | #include "qemu/event_notifier.h" | 
|  | #include "qemu/main-loop.h" | 
|  | #include "trace.h" | 
|  | #include "hw/irq.h" | 
|  | #include "qapi/visitor.h" | 
|  | #include "qapi/qapi-types-common.h" | 
|  | #include "qapi/qapi-visit-common.h" | 
|  | #include "sysemu/reset.h" | 
|  | #include "qemu/guest-random.h" | 
|  | #include "sysemu/hw_accel.h" | 
|  | #include "kvm-cpus.h" | 
|  | #include "sysemu/dirtylimit.h" | 
|  | #include "qemu/range.h" | 
|  |  | 
|  | #include "hw/boards.h" | 
|  | #include "sysemu/stats.h" | 
|  |  | 
|  | /* This check must be after config-host.h is included */ | 
|  | #ifdef CONFIG_EVENTFD | 
|  | #include <sys/eventfd.h> | 
|  | #endif | 
|  |  | 
|  | /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We | 
|  | * need to use the real host PAGE_SIZE, as that's what KVM will use. | 
|  | */ | 
|  | #ifdef PAGE_SIZE | 
|  | #undef PAGE_SIZE | 
|  | #endif | 
|  | #define PAGE_SIZE qemu_real_host_page_size() | 
|  |  | 
|  | #ifndef KVM_GUESTDBG_BLOCKIRQ | 
|  | #define KVM_GUESTDBG_BLOCKIRQ 0 | 
|  | #endif | 
|  |  | 
|  | //#define DEBUG_KVM | 
|  |  | 
|  | #ifdef DEBUG_KVM | 
|  | #define DPRINTF(fmt, ...) \ | 
|  | do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) | 
|  | #else | 
|  | #define DPRINTF(fmt, ...) \ | 
|  | do { } while (0) | 
|  | #endif | 
|  |  | 
|  | struct KVMParkedVcpu { | 
|  | unsigned long vcpu_id; | 
|  | int kvm_fd; | 
|  | QLIST_ENTRY(KVMParkedVcpu) node; | 
|  | }; | 
|  |  | 
|  | KVMState *kvm_state; | 
|  | bool kvm_kernel_irqchip; | 
|  | bool kvm_split_irqchip; | 
|  | bool kvm_async_interrupts_allowed; | 
|  | bool kvm_halt_in_kernel_allowed; | 
|  | bool kvm_resamplefds_allowed; | 
|  | bool kvm_msi_via_irqfd_allowed; | 
|  | bool kvm_gsi_routing_allowed; | 
|  | bool kvm_gsi_direct_mapping; | 
|  | bool kvm_allowed; | 
|  | bool kvm_readonly_mem_allowed; | 
|  | bool kvm_vm_attributes_allowed; | 
|  | bool kvm_msi_use_devid; | 
|  | bool kvm_has_guest_debug; | 
|  | static int kvm_sstep_flags; | 
|  | static bool kvm_immediate_exit; | 
|  | static hwaddr kvm_max_slot_size = ~0; | 
|  |  | 
|  | static const KVMCapabilityInfo kvm_required_capabilites[] = { | 
|  | KVM_CAP_INFO(USER_MEMORY), | 
|  | KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), | 
|  | KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS), | 
|  | KVM_CAP_INFO(INTERNAL_ERROR_DATA), | 
|  | KVM_CAP_INFO(IOEVENTFD), | 
|  | KVM_CAP_INFO(IOEVENTFD_ANY_LENGTH), | 
|  | KVM_CAP_LAST_INFO | 
|  | }; | 
|  |  | 
|  | static NotifierList kvm_irqchip_change_notifiers = | 
|  | NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers); | 
|  |  | 
|  | struct KVMResampleFd { | 
|  | int gsi; | 
|  | EventNotifier *resample_event; | 
|  | QLIST_ENTRY(KVMResampleFd) node; | 
|  | }; | 
|  | typedef struct KVMResampleFd KVMResampleFd; | 
|  |  | 
|  | /* | 
|  | * Only used with split irqchip where we need to do the resample fd | 
|  | * kick for the kernel from userspace. | 
|  | */ | 
|  | static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list = | 
|  | QLIST_HEAD_INITIALIZER(kvm_resample_fd_list); | 
|  |  | 
|  | static QemuMutex kml_slots_lock; | 
|  |  | 
|  | #define kvm_slots_lock()    qemu_mutex_lock(&kml_slots_lock) | 
|  | #define kvm_slots_unlock()  qemu_mutex_unlock(&kml_slots_lock) | 
|  |  | 
|  | static void kvm_slot_init_dirty_bitmap(KVMSlot *mem); | 
|  |  | 
|  | static inline void kvm_resample_fd_remove(int gsi) | 
|  | { | 
|  | KVMResampleFd *rfd; | 
|  |  | 
|  | QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { | 
|  | if (rfd->gsi == gsi) { | 
|  | QLIST_REMOVE(rfd, node); | 
|  | g_free(rfd); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event) | 
|  | { | 
|  | KVMResampleFd *rfd = g_new0(KVMResampleFd, 1); | 
|  |  | 
|  | rfd->gsi = gsi; | 
|  | rfd->resample_event = event; | 
|  |  | 
|  | QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node); | 
|  | } | 
|  |  | 
|  | void kvm_resample_fd_notify(int gsi) | 
|  | { | 
|  | KVMResampleFd *rfd; | 
|  |  | 
|  | QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) { | 
|  | if (rfd->gsi == gsi) { | 
|  | event_notifier_set(rfd->resample_event); | 
|  | trace_kvm_resample_fd_notify(gsi); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned int kvm_get_max_memslots(void) | 
|  | { | 
|  | KVMState *s = KVM_STATE(current_accel()); | 
|  |  | 
|  | return s->nr_slots; | 
|  | } | 
|  |  | 
|  | unsigned int kvm_get_free_memslots(void) | 
|  | { | 
|  | unsigned int used_slots = 0; | 
|  | KVMState *s = kvm_state; | 
|  | int i; | 
|  |  | 
|  | kvm_slots_lock(); | 
|  | for (i = 0; i < s->nr_as; i++) { | 
|  | if (!s->as[i].ml) { | 
|  | continue; | 
|  | } | 
|  | used_slots = MAX(used_slots, s->as[i].ml->nr_used_slots); | 
|  | } | 
|  | kvm_slots_unlock(); | 
|  |  | 
|  | return s->nr_slots - used_slots; | 
|  | } | 
|  |  | 
|  | /* Called with KVMMemoryListener.slots_lock held */ | 
|  | static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < s->nr_slots; i++) { | 
|  | if (kml->slots[i].memory_size == 0) { | 
|  | return &kml->slots[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Called with KVMMemoryListener.slots_lock held */ | 
|  | static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml) | 
|  | { | 
|  | KVMSlot *slot = kvm_get_free_slot(kml); | 
|  |  | 
|  | if (slot) { | 
|  | return slot; | 
|  | } | 
|  |  | 
|  | fprintf(stderr, "%s: no free slot available\n", __func__); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml, | 
|  | hwaddr start_addr, | 
|  | hwaddr size) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < s->nr_slots; i++) { | 
|  | KVMSlot *mem = &kml->slots[i]; | 
|  |  | 
|  | if (start_addr == mem->start_addr && size == mem->memory_size) { | 
|  | return mem; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate and align the start address and the size of the section. | 
|  | * Return the size. If the size is 0, the aligned section is empty. | 
|  | */ | 
|  | static hwaddr kvm_align_section(MemoryRegionSection *section, | 
|  | hwaddr *start) | 
|  | { | 
|  | hwaddr size = int128_get64(section->size); | 
|  | hwaddr delta, aligned; | 
|  |  | 
|  | /* kvm works in page size chunks, but the function may be called | 
|  | with sub-page size and unaligned start address. Pad the start | 
|  | address to next and truncate size to previous page boundary. */ | 
|  | aligned = ROUND_UP(section->offset_within_address_space, | 
|  | qemu_real_host_page_size()); | 
|  | delta = aligned - section->offset_within_address_space; | 
|  | *start = aligned; | 
|  | if (delta > size) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return (size - delta) & qemu_real_host_page_mask(); | 
|  | } | 
|  |  | 
|  | int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, | 
|  | hwaddr *phys_addr) | 
|  | { | 
|  | KVMMemoryListener *kml = &s->memory_listener; | 
|  | int i, ret = 0; | 
|  |  | 
|  | kvm_slots_lock(); | 
|  | for (i = 0; i < s->nr_slots; i++) { | 
|  | KVMSlot *mem = &kml->slots[i]; | 
|  |  | 
|  | if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { | 
|  | *phys_addr = mem->start_addr + (ram - mem->ram); | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | kvm_slots_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | struct kvm_userspace_memory_region mem; | 
|  | int ret; | 
|  |  | 
|  | mem.slot = slot->slot | (kml->as_id << 16); | 
|  | mem.guest_phys_addr = slot->start_addr; | 
|  | mem.userspace_addr = (unsigned long)slot->ram; | 
|  | mem.flags = slot->flags; | 
|  |  | 
|  | if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) { | 
|  | /* Set the slot size to 0 before setting the slot to the desired | 
|  | * value. This is needed based on KVM commit 75d61fbc. */ | 
|  | mem.memory_size = 0; | 
|  | ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | mem.memory_size = slot->memory_size; | 
|  | ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); | 
|  | slot->old_flags = mem.flags; | 
|  | err: | 
|  | trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr, | 
|  | mem.memory_size, mem.userspace_addr, ret); | 
|  | if (ret < 0) { | 
|  | error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d," | 
|  | " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s", | 
|  | __func__, mem.slot, slot->start_addr, | 
|  | (uint64_t)mem.memory_size, strerror(errno)); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int do_kvm_destroy_vcpu(CPUState *cpu) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | long mmap_size; | 
|  | struct KVMParkedVcpu *vcpu = NULL; | 
|  | int ret = 0; | 
|  |  | 
|  | DPRINTF("kvm_destroy_vcpu\n"); | 
|  |  | 
|  | ret = kvm_arch_destroy_vcpu(cpu); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | 
|  | if (mmap_size < 0) { | 
|  | ret = mmap_size; | 
|  | DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = munmap(cpu->kvm_run, mmap_size); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (cpu->kvm_dirty_gfns) { | 
|  | ret = munmap(cpu->kvm_dirty_gfns, s->kvm_dirty_ring_bytes); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | vcpu = g_malloc0(sizeof(*vcpu)); | 
|  | vcpu->vcpu_id = kvm_arch_vcpu_id(cpu); | 
|  | vcpu->kvm_fd = cpu->kvm_fd; | 
|  | QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node); | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void kvm_destroy_vcpu(CPUState *cpu) | 
|  | { | 
|  | if (do_kvm_destroy_vcpu(cpu) < 0) { | 
|  | error_report("kvm_destroy_vcpu failed"); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id) | 
|  | { | 
|  | struct KVMParkedVcpu *cpu; | 
|  |  | 
|  | QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) { | 
|  | if (cpu->vcpu_id == vcpu_id) { | 
|  | int kvm_fd; | 
|  |  | 
|  | QLIST_REMOVE(cpu, node); | 
|  | kvm_fd = cpu->kvm_fd; | 
|  | g_free(cpu); | 
|  | return kvm_fd; | 
|  | } | 
|  | } | 
|  |  | 
|  | return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id); | 
|  | } | 
|  |  | 
|  | int kvm_init_vcpu(CPUState *cpu, Error **errp) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | long mmap_size; | 
|  | int ret; | 
|  |  | 
|  | trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu)); | 
|  |  | 
|  | ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu)); | 
|  | if (ret < 0) { | 
|  | error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)", | 
|  | kvm_arch_vcpu_id(cpu)); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | cpu->kvm_fd = ret; | 
|  | cpu->kvm_state = s; | 
|  | cpu->vcpu_dirty = true; | 
|  | cpu->dirty_pages = 0; | 
|  | cpu->throttle_us_per_full = 0; | 
|  |  | 
|  | mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); | 
|  | if (mmap_size < 0) { | 
|  | ret = mmap_size; | 
|  | error_setg_errno(errp, -mmap_size, | 
|  | "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, | 
|  | cpu->kvm_fd, 0); | 
|  | if (cpu->kvm_run == MAP_FAILED) { | 
|  | ret = -errno; | 
|  | error_setg_errno(errp, ret, | 
|  | "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)", | 
|  | kvm_arch_vcpu_id(cpu)); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (s->coalesced_mmio && !s->coalesced_mmio_ring) { | 
|  | s->coalesced_mmio_ring = | 
|  | (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | if (s->kvm_dirty_ring_size) { | 
|  | /* Use MAP_SHARED to share pages with the kernel */ | 
|  | cpu->kvm_dirty_gfns = mmap(NULL, s->kvm_dirty_ring_bytes, | 
|  | PROT_READ | PROT_WRITE, MAP_SHARED, | 
|  | cpu->kvm_fd, | 
|  | PAGE_SIZE * KVM_DIRTY_LOG_PAGE_OFFSET); | 
|  | if (cpu->kvm_dirty_gfns == MAP_FAILED) { | 
|  | ret = -errno; | 
|  | DPRINTF("mmap'ing vcpu dirty gfns failed: %d\n", ret); | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = kvm_arch_init_vcpu(cpu); | 
|  | if (ret < 0) { | 
|  | error_setg_errno(errp, -ret, | 
|  | "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)", | 
|  | kvm_arch_vcpu_id(cpu)); | 
|  | } | 
|  | cpu->kvm_vcpu_stats_fd = kvm_vcpu_ioctl(cpu, KVM_GET_STATS_FD, NULL); | 
|  |  | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dirty pages logging control | 
|  | */ | 
|  |  | 
|  | static int kvm_mem_flags(MemoryRegion *mr) | 
|  | { | 
|  | bool readonly = mr->readonly || memory_region_is_romd(mr); | 
|  | int flags = 0; | 
|  |  | 
|  | if (memory_region_get_dirty_log_mask(mr) != 0) { | 
|  | flags |= KVM_MEM_LOG_DIRTY_PAGES; | 
|  | } | 
|  | if (readonly && kvm_readonly_mem_allowed) { | 
|  | flags |= KVM_MEM_READONLY; | 
|  | } | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | /* Called with KVMMemoryListener.slots_lock held */ | 
|  | static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem, | 
|  | MemoryRegion *mr) | 
|  | { | 
|  | mem->flags = kvm_mem_flags(mr); | 
|  |  | 
|  | /* If nothing changed effectively, no need to issue ioctl */ | 
|  | if (mem->flags == mem->old_flags) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | kvm_slot_init_dirty_bitmap(mem); | 
|  | return kvm_set_user_memory_region(kml, mem, false); | 
|  | } | 
|  |  | 
|  | static int kvm_section_update_flags(KVMMemoryListener *kml, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | hwaddr start_addr, size, slot_size; | 
|  | KVMSlot *mem; | 
|  | int ret = 0; | 
|  |  | 
|  | size = kvm_align_section(section, &start_addr); | 
|  | if (!size) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | kvm_slots_lock(); | 
|  |  | 
|  | while (size && !ret) { | 
|  | slot_size = MIN(kvm_max_slot_size, size); | 
|  | mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); | 
|  | if (!mem) { | 
|  | /* We don't have a slot if we want to trap every access. */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = kvm_slot_update_flags(kml, mem, section->mr); | 
|  | start_addr += slot_size; | 
|  | size -= slot_size; | 
|  | } | 
|  |  | 
|  | out: | 
|  | kvm_slots_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void kvm_log_start(MemoryListener *listener, | 
|  | MemoryRegionSection *section, | 
|  | int old, int new) | 
|  | { | 
|  | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | 
|  | int r; | 
|  |  | 
|  | if (old != 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | r = kvm_section_update_flags(kml, section); | 
|  | if (r < 0) { | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_log_stop(MemoryListener *listener, | 
|  | MemoryRegionSection *section, | 
|  | int old, int new) | 
|  | { | 
|  | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | 
|  | int r; | 
|  |  | 
|  | if (new != 0) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | r = kvm_section_update_flags(kml, section); | 
|  | if (r < 0) { | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* get kvm's dirty pages bitmap and update qemu's */ | 
|  | static void kvm_slot_sync_dirty_pages(KVMSlot *slot) | 
|  | { | 
|  | ram_addr_t start = slot->ram_start_offset; | 
|  | ram_addr_t pages = slot->memory_size / qemu_real_host_page_size(); | 
|  |  | 
|  | cpu_physical_memory_set_dirty_lebitmap(slot->dirty_bmap, start, pages); | 
|  | } | 
|  |  | 
|  | static void kvm_slot_reset_dirty_pages(KVMSlot *slot) | 
|  | { | 
|  | memset(slot->dirty_bmap, 0, slot->dirty_bmap_size); | 
|  | } | 
|  |  | 
|  | #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1)) | 
|  |  | 
|  | /* Allocate the dirty bitmap for a slot  */ | 
|  | static void kvm_slot_init_dirty_bitmap(KVMSlot *mem) | 
|  | { | 
|  | if (!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) || mem->dirty_bmap) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * XXX bad kernel interface alert | 
|  | * For dirty bitmap, kernel allocates array of size aligned to | 
|  | * bits-per-long.  But for case when the kernel is 64bits and | 
|  | * the userspace is 32bits, userspace can't align to the same | 
|  | * bits-per-long, since sizeof(long) is different between kernel | 
|  | * and user space.  This way, userspace will provide buffer which | 
|  | * may be 4 bytes less than the kernel will use, resulting in | 
|  | * userspace memory corruption (which is not detectable by valgrind | 
|  | * too, in most cases). | 
|  | * So for now, let's align to 64 instead of HOST_LONG_BITS here, in | 
|  | * a hope that sizeof(long) won't become >8 any time soon. | 
|  | * | 
|  | * Note: the granule of kvm dirty log is qemu_real_host_page_size. | 
|  | * And mem->memory_size is aligned to it (otherwise this mem can't | 
|  | * be registered to KVM). | 
|  | */ | 
|  | hwaddr bitmap_size = ALIGN(mem->memory_size / qemu_real_host_page_size(), | 
|  | /*HOST_LONG_BITS*/ 64) / 8; | 
|  | mem->dirty_bmap = g_malloc0(bitmap_size); | 
|  | mem->dirty_bmap_size = bitmap_size; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sync dirty bitmap from kernel to KVMSlot.dirty_bmap, return true if | 
|  | * succeeded, false otherwise | 
|  | */ | 
|  | static bool kvm_slot_get_dirty_log(KVMState *s, KVMSlot *slot) | 
|  | { | 
|  | struct kvm_dirty_log d = {}; | 
|  | int ret; | 
|  |  | 
|  | d.dirty_bitmap = slot->dirty_bmap; | 
|  | d.slot = slot->slot | (slot->as_id << 16); | 
|  | ret = kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d); | 
|  |  | 
|  | if (ret == -ENOENT) { | 
|  | /* kernel does not have dirty bitmap in this slot */ | 
|  | ret = 0; | 
|  | } | 
|  | if (ret) { | 
|  | error_report_once("%s: KVM_GET_DIRTY_LOG failed with %d", | 
|  | __func__, ret); | 
|  | } | 
|  | return ret == 0; | 
|  | } | 
|  |  | 
|  | /* Should be with all slots_lock held for the address spaces. */ | 
|  | static void kvm_dirty_ring_mark_page(KVMState *s, uint32_t as_id, | 
|  | uint32_t slot_id, uint64_t offset) | 
|  | { | 
|  | KVMMemoryListener *kml; | 
|  | KVMSlot *mem; | 
|  |  | 
|  | if (as_id >= s->nr_as) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | kml = s->as[as_id].ml; | 
|  | mem = &kml->slots[slot_id]; | 
|  |  | 
|  | if (!mem->memory_size || offset >= | 
|  | (mem->memory_size / qemu_real_host_page_size())) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | set_bit(offset, mem->dirty_bmap); | 
|  | } | 
|  |  | 
|  | static bool dirty_gfn_is_dirtied(struct kvm_dirty_gfn *gfn) | 
|  | { | 
|  | /* | 
|  | * Read the flags before the value.  Pairs with barrier in | 
|  | * KVM's kvm_dirty_ring_push() function. | 
|  | */ | 
|  | return qatomic_load_acquire(&gfn->flags) == KVM_DIRTY_GFN_F_DIRTY; | 
|  | } | 
|  |  | 
|  | static void dirty_gfn_set_collected(struct kvm_dirty_gfn *gfn) | 
|  | { | 
|  | /* | 
|  | * Use a store-release so that the CPU that executes KVM_RESET_DIRTY_RINGS | 
|  | * sees the full content of the ring: | 
|  | * | 
|  | * CPU0                     CPU1                         CPU2 | 
|  | * ------------------------------------------------------------------------------ | 
|  | *                                                       fill gfn0 | 
|  | *                                                       store-rel flags for gfn0 | 
|  | * load-acq flags for gfn0 | 
|  | * store-rel RESET for gfn0 | 
|  | *                          ioctl(RESET_RINGS) | 
|  | *                            load-acq flags for gfn0 | 
|  | *                            check if flags have RESET | 
|  | * | 
|  | * The synchronization goes from CPU2 to CPU0 to CPU1. | 
|  | */ | 
|  | qatomic_store_release(&gfn->flags, KVM_DIRTY_GFN_F_RESET); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Should be with all slots_lock held for the address spaces.  It returns the | 
|  | * dirty page we've collected on this dirty ring. | 
|  | */ | 
|  | static uint32_t kvm_dirty_ring_reap_one(KVMState *s, CPUState *cpu) | 
|  | { | 
|  | struct kvm_dirty_gfn *dirty_gfns = cpu->kvm_dirty_gfns, *cur; | 
|  | uint32_t ring_size = s->kvm_dirty_ring_size; | 
|  | uint32_t count = 0, fetch = cpu->kvm_fetch_index; | 
|  |  | 
|  | /* | 
|  | * It's possible that we race with vcpu creation code where the vcpu is | 
|  | * put onto the vcpus list but not yet initialized the dirty ring | 
|  | * structures.  If so, skip it. | 
|  | */ | 
|  | if (!cpu->created) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | assert(dirty_gfns && ring_size); | 
|  | trace_kvm_dirty_ring_reap_vcpu(cpu->cpu_index); | 
|  |  | 
|  | while (true) { | 
|  | cur = &dirty_gfns[fetch % ring_size]; | 
|  | if (!dirty_gfn_is_dirtied(cur)) { | 
|  | break; | 
|  | } | 
|  | kvm_dirty_ring_mark_page(s, cur->slot >> 16, cur->slot & 0xffff, | 
|  | cur->offset); | 
|  | dirty_gfn_set_collected(cur); | 
|  | trace_kvm_dirty_ring_page(cpu->cpu_index, fetch, cur->offset); | 
|  | fetch++; | 
|  | count++; | 
|  | } | 
|  | cpu->kvm_fetch_index = fetch; | 
|  | cpu->dirty_pages += count; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* Must be with slots_lock held */ | 
|  | static uint64_t kvm_dirty_ring_reap_locked(KVMState *s, CPUState* cpu) | 
|  | { | 
|  | int ret; | 
|  | uint64_t total = 0; | 
|  | int64_t stamp; | 
|  |  | 
|  | stamp = get_clock(); | 
|  |  | 
|  | if (cpu) { | 
|  | total = kvm_dirty_ring_reap_one(s, cpu); | 
|  | } else { | 
|  | CPU_FOREACH(cpu) { | 
|  | total += kvm_dirty_ring_reap_one(s, cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (total) { | 
|  | ret = kvm_vm_ioctl(s, KVM_RESET_DIRTY_RINGS); | 
|  | assert(ret == total); | 
|  | } | 
|  |  | 
|  | stamp = get_clock() - stamp; | 
|  |  | 
|  | if (total) { | 
|  | trace_kvm_dirty_ring_reap(total, stamp / 1000); | 
|  | } | 
|  |  | 
|  | return total; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Currently for simplicity, we must hold BQL before calling this.  We can | 
|  | * consider to drop the BQL if we're clear with all the race conditions. | 
|  | */ | 
|  | static uint64_t kvm_dirty_ring_reap(KVMState *s, CPUState *cpu) | 
|  | { | 
|  | uint64_t total; | 
|  |  | 
|  | /* | 
|  | * We need to lock all kvm slots for all address spaces here, | 
|  | * because: | 
|  | * | 
|  | * (1) We need to mark dirty for dirty bitmaps in multiple slots | 
|  | *     and for tons of pages, so it's better to take the lock here | 
|  | *     once rather than once per page.  And more importantly, | 
|  | * | 
|  | * (2) We must _NOT_ publish dirty bits to the other threads | 
|  | *     (e.g., the migration thread) via the kvm memory slot dirty | 
|  | *     bitmaps before correctly re-protect those dirtied pages. | 
|  | *     Otherwise we can have potential risk of data corruption if | 
|  | *     the page data is read in the other thread before we do | 
|  | *     reset below. | 
|  | */ | 
|  | kvm_slots_lock(); | 
|  | total = kvm_dirty_ring_reap_locked(s, cpu); | 
|  | kvm_slots_unlock(); | 
|  |  | 
|  | return total; | 
|  | } | 
|  |  | 
|  | static void do_kvm_cpu_synchronize_kick(CPUState *cpu, run_on_cpu_data arg) | 
|  | { | 
|  | /* No need to do anything */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Kick all vcpus out in a synchronized way.  When returned, we | 
|  | * guarantee that every vcpu has been kicked and at least returned to | 
|  | * userspace once. | 
|  | */ | 
|  | static void kvm_cpu_synchronize_kick_all(void) | 
|  | { | 
|  | CPUState *cpu; | 
|  |  | 
|  | CPU_FOREACH(cpu) { | 
|  | run_on_cpu(cpu, do_kvm_cpu_synchronize_kick, RUN_ON_CPU_NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush all the existing dirty pages to the KVM slot buffers.  When | 
|  | * this call returns, we guarantee that all the touched dirty pages | 
|  | * before calling this function have been put into the per-kvmslot | 
|  | * dirty bitmap. | 
|  | * | 
|  | * This function must be called with BQL held. | 
|  | */ | 
|  | static void kvm_dirty_ring_flush(void) | 
|  | { | 
|  | trace_kvm_dirty_ring_flush(0); | 
|  | /* | 
|  | * The function needs to be serialized.  Since this function | 
|  | * should always be with BQL held, serialization is guaranteed. | 
|  | * However, let's be sure of it. | 
|  | */ | 
|  | assert(qemu_mutex_iothread_locked()); | 
|  | /* | 
|  | * First make sure to flush the hardware buffers by kicking all | 
|  | * vcpus out in a synchronous way. | 
|  | */ | 
|  | kvm_cpu_synchronize_kick_all(); | 
|  | kvm_dirty_ring_reap(kvm_state, NULL); | 
|  | trace_kvm_dirty_ring_flush(1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space | 
|  | * | 
|  | * This function will first try to fetch dirty bitmap from the kernel, | 
|  | * and then updates qemu's dirty bitmap. | 
|  | * | 
|  | * NOTE: caller must be with kml->slots_lock held. | 
|  | * | 
|  | * @kml: the KVM memory listener object | 
|  | * @section: the memory section to sync the dirty bitmap with | 
|  | */ | 
|  | static void kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | KVMSlot *mem; | 
|  | hwaddr start_addr, size; | 
|  | hwaddr slot_size; | 
|  |  | 
|  | size = kvm_align_section(section, &start_addr); | 
|  | while (size) { | 
|  | slot_size = MIN(kvm_max_slot_size, size); | 
|  | mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); | 
|  | if (!mem) { | 
|  | /* We don't have a slot if we want to trap every access. */ | 
|  | return; | 
|  | } | 
|  | if (kvm_slot_get_dirty_log(s, mem)) { | 
|  | kvm_slot_sync_dirty_pages(mem); | 
|  | } | 
|  | start_addr += slot_size; | 
|  | size -= slot_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */ | 
|  | #define KVM_CLEAR_LOG_SHIFT  6 | 
|  | #define KVM_CLEAR_LOG_ALIGN  (qemu_real_host_page_size() << KVM_CLEAR_LOG_SHIFT) | 
|  | #define KVM_CLEAR_LOG_MASK   (-KVM_CLEAR_LOG_ALIGN) | 
|  |  | 
|  | static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start, | 
|  | uint64_t size) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | uint64_t end, bmap_start, start_delta, bmap_npages; | 
|  | struct kvm_clear_dirty_log d; | 
|  | unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size(); | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * We need to extend either the start or the size or both to | 
|  | * satisfy the KVM interface requirement.  Firstly, do the start | 
|  | * page alignment on 64 host pages | 
|  | */ | 
|  | bmap_start = start & KVM_CLEAR_LOG_MASK; | 
|  | start_delta = start - bmap_start; | 
|  | bmap_start /= psize; | 
|  |  | 
|  | /* | 
|  | * The kernel interface has restriction on the size too, that either: | 
|  | * | 
|  | * (1) the size is 64 host pages aligned (just like the start), or | 
|  | * (2) the size fills up until the end of the KVM memslot. | 
|  | */ | 
|  | bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN) | 
|  | << KVM_CLEAR_LOG_SHIFT; | 
|  | end = mem->memory_size / psize; | 
|  | if (bmap_npages > end - bmap_start) { | 
|  | bmap_npages = end - bmap_start; | 
|  | } | 
|  | start_delta /= psize; | 
|  |  | 
|  | /* | 
|  | * Prepare the bitmap to clear dirty bits.  Here we must guarantee | 
|  | * that we won't clear any unknown dirty bits otherwise we might | 
|  | * accidentally clear some set bits which are not yet synced from | 
|  | * the kernel into QEMU's bitmap, then we'll lose track of the | 
|  | * guest modifications upon those pages (which can directly lead | 
|  | * to guest data loss or panic after migration). | 
|  | * | 
|  | * Layout of the KVMSlot.dirty_bmap: | 
|  | * | 
|  | *                   |<-------- bmap_npages -----------..>| | 
|  | *                                                     [1] | 
|  | *                     start_delta         size | 
|  | *  |----------------|-------------|------------------|------------| | 
|  | *  ^                ^             ^                               ^ | 
|  | *  |                |             |                               | | 
|  | * start          bmap_start     (start)                         end | 
|  | * of memslot                                             of memslot | 
|  | * | 
|  | * [1] bmap_npages can be aligned to either 64 pages or the end of slot | 
|  | */ | 
|  |  | 
|  | assert(bmap_start % BITS_PER_LONG == 0); | 
|  | /* We should never do log_clear before log_sync */ | 
|  | assert(mem->dirty_bmap); | 
|  | if (start_delta || bmap_npages - size / psize) { | 
|  | /* Slow path - we need to manipulate a temp bitmap */ | 
|  | bmap_clear = bitmap_new(bmap_npages); | 
|  | bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap, | 
|  | bmap_start, start_delta + size / psize); | 
|  | /* | 
|  | * We need to fill the holes at start because that was not | 
|  | * specified by the caller and we extended the bitmap only for | 
|  | * 64 pages alignment | 
|  | */ | 
|  | bitmap_clear(bmap_clear, 0, start_delta); | 
|  | d.dirty_bitmap = bmap_clear; | 
|  | } else { | 
|  | /* | 
|  | * Fast path - both start and size align well with BITS_PER_LONG | 
|  | * (or the end of memory slot) | 
|  | */ | 
|  | d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start); | 
|  | } | 
|  |  | 
|  | d.first_page = bmap_start; | 
|  | /* It should never overflow.  If it happens, say something */ | 
|  | assert(bmap_npages <= UINT32_MAX); | 
|  | d.num_pages = bmap_npages; | 
|  | d.slot = mem->slot | (as_id << 16); | 
|  |  | 
|  | ret = kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d); | 
|  | if (ret < 0 && ret != -ENOENT) { | 
|  | error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, " | 
|  | "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d", | 
|  | __func__, d.slot, (uint64_t)d.first_page, | 
|  | (uint32_t)d.num_pages, ret); | 
|  | } else { | 
|  | ret = 0; | 
|  | trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After we have updated the remote dirty bitmap, we update the | 
|  | * cached bitmap as well for the memslot, then if another user | 
|  | * clears the same region we know we shouldn't clear it again on | 
|  | * the remote otherwise it's data loss as well. | 
|  | */ | 
|  | bitmap_clear(mem->dirty_bmap, bmap_start + start_delta, | 
|  | size / psize); | 
|  | /* This handles the NULL case well */ | 
|  | g_free(bmap_clear); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range | 
|  | * | 
|  | * NOTE: this will be a no-op if we haven't enabled manual dirty log | 
|  | * protection in the host kernel because in that case this operation | 
|  | * will be done within log_sync(). | 
|  | * | 
|  | * @kml:     the kvm memory listener | 
|  | * @section: the memory range to clear dirty bitmap | 
|  | */ | 
|  | static int kvm_physical_log_clear(KVMMemoryListener *kml, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | uint64_t start, size, offset, count; | 
|  | KVMSlot *mem; | 
|  | int ret = 0, i; | 
|  |  | 
|  | if (!s->manual_dirty_log_protect) { | 
|  | /* No need to do explicit clear */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | start = section->offset_within_address_space; | 
|  | size = int128_get64(section->size); | 
|  |  | 
|  | if (!size) { | 
|  | /* Nothing more we can do... */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | kvm_slots_lock(); | 
|  |  | 
|  | for (i = 0; i < s->nr_slots; i++) { | 
|  | mem = &kml->slots[i]; | 
|  | /* Discard slots that are empty or do not overlap the section */ | 
|  | if (!mem->memory_size || | 
|  | mem->start_addr > start + size - 1 || | 
|  | start > mem->start_addr + mem->memory_size - 1) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (start >= mem->start_addr) { | 
|  | /* The slot starts before section or is aligned to it.  */ | 
|  | offset = start - mem->start_addr; | 
|  | count = MIN(mem->memory_size - offset, size); | 
|  | } else { | 
|  | /* The slot starts after section.  */ | 
|  | offset = 0; | 
|  | count = MIN(mem->memory_size, size - (mem->start_addr - start)); | 
|  | } | 
|  | ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count); | 
|  | if (ret < 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | kvm_slots_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void kvm_coalesce_mmio_region(MemoryListener *listener, | 
|  | MemoryRegionSection *secion, | 
|  | hwaddr start, hwaddr size) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  |  | 
|  | if (s->coalesced_mmio) { | 
|  | struct kvm_coalesced_mmio_zone zone; | 
|  |  | 
|  | zone.addr = start; | 
|  | zone.size = size; | 
|  | zone.pad = 0; | 
|  |  | 
|  | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_uncoalesce_mmio_region(MemoryListener *listener, | 
|  | MemoryRegionSection *secion, | 
|  | hwaddr start, hwaddr size) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  |  | 
|  | if (s->coalesced_mmio) { | 
|  | struct kvm_coalesced_mmio_zone zone; | 
|  |  | 
|  | zone.addr = start; | 
|  | zone.size = size; | 
|  | zone.pad = 0; | 
|  |  | 
|  | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_coalesce_pio_add(MemoryListener *listener, | 
|  | MemoryRegionSection *section, | 
|  | hwaddr start, hwaddr size) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  |  | 
|  | if (s->coalesced_pio) { | 
|  | struct kvm_coalesced_mmio_zone zone; | 
|  |  | 
|  | zone.addr = start; | 
|  | zone.size = size; | 
|  | zone.pio = 1; | 
|  |  | 
|  | (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_coalesce_pio_del(MemoryListener *listener, | 
|  | MemoryRegionSection *section, | 
|  | hwaddr start, hwaddr size) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  |  | 
|  | if (s->coalesced_pio) { | 
|  | struct kvm_coalesced_mmio_zone zone; | 
|  |  | 
|  | zone.addr = start; | 
|  | zone.size = size; | 
|  | zone.pio = 1; | 
|  |  | 
|  | (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_check_extension(KVMState *s, unsigned int extension) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); | 
|  | if (ret < 0) { | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_vm_check_extension(KVMState *s, unsigned int extension) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension); | 
|  | if (ret < 0) { | 
|  | /* VM wide version not implemented, use global one instead */ | 
|  | ret = kvm_check_extension(s, extension); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | typedef struct HWPoisonPage { | 
|  | ram_addr_t ram_addr; | 
|  | QLIST_ENTRY(HWPoisonPage) list; | 
|  | } HWPoisonPage; | 
|  |  | 
|  | static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = | 
|  | QLIST_HEAD_INITIALIZER(hwpoison_page_list); | 
|  |  | 
|  | static void kvm_unpoison_all(void *param) | 
|  | { | 
|  | HWPoisonPage *page, *next_page; | 
|  |  | 
|  | QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { | 
|  | QLIST_REMOVE(page, list); | 
|  | qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); | 
|  | g_free(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_hwpoison_page_add(ram_addr_t ram_addr) | 
|  | { | 
|  | HWPoisonPage *page; | 
|  |  | 
|  | QLIST_FOREACH(page, &hwpoison_page_list, list) { | 
|  | if (page->ram_addr == ram_addr) { | 
|  | return; | 
|  | } | 
|  | } | 
|  | page = g_new(HWPoisonPage, 1); | 
|  | page->ram_addr = ram_addr; | 
|  | QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); | 
|  | } | 
|  |  | 
|  | static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size) | 
|  | { | 
|  | #if HOST_BIG_ENDIAN != TARGET_BIG_ENDIAN | 
|  | /* The kernel expects ioeventfd values in HOST_BIG_ENDIAN | 
|  | * endianness, but the memory core hands them in target endianness. | 
|  | * For example, PPC is always treated as big-endian even if running | 
|  | * on KVM and on PPC64LE.  Correct here. | 
|  | */ | 
|  | switch (size) { | 
|  | case 2: | 
|  | val = bswap16(val); | 
|  | break; | 
|  | case 4: | 
|  | val = bswap32(val); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val, | 
|  | bool assign, uint32_t size, bool datamatch) | 
|  | { | 
|  | int ret; | 
|  | struct kvm_ioeventfd iofd = { | 
|  | .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, | 
|  | .addr = addr, | 
|  | .len = size, | 
|  | .flags = 0, | 
|  | .fd = fd, | 
|  | }; | 
|  |  | 
|  | trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size, | 
|  | datamatch); | 
|  | if (!kvm_enabled()) { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | if (datamatch) { | 
|  | iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | 
|  | } | 
|  | if (!assign) { | 
|  | iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | 
|  | } | 
|  |  | 
|  | ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); | 
|  |  | 
|  | if (ret < 0) { | 
|  | return -errno; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, | 
|  | bool assign, uint32_t size, bool datamatch) | 
|  | { | 
|  | struct kvm_ioeventfd kick = { | 
|  | .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0, | 
|  | .addr = addr, | 
|  | .flags = KVM_IOEVENTFD_FLAG_PIO, | 
|  | .len = size, | 
|  | .fd = fd, | 
|  | }; | 
|  | int r; | 
|  | trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch); | 
|  | if (!kvm_enabled()) { | 
|  | return -ENOSYS; | 
|  | } | 
|  | if (datamatch) { | 
|  | kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; | 
|  | } | 
|  | if (!assign) { | 
|  | kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; | 
|  | } | 
|  | r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); | 
|  | if (r < 0) { | 
|  | return r; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static const KVMCapabilityInfo * | 
|  | kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) | 
|  | { | 
|  | while (list->name) { | 
|  | if (!kvm_check_extension(s, list->value)) { | 
|  | return list; | 
|  | } | 
|  | list++; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void kvm_set_max_memslot_size(hwaddr max_slot_size) | 
|  | { | 
|  | g_assert( | 
|  | ROUND_UP(max_slot_size, qemu_real_host_page_size()) == max_slot_size | 
|  | ); | 
|  | kvm_max_slot_size = max_slot_size; | 
|  | } | 
|  |  | 
|  | /* Called with KVMMemoryListener.slots_lock held */ | 
|  | static void kvm_set_phys_mem(KVMMemoryListener *kml, | 
|  | MemoryRegionSection *section, bool add) | 
|  | { | 
|  | KVMSlot *mem; | 
|  | int err; | 
|  | MemoryRegion *mr = section->mr; | 
|  | bool writable = !mr->readonly && !mr->rom_device; | 
|  | hwaddr start_addr, size, slot_size, mr_offset; | 
|  | ram_addr_t ram_start_offset; | 
|  | void *ram; | 
|  |  | 
|  | if (!memory_region_is_ram(mr)) { | 
|  | if (writable || !kvm_readonly_mem_allowed) { | 
|  | return; | 
|  | } else if (!mr->romd_mode) { | 
|  | /* If the memory device is not in romd_mode, then we actually want | 
|  | * to remove the kvm memory slot so all accesses will trap. */ | 
|  | add = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | size = kvm_align_section(section, &start_addr); | 
|  | if (!size) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* The offset of the kvmslot within the memory region */ | 
|  | mr_offset = section->offset_within_region + start_addr - | 
|  | section->offset_within_address_space; | 
|  |  | 
|  | /* use aligned delta to align the ram address and offset */ | 
|  | ram = memory_region_get_ram_ptr(mr) + mr_offset; | 
|  | ram_start_offset = memory_region_get_ram_addr(mr) + mr_offset; | 
|  |  | 
|  | if (!add) { | 
|  | do { | 
|  | slot_size = MIN(kvm_max_slot_size, size); | 
|  | mem = kvm_lookup_matching_slot(kml, start_addr, slot_size); | 
|  | if (!mem) { | 
|  | return; | 
|  | } | 
|  | if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { | 
|  | /* | 
|  | * NOTE: We should be aware of the fact that here we're only | 
|  | * doing a best effort to sync dirty bits.  No matter whether | 
|  | * we're using dirty log or dirty ring, we ignored two facts: | 
|  | * | 
|  | * (1) dirty bits can reside in hardware buffers (PML) | 
|  | * | 
|  | * (2) after we collected dirty bits here, pages can be dirtied | 
|  | * again before we do the final KVM_SET_USER_MEMORY_REGION to | 
|  | * remove the slot. | 
|  | * | 
|  | * Not easy.  Let's cross the fingers until it's fixed. | 
|  | */ | 
|  | if (kvm_state->kvm_dirty_ring_size) { | 
|  | kvm_dirty_ring_reap_locked(kvm_state, NULL); | 
|  | if (kvm_state->kvm_dirty_ring_with_bitmap) { | 
|  | kvm_slot_sync_dirty_pages(mem); | 
|  | kvm_slot_get_dirty_log(kvm_state, mem); | 
|  | } | 
|  | } else { | 
|  | kvm_slot_get_dirty_log(kvm_state, mem); | 
|  | } | 
|  | kvm_slot_sync_dirty_pages(mem); | 
|  | } | 
|  |  | 
|  | /* unregister the slot */ | 
|  | g_free(mem->dirty_bmap); | 
|  | mem->dirty_bmap = NULL; | 
|  | mem->memory_size = 0; | 
|  | mem->flags = 0; | 
|  | err = kvm_set_user_memory_region(kml, mem, false); | 
|  | if (err) { | 
|  | fprintf(stderr, "%s: error unregistering slot: %s\n", | 
|  | __func__, strerror(-err)); | 
|  | abort(); | 
|  | } | 
|  | start_addr += slot_size; | 
|  | size -= slot_size; | 
|  | kml->nr_used_slots--; | 
|  | } while (size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* register the new slot */ | 
|  | do { | 
|  | slot_size = MIN(kvm_max_slot_size, size); | 
|  | mem = kvm_alloc_slot(kml); | 
|  | mem->as_id = kml->as_id; | 
|  | mem->memory_size = slot_size; | 
|  | mem->start_addr = start_addr; | 
|  | mem->ram_start_offset = ram_start_offset; | 
|  | mem->ram = ram; | 
|  | mem->flags = kvm_mem_flags(mr); | 
|  | kvm_slot_init_dirty_bitmap(mem); | 
|  | err = kvm_set_user_memory_region(kml, mem, true); | 
|  | if (err) { | 
|  | fprintf(stderr, "%s: error registering slot: %s\n", __func__, | 
|  | strerror(-err)); | 
|  | abort(); | 
|  | } | 
|  | start_addr += slot_size; | 
|  | ram_start_offset += slot_size; | 
|  | ram += slot_size; | 
|  | size -= slot_size; | 
|  | kml->nr_used_slots++; | 
|  | } while (size); | 
|  | } | 
|  |  | 
|  | static void *kvm_dirty_ring_reaper_thread(void *data) | 
|  | { | 
|  | KVMState *s = data; | 
|  | struct KVMDirtyRingReaper *r = &s->reaper; | 
|  |  | 
|  | rcu_register_thread(); | 
|  |  | 
|  | trace_kvm_dirty_ring_reaper("init"); | 
|  |  | 
|  | while (true) { | 
|  | r->reaper_state = KVM_DIRTY_RING_REAPER_WAIT; | 
|  | trace_kvm_dirty_ring_reaper("wait"); | 
|  | /* | 
|  | * TODO: provide a smarter timeout rather than a constant? | 
|  | */ | 
|  | sleep(1); | 
|  |  | 
|  | /* keep sleeping so that dirtylimit not be interfered by reaper */ | 
|  | if (dirtylimit_in_service()) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | trace_kvm_dirty_ring_reaper("wakeup"); | 
|  | r->reaper_state = KVM_DIRTY_RING_REAPER_REAPING; | 
|  |  | 
|  | qemu_mutex_lock_iothread(); | 
|  | kvm_dirty_ring_reap(s, NULL); | 
|  | qemu_mutex_unlock_iothread(); | 
|  |  | 
|  | r->reaper_iteration++; | 
|  | } | 
|  |  | 
|  | trace_kvm_dirty_ring_reaper("exit"); | 
|  |  | 
|  | rcu_unregister_thread(); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void kvm_dirty_ring_reaper_init(KVMState *s) | 
|  | { | 
|  | struct KVMDirtyRingReaper *r = &s->reaper; | 
|  |  | 
|  | qemu_thread_create(&r->reaper_thr, "kvm-reaper", | 
|  | kvm_dirty_ring_reaper_thread, | 
|  | s, QEMU_THREAD_JOINABLE); | 
|  | } | 
|  |  | 
|  | static int kvm_dirty_ring_init(KVMState *s) | 
|  | { | 
|  | uint32_t ring_size = s->kvm_dirty_ring_size; | 
|  | uint64_t ring_bytes = ring_size * sizeof(struct kvm_dirty_gfn); | 
|  | unsigned int capability = KVM_CAP_DIRTY_LOG_RING; | 
|  | int ret; | 
|  |  | 
|  | s->kvm_dirty_ring_size = 0; | 
|  | s->kvm_dirty_ring_bytes = 0; | 
|  |  | 
|  | /* Bail if the dirty ring size isn't specified */ | 
|  | if (!ring_size) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the max supported pages. Fall back to dirty logging mode | 
|  | * if the dirty ring isn't supported. | 
|  | */ | 
|  | ret = kvm_vm_check_extension(s, capability); | 
|  | if (ret <= 0) { | 
|  | capability = KVM_CAP_DIRTY_LOG_RING_ACQ_REL; | 
|  | ret = kvm_vm_check_extension(s, capability); | 
|  | } | 
|  |  | 
|  | if (ret <= 0) { | 
|  | warn_report("KVM dirty ring not available, using bitmap method"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (ring_bytes > ret) { | 
|  | error_report("KVM dirty ring size %" PRIu32 " too big " | 
|  | "(maximum is %ld).  Please use a smaller value.", | 
|  | ring_size, (long)ret / sizeof(struct kvm_dirty_gfn)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = kvm_vm_enable_cap(s, capability, 0, ring_bytes); | 
|  | if (ret) { | 
|  | error_report("Enabling of KVM dirty ring failed: %s. " | 
|  | "Suggested minimum value is 1024.", strerror(-ret)); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* Enable the backup bitmap if it is supported */ | 
|  | ret = kvm_vm_check_extension(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP); | 
|  | if (ret > 0) { | 
|  | ret = kvm_vm_enable_cap(s, KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP, 0); | 
|  | if (ret) { | 
|  | error_report("Enabling of KVM dirty ring's backup bitmap failed: " | 
|  | "%s. ", strerror(-ret)); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | s->kvm_dirty_ring_with_bitmap = true; | 
|  | } | 
|  |  | 
|  | s->kvm_dirty_ring_size = ring_size; | 
|  | s->kvm_dirty_ring_bytes = ring_bytes; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvm_region_add(MemoryListener *listener, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | 
|  | KVMMemoryUpdate *update; | 
|  |  | 
|  | update = g_new0(KVMMemoryUpdate, 1); | 
|  | update->section = *section; | 
|  |  | 
|  | QSIMPLEQ_INSERT_TAIL(&kml->transaction_add, update, next); | 
|  | } | 
|  |  | 
|  | static void kvm_region_del(MemoryListener *listener, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | 
|  | KVMMemoryUpdate *update; | 
|  |  | 
|  | update = g_new0(KVMMemoryUpdate, 1); | 
|  | update->section = *section; | 
|  |  | 
|  | QSIMPLEQ_INSERT_TAIL(&kml->transaction_del, update, next); | 
|  | } | 
|  |  | 
|  | static void kvm_region_commit(MemoryListener *listener) | 
|  | { | 
|  | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, | 
|  | listener); | 
|  | KVMMemoryUpdate *u1, *u2; | 
|  | bool need_inhibit = false; | 
|  |  | 
|  | if (QSIMPLEQ_EMPTY(&kml->transaction_add) && | 
|  | QSIMPLEQ_EMPTY(&kml->transaction_del)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We have to be careful when regions to add overlap with ranges to remove. | 
|  | * We have to simulate atomic KVM memslot updates by making sure no ioctl() | 
|  | * is currently active. | 
|  | * | 
|  | * The lists are order by addresses, so it's easy to find overlaps. | 
|  | */ | 
|  | u1 = QSIMPLEQ_FIRST(&kml->transaction_del); | 
|  | u2 = QSIMPLEQ_FIRST(&kml->transaction_add); | 
|  | while (u1 && u2) { | 
|  | Range r1, r2; | 
|  |  | 
|  | range_init_nofail(&r1, u1->section.offset_within_address_space, | 
|  | int128_get64(u1->section.size)); | 
|  | range_init_nofail(&r2, u2->section.offset_within_address_space, | 
|  | int128_get64(u2->section.size)); | 
|  |  | 
|  | if (range_overlaps_range(&r1, &r2)) { | 
|  | need_inhibit = true; | 
|  | break; | 
|  | } | 
|  | if (range_lob(&r1) < range_lob(&r2)) { | 
|  | u1 = QSIMPLEQ_NEXT(u1, next); | 
|  | } else { | 
|  | u2 = QSIMPLEQ_NEXT(u2, next); | 
|  | } | 
|  | } | 
|  |  | 
|  | kvm_slots_lock(); | 
|  | if (need_inhibit) { | 
|  | accel_ioctl_inhibit_begin(); | 
|  | } | 
|  |  | 
|  | /* Remove all memslots before adding the new ones. */ | 
|  | while (!QSIMPLEQ_EMPTY(&kml->transaction_del)) { | 
|  | u1 = QSIMPLEQ_FIRST(&kml->transaction_del); | 
|  | QSIMPLEQ_REMOVE_HEAD(&kml->transaction_del, next); | 
|  |  | 
|  | kvm_set_phys_mem(kml, &u1->section, false); | 
|  | memory_region_unref(u1->section.mr); | 
|  |  | 
|  | g_free(u1); | 
|  | } | 
|  | while (!QSIMPLEQ_EMPTY(&kml->transaction_add)) { | 
|  | u1 = QSIMPLEQ_FIRST(&kml->transaction_add); | 
|  | QSIMPLEQ_REMOVE_HEAD(&kml->transaction_add, next); | 
|  |  | 
|  | memory_region_ref(u1->section.mr); | 
|  | kvm_set_phys_mem(kml, &u1->section, true); | 
|  |  | 
|  | g_free(u1); | 
|  | } | 
|  |  | 
|  | if (need_inhibit) { | 
|  | accel_ioctl_inhibit_end(); | 
|  | } | 
|  | kvm_slots_unlock(); | 
|  | } | 
|  |  | 
|  | static void kvm_log_sync(MemoryListener *listener, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | 
|  |  | 
|  | kvm_slots_lock(); | 
|  | kvm_physical_sync_dirty_bitmap(kml, section); | 
|  | kvm_slots_unlock(); | 
|  | } | 
|  |  | 
|  | static void kvm_log_sync_global(MemoryListener *l, bool last_stage) | 
|  | { | 
|  | KVMMemoryListener *kml = container_of(l, KVMMemoryListener, listener); | 
|  | KVMState *s = kvm_state; | 
|  | KVMSlot *mem; | 
|  | int i; | 
|  |  | 
|  | /* Flush all kernel dirty addresses into KVMSlot dirty bitmap */ | 
|  | kvm_dirty_ring_flush(); | 
|  |  | 
|  | /* | 
|  | * TODO: make this faster when nr_slots is big while there are | 
|  | * only a few used slots (small VMs). | 
|  | */ | 
|  | kvm_slots_lock(); | 
|  | for (i = 0; i < s->nr_slots; i++) { | 
|  | mem = &kml->slots[i]; | 
|  | if (mem->memory_size && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { | 
|  | kvm_slot_sync_dirty_pages(mem); | 
|  |  | 
|  | if (s->kvm_dirty_ring_with_bitmap && last_stage && | 
|  | kvm_slot_get_dirty_log(s, mem)) { | 
|  | kvm_slot_sync_dirty_pages(mem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is not needed by KVM_GET_DIRTY_LOG because the | 
|  | * ioctl will unconditionally overwrite the whole region. | 
|  | * However kvm dirty ring has no such side effect. | 
|  | */ | 
|  | kvm_slot_reset_dirty_pages(mem); | 
|  | } | 
|  | } | 
|  | kvm_slots_unlock(); | 
|  | } | 
|  |  | 
|  | static void kvm_log_clear(MemoryListener *listener, | 
|  | MemoryRegionSection *section) | 
|  | { | 
|  | KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener); | 
|  | int r; | 
|  |  | 
|  | r = kvm_physical_log_clear(kml, section); | 
|  | if (r < 0) { | 
|  | error_report_once("%s: kvm log clear failed: mr=%s " | 
|  | "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__, | 
|  | section->mr->name, section->offset_within_region, | 
|  | int128_get64(section->size)); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_mem_ioeventfd_add(MemoryListener *listener, | 
|  | MemoryRegionSection *section, | 
|  | bool match_data, uint64_t data, | 
|  | EventNotifier *e) | 
|  | { | 
|  | int fd = event_notifier_get_fd(e); | 
|  | int r; | 
|  |  | 
|  | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, | 
|  | data, true, int128_get64(section->size), | 
|  | match_data); | 
|  | if (r < 0) { | 
|  | fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", | 
|  | __func__, strerror(-r), -r); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_mem_ioeventfd_del(MemoryListener *listener, | 
|  | MemoryRegionSection *section, | 
|  | bool match_data, uint64_t data, | 
|  | EventNotifier *e) | 
|  | { | 
|  | int fd = event_notifier_get_fd(e); | 
|  | int r; | 
|  |  | 
|  | r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, | 
|  | data, false, int128_get64(section->size), | 
|  | match_data); | 
|  | if (r < 0) { | 
|  | fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", | 
|  | __func__, strerror(-r), -r); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_io_ioeventfd_add(MemoryListener *listener, | 
|  | MemoryRegionSection *section, | 
|  | bool match_data, uint64_t data, | 
|  | EventNotifier *e) | 
|  | { | 
|  | int fd = event_notifier_get_fd(e); | 
|  | int r; | 
|  |  | 
|  | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, | 
|  | data, true, int128_get64(section->size), | 
|  | match_data); | 
|  | if (r < 0) { | 
|  | fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n", | 
|  | __func__, strerror(-r), -r); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_io_ioeventfd_del(MemoryListener *listener, | 
|  | MemoryRegionSection *section, | 
|  | bool match_data, uint64_t data, | 
|  | EventNotifier *e) | 
|  |  | 
|  | { | 
|  | int fd = event_notifier_get_fd(e); | 
|  | int r; | 
|  |  | 
|  | r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, | 
|  | data, false, int128_get64(section->size), | 
|  | match_data); | 
|  | if (r < 0) { | 
|  | fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n", | 
|  | __func__, strerror(-r), -r); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml, | 
|  | AddressSpace *as, int as_id, const char *name) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | kml->slots = g_new0(KVMSlot, s->nr_slots); | 
|  | kml->as_id = as_id; | 
|  |  | 
|  | for (i = 0; i < s->nr_slots; i++) { | 
|  | kml->slots[i].slot = i; | 
|  | } | 
|  |  | 
|  | QSIMPLEQ_INIT(&kml->transaction_add); | 
|  | QSIMPLEQ_INIT(&kml->transaction_del); | 
|  |  | 
|  | kml->listener.region_add = kvm_region_add; | 
|  | kml->listener.region_del = kvm_region_del; | 
|  | kml->listener.commit = kvm_region_commit; | 
|  | kml->listener.log_start = kvm_log_start; | 
|  | kml->listener.log_stop = kvm_log_stop; | 
|  | kml->listener.priority = MEMORY_LISTENER_PRIORITY_ACCEL; | 
|  | kml->listener.name = name; | 
|  |  | 
|  | if (s->kvm_dirty_ring_size) { | 
|  | kml->listener.log_sync_global = kvm_log_sync_global; | 
|  | } else { | 
|  | kml->listener.log_sync = kvm_log_sync; | 
|  | kml->listener.log_clear = kvm_log_clear; | 
|  | } | 
|  |  | 
|  | memory_listener_register(&kml->listener, as); | 
|  |  | 
|  | for (i = 0; i < s->nr_as; ++i) { | 
|  | if (!s->as[i].as) { | 
|  | s->as[i].as = as; | 
|  | s->as[i].ml = kml; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static MemoryListener kvm_io_listener = { | 
|  | .name = "kvm-io", | 
|  | .coalesced_io_add = kvm_coalesce_pio_add, | 
|  | .coalesced_io_del = kvm_coalesce_pio_del, | 
|  | .eventfd_add = kvm_io_ioeventfd_add, | 
|  | .eventfd_del = kvm_io_ioeventfd_del, | 
|  | .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND, | 
|  | }; | 
|  |  | 
|  | int kvm_set_irq(KVMState *s, int irq, int level) | 
|  | { | 
|  | struct kvm_irq_level event; | 
|  | int ret; | 
|  |  | 
|  | assert(kvm_async_interrupts_enabled()); | 
|  |  | 
|  | event.level = level; | 
|  | event.irq = irq; | 
|  | ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); | 
|  | if (ret < 0) { | 
|  | perror("kvm_set_irq"); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; | 
|  | } | 
|  |  | 
|  | #ifdef KVM_CAP_IRQ_ROUTING | 
|  | typedef struct KVMMSIRoute { | 
|  | struct kvm_irq_routing_entry kroute; | 
|  | QTAILQ_ENTRY(KVMMSIRoute) entry; | 
|  | } KVMMSIRoute; | 
|  |  | 
|  | static void set_gsi(KVMState *s, unsigned int gsi) | 
|  | { | 
|  | set_bit(gsi, s->used_gsi_bitmap); | 
|  | } | 
|  |  | 
|  | static void clear_gsi(KVMState *s, unsigned int gsi) | 
|  | { | 
|  | clear_bit(gsi, s->used_gsi_bitmap); | 
|  | } | 
|  |  | 
|  | void kvm_init_irq_routing(KVMState *s) | 
|  | { | 
|  | int gsi_count; | 
|  |  | 
|  | gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1; | 
|  | if (gsi_count > 0) { | 
|  | /* Round up so we can search ints using ffs */ | 
|  | s->used_gsi_bitmap = bitmap_new(gsi_count); | 
|  | s->gsi_count = gsi_count; | 
|  | } | 
|  |  | 
|  | s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); | 
|  | s->nr_allocated_irq_routes = 0; | 
|  |  | 
|  | kvm_arch_init_irq_routing(s); | 
|  | } | 
|  |  | 
|  | void kvm_irqchip_commit_routes(KVMState *s) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (kvm_gsi_direct_mapping()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!kvm_gsi_routing_enabled()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | s->irq_routes->flags = 0; | 
|  | trace_kvm_irqchip_commit_routes(); | 
|  | ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); | 
|  | assert(ret == 0); | 
|  | } | 
|  |  | 
|  | static void kvm_add_routing_entry(KVMState *s, | 
|  | struct kvm_irq_routing_entry *entry) | 
|  | { | 
|  | struct kvm_irq_routing_entry *new; | 
|  | int n, size; | 
|  |  | 
|  | if (s->irq_routes->nr == s->nr_allocated_irq_routes) { | 
|  | n = s->nr_allocated_irq_routes * 2; | 
|  | if (n < 64) { | 
|  | n = 64; | 
|  | } | 
|  | size = sizeof(struct kvm_irq_routing); | 
|  | size += n * sizeof(*new); | 
|  | s->irq_routes = g_realloc(s->irq_routes, size); | 
|  | s->nr_allocated_irq_routes = n; | 
|  | } | 
|  | n = s->irq_routes->nr++; | 
|  | new = &s->irq_routes->entries[n]; | 
|  |  | 
|  | *new = *entry; | 
|  |  | 
|  | set_gsi(s, entry->gsi); | 
|  | } | 
|  |  | 
|  | static int kvm_update_routing_entry(KVMState *s, | 
|  | struct kvm_irq_routing_entry *new_entry) | 
|  | { | 
|  | struct kvm_irq_routing_entry *entry; | 
|  | int n; | 
|  |  | 
|  | for (n = 0; n < s->irq_routes->nr; n++) { | 
|  | entry = &s->irq_routes->entries[n]; | 
|  | if (entry->gsi != new_entry->gsi) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if(!memcmp(entry, new_entry, sizeof *entry)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *entry = *new_entry; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -ESRCH; | 
|  | } | 
|  |  | 
|  | void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) | 
|  | { | 
|  | struct kvm_irq_routing_entry e = {}; | 
|  |  | 
|  | assert(pin < s->gsi_count); | 
|  |  | 
|  | e.gsi = irq; | 
|  | e.type = KVM_IRQ_ROUTING_IRQCHIP; | 
|  | e.flags = 0; | 
|  | e.u.irqchip.irqchip = irqchip; | 
|  | e.u.irqchip.pin = pin; | 
|  | kvm_add_routing_entry(s, &e); | 
|  | } | 
|  |  | 
|  | void kvm_irqchip_release_virq(KVMState *s, int virq) | 
|  | { | 
|  | struct kvm_irq_routing_entry *e; | 
|  | int i; | 
|  |  | 
|  | if (kvm_gsi_direct_mapping()) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < s->irq_routes->nr; i++) { | 
|  | e = &s->irq_routes->entries[i]; | 
|  | if (e->gsi == virq) { | 
|  | s->irq_routes->nr--; | 
|  | *e = s->irq_routes->entries[s->irq_routes->nr]; | 
|  | } | 
|  | } | 
|  | clear_gsi(s, virq); | 
|  | kvm_arch_release_virq_post(virq); | 
|  | trace_kvm_irqchip_release_virq(virq); | 
|  | } | 
|  |  | 
|  | void kvm_irqchip_add_change_notifier(Notifier *n) | 
|  | { | 
|  | notifier_list_add(&kvm_irqchip_change_notifiers, n); | 
|  | } | 
|  |  | 
|  | void kvm_irqchip_remove_change_notifier(Notifier *n) | 
|  | { | 
|  | notifier_remove(n); | 
|  | } | 
|  |  | 
|  | void kvm_irqchip_change_notify(void) | 
|  | { | 
|  | notifier_list_notify(&kvm_irqchip_change_notifiers, NULL); | 
|  | } | 
|  |  | 
|  | static int kvm_irqchip_get_virq(KVMState *s) | 
|  | { | 
|  | int next_virq; | 
|  |  | 
|  | /* Return the lowest unused GSI in the bitmap */ | 
|  | next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count); | 
|  | if (next_virq >= s->gsi_count) { | 
|  | return -ENOSPC; | 
|  | } else { | 
|  | return next_virq; | 
|  | } | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | 
|  | { | 
|  | struct kvm_msi msi; | 
|  |  | 
|  | msi.address_lo = (uint32_t)msg.address; | 
|  | msi.address_hi = msg.address >> 32; | 
|  | msi.data = le32_to_cpu(msg.data); | 
|  | msi.flags = 0; | 
|  | memset(msi.pad, 0, sizeof(msi.pad)); | 
|  |  | 
|  | return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) | 
|  | { | 
|  | struct kvm_irq_routing_entry kroute = {}; | 
|  | int virq; | 
|  | KVMState *s = c->s; | 
|  | MSIMessage msg = {0, 0}; | 
|  |  | 
|  | if (pci_available && dev) { | 
|  | msg = pci_get_msi_message(dev, vector); | 
|  | } | 
|  |  | 
|  | if (kvm_gsi_direct_mapping()) { | 
|  | return kvm_arch_msi_data_to_gsi(msg.data); | 
|  | } | 
|  |  | 
|  | if (!kvm_gsi_routing_enabled()) { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | virq = kvm_irqchip_get_virq(s); | 
|  | if (virq < 0) { | 
|  | return virq; | 
|  | } | 
|  |  | 
|  | kroute.gsi = virq; | 
|  | kroute.type = KVM_IRQ_ROUTING_MSI; | 
|  | kroute.flags = 0; | 
|  | kroute.u.msi.address_lo = (uint32_t)msg.address; | 
|  | kroute.u.msi.address_hi = msg.address >> 32; | 
|  | kroute.u.msi.data = le32_to_cpu(msg.data); | 
|  | if (pci_available && kvm_msi_devid_required()) { | 
|  | kroute.flags = KVM_MSI_VALID_DEVID; | 
|  | kroute.u.msi.devid = pci_requester_id(dev); | 
|  | } | 
|  | if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { | 
|  | kvm_irqchip_release_virq(s, virq); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A", | 
|  | vector, virq); | 
|  |  | 
|  | kvm_add_routing_entry(s, &kroute); | 
|  | kvm_arch_add_msi_route_post(&kroute, vector, dev); | 
|  | c->changes++; | 
|  |  | 
|  | return virq; | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg, | 
|  | PCIDevice *dev) | 
|  | { | 
|  | struct kvm_irq_routing_entry kroute = {}; | 
|  |  | 
|  | if (kvm_gsi_direct_mapping()) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!kvm_irqchip_in_kernel()) { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | kroute.gsi = virq; | 
|  | kroute.type = KVM_IRQ_ROUTING_MSI; | 
|  | kroute.flags = 0; | 
|  | kroute.u.msi.address_lo = (uint32_t)msg.address; | 
|  | kroute.u.msi.address_hi = msg.address >> 32; | 
|  | kroute.u.msi.data = le32_to_cpu(msg.data); | 
|  | if (pci_available && kvm_msi_devid_required()) { | 
|  | kroute.flags = KVM_MSI_VALID_DEVID; | 
|  | kroute.u.msi.devid = pci_requester_id(dev); | 
|  | } | 
|  | if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | trace_kvm_irqchip_update_msi_route(virq); | 
|  |  | 
|  | return kvm_update_routing_entry(s, &kroute); | 
|  | } | 
|  |  | 
|  | static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, | 
|  | EventNotifier *resample, int virq, | 
|  | bool assign) | 
|  | { | 
|  | int fd = event_notifier_get_fd(event); | 
|  | int rfd = resample ? event_notifier_get_fd(resample) : -1; | 
|  |  | 
|  | struct kvm_irqfd irqfd = { | 
|  | .fd = fd, | 
|  | .gsi = virq, | 
|  | .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, | 
|  | }; | 
|  |  | 
|  | if (rfd != -1) { | 
|  | assert(assign); | 
|  | if (kvm_irqchip_is_split()) { | 
|  | /* | 
|  | * When the slow irqchip (e.g. IOAPIC) is in the | 
|  | * userspace, KVM kernel resamplefd will not work because | 
|  | * the EOI of the interrupt will be delivered to userspace | 
|  | * instead, so the KVM kernel resamplefd kick will be | 
|  | * skipped.  The userspace here mimics what the kernel | 
|  | * provides with resamplefd, remember the resamplefd and | 
|  | * kick it when we receive EOI of this IRQ. | 
|  | * | 
|  | * This is hackery because IOAPIC is mostly bypassed | 
|  | * (except EOI broadcasts) when irqfd is used.  However | 
|  | * this can bring much performance back for split irqchip | 
|  | * with INTx IRQs (for VFIO, this gives 93% perf of the | 
|  | * full fast path, which is 46% perf boost comparing to | 
|  | * the INTx slow path). | 
|  | */ | 
|  | kvm_resample_fd_insert(virq, resample); | 
|  | } else { | 
|  | irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE; | 
|  | irqfd.resamplefd = rfd; | 
|  | } | 
|  | } else if (!assign) { | 
|  | if (kvm_irqchip_is_split()) { | 
|  | kvm_resample_fd_remove(virq); | 
|  | } | 
|  | } | 
|  |  | 
|  | return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) | 
|  | { | 
|  | struct kvm_irq_routing_entry kroute = {}; | 
|  | int virq; | 
|  |  | 
|  | if (!kvm_gsi_routing_enabled()) { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | virq = kvm_irqchip_get_virq(s); | 
|  | if (virq < 0) { | 
|  | return virq; | 
|  | } | 
|  |  | 
|  | kroute.gsi = virq; | 
|  | kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER; | 
|  | kroute.flags = 0; | 
|  | kroute.u.adapter.summary_addr = adapter->summary_addr; | 
|  | kroute.u.adapter.ind_addr = adapter->ind_addr; | 
|  | kroute.u.adapter.summary_offset = adapter->summary_offset; | 
|  | kroute.u.adapter.ind_offset = adapter->ind_offset; | 
|  | kroute.u.adapter.adapter_id = adapter->adapter_id; | 
|  |  | 
|  | kvm_add_routing_entry(s, &kroute); | 
|  |  | 
|  | return virq; | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) | 
|  | { | 
|  | struct kvm_irq_routing_entry kroute = {}; | 
|  | int virq; | 
|  |  | 
|  | if (!kvm_gsi_routing_enabled()) { | 
|  | return -ENOSYS; | 
|  | } | 
|  | if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) { | 
|  | return -ENOSYS; | 
|  | } | 
|  | virq = kvm_irqchip_get_virq(s); | 
|  | if (virq < 0) { | 
|  | return virq; | 
|  | } | 
|  |  | 
|  | kroute.gsi = virq; | 
|  | kroute.type = KVM_IRQ_ROUTING_HV_SINT; | 
|  | kroute.flags = 0; | 
|  | kroute.u.hv_sint.vcpu = vcpu; | 
|  | kroute.u.hv_sint.sint = sint; | 
|  |  | 
|  | kvm_add_routing_entry(s, &kroute); | 
|  | kvm_irqchip_commit_routes(s); | 
|  |  | 
|  | return virq; | 
|  | } | 
|  |  | 
|  | #else /* !KVM_CAP_IRQ_ROUTING */ | 
|  |  | 
|  | void kvm_init_irq_routing(KVMState *s) | 
|  | { | 
|  | } | 
|  |  | 
|  | void kvm_irqchip_release_virq(KVMState *s, int virq) | 
|  | { | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) | 
|  | { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_add_msi_route(KVMRouteChange *c, int vector, PCIDevice *dev) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  |  | 
|  | static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event, | 
|  | EventNotifier *resample, int virq, | 
|  | bool assign) | 
|  | { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | #endif /* !KVM_CAP_IRQ_ROUTING */ | 
|  |  | 
|  | int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, | 
|  | EventNotifier *rn, int virq) | 
|  | { | 
|  | return kvm_irqchip_assign_irqfd(s, n, rn, virq, true); | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n, | 
|  | int virq) | 
|  | { | 
|  | return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false); | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, | 
|  | EventNotifier *rn, qemu_irq irq) | 
|  | { | 
|  | gpointer key, gsi; | 
|  | gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); | 
|  |  | 
|  | if (!found) { | 
|  | return -ENXIO; | 
|  | } | 
|  | return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi)); | 
|  | } | 
|  |  | 
|  | int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, | 
|  | qemu_irq irq) | 
|  | { | 
|  | gpointer key, gsi; | 
|  | gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi); | 
|  |  | 
|  | if (!found) { | 
|  | return -ENXIO; | 
|  | } | 
|  | return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi)); | 
|  | } | 
|  |  | 
|  | void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi) | 
|  | { | 
|  | g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi)); | 
|  | } | 
|  |  | 
|  | static void kvm_irqchip_create(KVMState *s) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO); | 
|  | if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) { | 
|  | ; | 
|  | } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) { | 
|  | ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0); | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret)); | 
|  | exit(1); | 
|  | } | 
|  | } else { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (kvm_check_extension(s, KVM_CAP_IRQFD) <= 0) { | 
|  | fprintf(stderr, "kvm: irqfd not implemented\n"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | /* First probe and see if there's a arch-specific hook to create the | 
|  | * in-kernel irqchip for us */ | 
|  | ret = kvm_arch_irqchip_create(s); | 
|  | if (ret == 0) { | 
|  | if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) { | 
|  | error_report("Split IRQ chip mode not supported."); | 
|  | exit(1); | 
|  | } else { | 
|  | ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); | 
|  | } | 
|  | } | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret)); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | kvm_kernel_irqchip = true; | 
|  | /* If we have an in-kernel IRQ chip then we must have asynchronous | 
|  | * interrupt delivery (though the reverse is not necessarily true) | 
|  | */ | 
|  | kvm_async_interrupts_allowed = true; | 
|  | kvm_halt_in_kernel_allowed = true; | 
|  |  | 
|  | kvm_init_irq_routing(s); | 
|  |  | 
|  | s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal); | 
|  | } | 
|  |  | 
|  | /* Find number of supported CPUs using the recommended | 
|  | * procedure from the kernel API documentation to cope with | 
|  | * older kernels that may be missing capabilities. | 
|  | */ | 
|  | static int kvm_recommended_vcpus(KVMState *s) | 
|  | { | 
|  | int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS); | 
|  | return (ret) ? ret : 4; | 
|  | } | 
|  |  | 
|  | static int kvm_max_vcpus(KVMState *s) | 
|  | { | 
|  | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); | 
|  | return (ret) ? ret : kvm_recommended_vcpus(s); | 
|  | } | 
|  |  | 
|  | static int kvm_max_vcpu_id(KVMState *s) | 
|  | { | 
|  | int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID); | 
|  | return (ret) ? ret : kvm_max_vcpus(s); | 
|  | } | 
|  |  | 
|  | bool kvm_vcpu_id_is_valid(int vcpu_id) | 
|  | { | 
|  | KVMState *s = KVM_STATE(current_accel()); | 
|  | return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s); | 
|  | } | 
|  |  | 
|  | bool kvm_dirty_ring_enabled(void) | 
|  | { | 
|  | return kvm_state->kvm_dirty_ring_size ? true : false; | 
|  | } | 
|  |  | 
|  | static void query_stats_cb(StatsResultList **result, StatsTarget target, | 
|  | strList *names, strList *targets, Error **errp); | 
|  | static void query_stats_schemas_cb(StatsSchemaList **result, Error **errp); | 
|  |  | 
|  | uint32_t kvm_dirty_ring_size(void) | 
|  | { | 
|  | return kvm_state->kvm_dirty_ring_size; | 
|  | } | 
|  |  | 
|  | static int kvm_init(MachineState *ms) | 
|  | { | 
|  | MachineClass *mc = MACHINE_GET_CLASS(ms); | 
|  | static const char upgrade_note[] = | 
|  | "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" | 
|  | "(see http://sourceforge.net/projects/kvm).\n"; | 
|  | const struct { | 
|  | const char *name; | 
|  | int num; | 
|  | } num_cpus[] = { | 
|  | { "SMP",          ms->smp.cpus }, | 
|  | { "hotpluggable", ms->smp.max_cpus }, | 
|  | { /* end of list */ } | 
|  | }, *nc = num_cpus; | 
|  | int soft_vcpus_limit, hard_vcpus_limit; | 
|  | KVMState *s; | 
|  | const KVMCapabilityInfo *missing_cap; | 
|  | int ret; | 
|  | int type; | 
|  | uint64_t dirty_log_manual_caps; | 
|  |  | 
|  | qemu_mutex_init(&kml_slots_lock); | 
|  |  | 
|  | s = KVM_STATE(ms->accelerator); | 
|  |  | 
|  | /* | 
|  | * On systems where the kernel can support different base page | 
|  | * sizes, host page size may be different from TARGET_PAGE_SIZE, | 
|  | * even with KVM.  TARGET_PAGE_SIZE is assumed to be the minimum | 
|  | * page size for the system though. | 
|  | */ | 
|  | assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size()); | 
|  |  | 
|  | s->sigmask_len = 8; | 
|  | accel_blocker_init(); | 
|  |  | 
|  | #ifdef KVM_CAP_SET_GUEST_DEBUG | 
|  | QTAILQ_INIT(&s->kvm_sw_breakpoints); | 
|  | #endif | 
|  | QLIST_INIT(&s->kvm_parked_vcpus); | 
|  | s->fd = qemu_open_old("/dev/kvm", O_RDWR); | 
|  | if (s->fd == -1) { | 
|  | fprintf(stderr, "Could not access KVM kernel module: %m\n"); | 
|  | ret = -errno; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); | 
|  | if (ret < KVM_API_VERSION) { | 
|  | if (ret >= 0) { | 
|  | ret = -EINVAL; | 
|  | } | 
|  | fprintf(stderr, "kvm version too old\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (ret > KVM_API_VERSION) { | 
|  | ret = -EINVAL; | 
|  | fprintf(stderr, "kvm version not supported\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT); | 
|  | s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS); | 
|  |  | 
|  | /* If unspecified, use the default value */ | 
|  | if (!s->nr_slots) { | 
|  | s->nr_slots = 32; | 
|  | } | 
|  |  | 
|  | s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE); | 
|  | if (s->nr_as <= 1) { | 
|  | s->nr_as = 1; | 
|  | } | 
|  | s->as = g_new0(struct KVMAs, s->nr_as); | 
|  |  | 
|  | if (object_property_find(OBJECT(current_machine), "kvm-type")) { | 
|  | g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine), | 
|  | "kvm-type", | 
|  | &error_abort); | 
|  | type = mc->kvm_type(ms, kvm_type); | 
|  | } else if (mc->kvm_type) { | 
|  | type = mc->kvm_type(ms, NULL); | 
|  | } else { | 
|  | type = kvm_arch_get_default_type(ms); | 
|  | } | 
|  |  | 
|  | if (type < 0) { | 
|  | ret = -EINVAL; | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | do { | 
|  | ret = kvm_ioctl(s, KVM_CREATE_VM, type); | 
|  | } while (ret == -EINTR); | 
|  |  | 
|  | if (ret < 0) { | 
|  | fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret, | 
|  | strerror(-ret)); | 
|  |  | 
|  | #ifdef TARGET_S390X | 
|  | if (ret == -EINVAL) { | 
|  | fprintf(stderr, | 
|  | "Host kernel setup problem detected. Please verify:\n"); | 
|  | fprintf(stderr, "- for kernels supporting the switch_amode or" | 
|  | " user_mode parameters, whether\n"); | 
|  | fprintf(stderr, | 
|  | "  user space is running in primary address space\n"); | 
|  | fprintf(stderr, | 
|  | "- for kernels supporting the vm.allocate_pgste sysctl, " | 
|  | "whether it is enabled\n"); | 
|  | } | 
|  | #elif defined(TARGET_PPC) | 
|  | if (ret == -EINVAL) { | 
|  | fprintf(stderr, | 
|  | "PPC KVM module is not loaded. Try modprobe kvm_%s.\n", | 
|  | (type == 2) ? "pr" : "hv"); | 
|  | } | 
|  | #endif | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | s->vmfd = ret; | 
|  |  | 
|  | /* check the vcpu limits */ | 
|  | soft_vcpus_limit = kvm_recommended_vcpus(s); | 
|  | hard_vcpus_limit = kvm_max_vcpus(s); | 
|  |  | 
|  | while (nc->name) { | 
|  | if (nc->num > soft_vcpus_limit) { | 
|  | warn_report("Number of %s cpus requested (%d) exceeds " | 
|  | "the recommended cpus supported by KVM (%d)", | 
|  | nc->name, nc->num, soft_vcpus_limit); | 
|  |  | 
|  | if (nc->num > hard_vcpus_limit) { | 
|  | fprintf(stderr, "Number of %s cpus requested (%d) exceeds " | 
|  | "the maximum cpus supported by KVM (%d)\n", | 
|  | nc->name, nc->num, hard_vcpus_limit); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  | nc++; | 
|  | } | 
|  |  | 
|  | missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); | 
|  | if (!missing_cap) { | 
|  | missing_cap = | 
|  | kvm_check_extension_list(s, kvm_arch_required_capabilities); | 
|  | } | 
|  | if (missing_cap) { | 
|  | ret = -EINVAL; | 
|  | fprintf(stderr, "kvm does not support %s\n%s", | 
|  | missing_cap->name, upgrade_note); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); | 
|  | s->coalesced_pio = s->coalesced_mmio && | 
|  | kvm_check_extension(s, KVM_CAP_COALESCED_PIO); | 
|  |  | 
|  | /* | 
|  | * Enable KVM dirty ring if supported, otherwise fall back to | 
|  | * dirty logging mode | 
|  | */ | 
|  | ret = kvm_dirty_ring_init(s); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 is not needed when dirty ring is | 
|  | * enabled.  More importantly, KVM_DIRTY_LOG_INITIALLY_SET will assume no | 
|  | * page is wr-protected initially, which is against how kvm dirty ring is | 
|  | * usage - kvm dirty ring requires all pages are wr-protected at the very | 
|  | * beginning.  Enabling this feature for dirty ring causes data corruption. | 
|  | * | 
|  | * TODO: Without KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 and kvm clear dirty log, | 
|  | * we may expect a higher stall time when starting the migration.  In the | 
|  | * future we can enable KVM_CLEAR_DIRTY_LOG to work with dirty ring too: | 
|  | * instead of clearing dirty bit, it can be a way to explicitly wr-protect | 
|  | * guest pages. | 
|  | */ | 
|  | if (!s->kvm_dirty_ring_size) { | 
|  | dirty_log_manual_caps = | 
|  | kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2); | 
|  | dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | | 
|  | KVM_DIRTY_LOG_INITIALLY_SET); | 
|  | s->manual_dirty_log_protect = dirty_log_manual_caps; | 
|  | if (dirty_log_manual_caps) { | 
|  | ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0, | 
|  | dirty_log_manual_caps); | 
|  | if (ret) { | 
|  | warn_report("Trying to enable capability %"PRIu64" of " | 
|  | "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. " | 
|  | "Falling back to the legacy mode. ", | 
|  | dirty_log_manual_caps); | 
|  | s->manual_dirty_log_protect = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef KVM_CAP_VCPU_EVENTS | 
|  | s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); | 
|  | #endif | 
|  | s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE); | 
|  |  | 
|  | s->irq_set_ioctl = KVM_IRQ_LINE; | 
|  | if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { | 
|  | s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; | 
|  | } | 
|  |  | 
|  | kvm_readonly_mem_allowed = | 
|  | (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0); | 
|  |  | 
|  | kvm_resamplefds_allowed = | 
|  | (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0); | 
|  |  | 
|  | kvm_vm_attributes_allowed = | 
|  | (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0); | 
|  |  | 
|  | #ifdef KVM_CAP_SET_GUEST_DEBUG | 
|  | kvm_has_guest_debug = | 
|  | (kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG) > 0); | 
|  | #endif | 
|  |  | 
|  | kvm_sstep_flags = 0; | 
|  | if (kvm_has_guest_debug) { | 
|  | kvm_sstep_flags = SSTEP_ENABLE; | 
|  |  | 
|  | #if defined KVM_CAP_SET_GUEST_DEBUG2 | 
|  | int guest_debug_flags = | 
|  | kvm_check_extension(s, KVM_CAP_SET_GUEST_DEBUG2); | 
|  |  | 
|  | if (guest_debug_flags & KVM_GUESTDBG_BLOCKIRQ) { | 
|  | kvm_sstep_flags |= SSTEP_NOIRQ; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | kvm_state = s; | 
|  |  | 
|  | ret = kvm_arch_init(ms, s); | 
|  | if (ret < 0) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) { | 
|  | s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF; | 
|  | } | 
|  |  | 
|  | qemu_register_reset(kvm_unpoison_all, NULL); | 
|  |  | 
|  | if (s->kernel_irqchip_allowed) { | 
|  | kvm_irqchip_create(s); | 
|  | } | 
|  |  | 
|  | s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add; | 
|  | s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del; | 
|  | s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region; | 
|  | s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region; | 
|  |  | 
|  | kvm_memory_listener_register(s, &s->memory_listener, | 
|  | &address_space_memory, 0, "kvm-memory"); | 
|  | memory_listener_register(&kvm_io_listener, | 
|  | &address_space_io); | 
|  |  | 
|  | s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); | 
|  | if (!s->sync_mmu) { | 
|  | ret = ram_block_discard_disable(true); | 
|  | assert(!ret); | 
|  | } | 
|  |  | 
|  | if (s->kvm_dirty_ring_size) { | 
|  | kvm_dirty_ring_reaper_init(s); | 
|  | } | 
|  |  | 
|  | if (kvm_check_extension(kvm_state, KVM_CAP_BINARY_STATS_FD)) { | 
|  | add_stats_callbacks(STATS_PROVIDER_KVM, query_stats_cb, | 
|  | query_stats_schemas_cb); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | assert(ret < 0); | 
|  | if (s->vmfd >= 0) { | 
|  | close(s->vmfd); | 
|  | } | 
|  | if (s->fd != -1) { | 
|  | close(s->fd); | 
|  | } | 
|  | g_free(s->as); | 
|  | g_free(s->memory_listener.slots); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len) | 
|  | { | 
|  | s->sigmask_len = sigmask_len; | 
|  | } | 
|  |  | 
|  | static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction, | 
|  | int size, uint32_t count) | 
|  | { | 
|  | int i; | 
|  | uint8_t *ptr = data; | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | address_space_rw(&address_space_io, port, attrs, | 
|  | ptr, size, | 
|  | direction == KVM_EXIT_IO_OUT); | 
|  | ptr += size; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | fprintf(stderr, "KVM internal error. Suberror: %d\n", | 
|  | run->internal.suberror); | 
|  |  | 
|  | for (i = 0; i < run->internal.ndata; ++i) { | 
|  | fprintf(stderr, "extra data[%d]: 0x%016"PRIx64"\n", | 
|  | i, (uint64_t)run->internal.data[i]); | 
|  | } | 
|  | if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { | 
|  | fprintf(stderr, "emulation failure\n"); | 
|  | if (!kvm_arch_stop_on_emulation_error(cpu)) { | 
|  | cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); | 
|  | return EXCP_INTERRUPT; | 
|  | } | 
|  | } | 
|  | /* FIXME: Should trigger a qmp message to let management know | 
|  | * something went wrong. | 
|  | */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | void kvm_flush_coalesced_mmio_buffer(void) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  |  | 
|  | if (!s || s->coalesced_flush_in_progress) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | s->coalesced_flush_in_progress = true; | 
|  |  | 
|  | if (s->coalesced_mmio_ring) { | 
|  | struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; | 
|  | while (ring->first != ring->last) { | 
|  | struct kvm_coalesced_mmio *ent; | 
|  |  | 
|  | ent = &ring->coalesced_mmio[ring->first]; | 
|  |  | 
|  | if (ent->pio == 1) { | 
|  | address_space_write(&address_space_io, ent->phys_addr, | 
|  | MEMTXATTRS_UNSPECIFIED, ent->data, | 
|  | ent->len); | 
|  | } else { | 
|  | cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); | 
|  | } | 
|  | smp_wmb(); | 
|  | ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; | 
|  | } | 
|  | } | 
|  |  | 
|  | s->coalesced_flush_in_progress = false; | 
|  | } | 
|  |  | 
|  | bool kvm_cpu_check_are_resettable(void) | 
|  | { | 
|  | return kvm_arch_cpu_check_are_resettable(); | 
|  | } | 
|  |  | 
|  | static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) | 
|  | { | 
|  | if (!cpu->vcpu_dirty) { | 
|  | int ret = kvm_arch_get_registers(cpu); | 
|  | if (ret) { | 
|  | error_report("Failed to get registers: %s", strerror(-ret)); | 
|  | cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); | 
|  | vm_stop(RUN_STATE_INTERNAL_ERROR); | 
|  | } | 
|  |  | 
|  | cpu->vcpu_dirty = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_cpu_synchronize_state(CPUState *cpu) | 
|  | { | 
|  | if (!cpu->vcpu_dirty) { | 
|  | run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg) | 
|  | { | 
|  | int ret = kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); | 
|  | if (ret) { | 
|  | error_report("Failed to put registers after reset: %s", strerror(-ret)); | 
|  | cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); | 
|  | vm_stop(RUN_STATE_INTERNAL_ERROR); | 
|  | } | 
|  |  | 
|  | cpu->vcpu_dirty = false; | 
|  | } | 
|  |  | 
|  | void kvm_cpu_synchronize_post_reset(CPUState *cpu) | 
|  | { | 
|  | run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); | 
|  | } | 
|  |  | 
|  | static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) | 
|  | { | 
|  | int ret = kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); | 
|  | if (ret) { | 
|  | error_report("Failed to put registers after init: %s", strerror(-ret)); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | cpu->vcpu_dirty = false; | 
|  | } | 
|  |  | 
|  | void kvm_cpu_synchronize_post_init(CPUState *cpu) | 
|  | { | 
|  | run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL); | 
|  | } | 
|  |  | 
|  | static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) | 
|  | { | 
|  | cpu->vcpu_dirty = true; | 
|  | } | 
|  |  | 
|  | void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu) | 
|  | { | 
|  | run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); | 
|  | } | 
|  |  | 
|  | #ifdef KVM_HAVE_MCE_INJECTION | 
|  | static __thread void *pending_sigbus_addr; | 
|  | static __thread int pending_sigbus_code; | 
|  | static __thread bool have_sigbus_pending; | 
|  | #endif | 
|  |  | 
|  | static void kvm_cpu_kick(CPUState *cpu) | 
|  | { | 
|  | qatomic_set(&cpu->kvm_run->immediate_exit, 1); | 
|  | } | 
|  |  | 
|  | static void kvm_cpu_kick_self(void) | 
|  | { | 
|  | if (kvm_immediate_exit) { | 
|  | kvm_cpu_kick(current_cpu); | 
|  | } else { | 
|  | qemu_cpu_kick_self(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void kvm_eat_signals(CPUState *cpu) | 
|  | { | 
|  | struct timespec ts = { 0, 0 }; | 
|  | siginfo_t siginfo; | 
|  | sigset_t waitset; | 
|  | sigset_t chkset; | 
|  | int r; | 
|  |  | 
|  | if (kvm_immediate_exit) { | 
|  | qatomic_set(&cpu->kvm_run->immediate_exit, 0); | 
|  | /* Write kvm_run->immediate_exit before the cpu->exit_request | 
|  | * write in kvm_cpu_exec. | 
|  | */ | 
|  | smp_wmb(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sigemptyset(&waitset); | 
|  | sigaddset(&waitset, SIG_IPI); | 
|  |  | 
|  | do { | 
|  | r = sigtimedwait(&waitset, &siginfo, &ts); | 
|  | if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { | 
|  | perror("sigtimedwait"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | r = sigpending(&chkset); | 
|  | if (r == -1) { | 
|  | perror("sigpending"); | 
|  | exit(1); | 
|  | } | 
|  | } while (sigismember(&chkset, SIG_IPI)); | 
|  | } | 
|  |  | 
|  | int kvm_cpu_exec(CPUState *cpu) | 
|  | { | 
|  | struct kvm_run *run = cpu->kvm_run; | 
|  | int ret, run_ret; | 
|  |  | 
|  | DPRINTF("kvm_cpu_exec()\n"); | 
|  |  | 
|  | if (kvm_arch_process_async_events(cpu)) { | 
|  | qatomic_set(&cpu->exit_request, 0); | 
|  | return EXCP_HLT; | 
|  | } | 
|  |  | 
|  | qemu_mutex_unlock_iothread(); | 
|  | cpu_exec_start(cpu); | 
|  |  | 
|  | do { | 
|  | MemTxAttrs attrs; | 
|  |  | 
|  | if (cpu->vcpu_dirty) { | 
|  | ret = kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); | 
|  | if (ret) { | 
|  | error_report("Failed to put registers after init: %s", | 
|  | strerror(-ret)); | 
|  | ret = -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | cpu->vcpu_dirty = false; | 
|  | } | 
|  |  | 
|  | kvm_arch_pre_run(cpu, run); | 
|  | if (qatomic_read(&cpu->exit_request)) { | 
|  | DPRINTF("interrupt exit requested\n"); | 
|  | /* | 
|  | * KVM requires us to reenter the kernel after IO exits to complete | 
|  | * instruction emulation. This self-signal will ensure that we | 
|  | * leave ASAP again. | 
|  | */ | 
|  | kvm_cpu_kick_self(); | 
|  | } | 
|  |  | 
|  | /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit. | 
|  | * Matching barrier in kvm_eat_signals. | 
|  | */ | 
|  | smp_rmb(); | 
|  |  | 
|  | run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); | 
|  |  | 
|  | attrs = kvm_arch_post_run(cpu, run); | 
|  |  | 
|  | #ifdef KVM_HAVE_MCE_INJECTION | 
|  | if (unlikely(have_sigbus_pending)) { | 
|  | qemu_mutex_lock_iothread(); | 
|  | kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code, | 
|  | pending_sigbus_addr); | 
|  | have_sigbus_pending = false; | 
|  | qemu_mutex_unlock_iothread(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (run_ret < 0) { | 
|  | if (run_ret == -EINTR || run_ret == -EAGAIN) { | 
|  | DPRINTF("io window exit\n"); | 
|  | kvm_eat_signals(cpu); | 
|  | ret = EXCP_INTERRUPT; | 
|  | break; | 
|  | } | 
|  | fprintf(stderr, "error: kvm run failed %s\n", | 
|  | strerror(-run_ret)); | 
|  | #ifdef TARGET_PPC | 
|  | if (run_ret == -EBUSY) { | 
|  | fprintf(stderr, | 
|  | "This is probably because your SMT is enabled.\n" | 
|  | "VCPU can only run on primary threads with all " | 
|  | "secondary threads offline.\n"); | 
|  | } | 
|  | #endif | 
|  | ret = -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); | 
|  | switch (run->exit_reason) { | 
|  | case KVM_EXIT_IO: | 
|  | DPRINTF("handle_io\n"); | 
|  | /* Called outside BQL */ | 
|  | kvm_handle_io(run->io.port, attrs, | 
|  | (uint8_t *)run + run->io.data_offset, | 
|  | run->io.direction, | 
|  | run->io.size, | 
|  | run->io.count); | 
|  | ret = 0; | 
|  | break; | 
|  | case KVM_EXIT_MMIO: | 
|  | DPRINTF("handle_mmio\n"); | 
|  | /* Called outside BQL */ | 
|  | address_space_rw(&address_space_memory, | 
|  | run->mmio.phys_addr, attrs, | 
|  | run->mmio.data, | 
|  | run->mmio.len, | 
|  | run->mmio.is_write); | 
|  | ret = 0; | 
|  | break; | 
|  | case KVM_EXIT_IRQ_WINDOW_OPEN: | 
|  | DPRINTF("irq_window_open\n"); | 
|  | ret = EXCP_INTERRUPT; | 
|  | break; | 
|  | case KVM_EXIT_SHUTDOWN: | 
|  | DPRINTF("shutdown\n"); | 
|  | qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); | 
|  | ret = EXCP_INTERRUPT; | 
|  | break; | 
|  | case KVM_EXIT_UNKNOWN: | 
|  | fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", | 
|  | (uint64_t)run->hw.hardware_exit_reason); | 
|  | ret = -1; | 
|  | break; | 
|  | case KVM_EXIT_INTERNAL_ERROR: | 
|  | ret = kvm_handle_internal_error(cpu, run); | 
|  | break; | 
|  | case KVM_EXIT_DIRTY_RING_FULL: | 
|  | /* | 
|  | * We shouldn't continue if the dirty ring of this vcpu is | 
|  | * still full.  Got kicked by KVM_RESET_DIRTY_RINGS. | 
|  | */ | 
|  | trace_kvm_dirty_ring_full(cpu->cpu_index); | 
|  | qemu_mutex_lock_iothread(); | 
|  | /* | 
|  | * We throttle vCPU by making it sleep once it exit from kernel | 
|  | * due to dirty ring full. In the dirtylimit scenario, reaping | 
|  | * all vCPUs after a single vCPU dirty ring get full result in | 
|  | * the miss of sleep, so just reap the ring-fulled vCPU. | 
|  | */ | 
|  | if (dirtylimit_in_service()) { | 
|  | kvm_dirty_ring_reap(kvm_state, cpu); | 
|  | } else { | 
|  | kvm_dirty_ring_reap(kvm_state, NULL); | 
|  | } | 
|  | qemu_mutex_unlock_iothread(); | 
|  | dirtylimit_vcpu_execute(cpu); | 
|  | ret = 0; | 
|  | break; | 
|  | case KVM_EXIT_SYSTEM_EVENT: | 
|  | switch (run->system_event.type) { | 
|  | case KVM_SYSTEM_EVENT_SHUTDOWN: | 
|  | qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); | 
|  | ret = EXCP_INTERRUPT; | 
|  | break; | 
|  | case KVM_SYSTEM_EVENT_RESET: | 
|  | qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); | 
|  | ret = EXCP_INTERRUPT; | 
|  | break; | 
|  | case KVM_SYSTEM_EVENT_CRASH: | 
|  | kvm_cpu_synchronize_state(cpu); | 
|  | qemu_mutex_lock_iothread(); | 
|  | qemu_system_guest_panicked(cpu_get_crash_info(cpu)); | 
|  | qemu_mutex_unlock_iothread(); | 
|  | ret = 0; | 
|  | break; | 
|  | default: | 
|  | DPRINTF("kvm_arch_handle_exit\n"); | 
|  | ret = kvm_arch_handle_exit(cpu, run); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | DPRINTF("kvm_arch_handle_exit\n"); | 
|  | ret = kvm_arch_handle_exit(cpu, run); | 
|  | break; | 
|  | } | 
|  | } while (ret == 0); | 
|  |  | 
|  | cpu_exec_end(cpu); | 
|  | qemu_mutex_lock_iothread(); | 
|  |  | 
|  | if (ret < 0) { | 
|  | cpu_dump_state(cpu, stderr, CPU_DUMP_CODE); | 
|  | vm_stop(RUN_STATE_INTERNAL_ERROR); | 
|  | } | 
|  |  | 
|  | qatomic_set(&cpu->exit_request, 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_ioctl(KVMState *s, int type, ...) | 
|  | { | 
|  | int ret; | 
|  | void *arg; | 
|  | va_list ap; | 
|  |  | 
|  | va_start(ap, type); | 
|  | arg = va_arg(ap, void *); | 
|  | va_end(ap); | 
|  |  | 
|  | trace_kvm_ioctl(type, arg); | 
|  | ret = ioctl(s->fd, type, arg); | 
|  | if (ret == -1) { | 
|  | ret = -errno; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_vm_ioctl(KVMState *s, int type, ...) | 
|  | { | 
|  | int ret; | 
|  | void *arg; | 
|  | va_list ap; | 
|  |  | 
|  | va_start(ap, type); | 
|  | arg = va_arg(ap, void *); | 
|  | va_end(ap); | 
|  |  | 
|  | trace_kvm_vm_ioctl(type, arg); | 
|  | accel_ioctl_begin(); | 
|  | ret = ioctl(s->vmfd, type, arg); | 
|  | accel_ioctl_end(); | 
|  | if (ret == -1) { | 
|  | ret = -errno; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) | 
|  | { | 
|  | int ret; | 
|  | void *arg; | 
|  | va_list ap; | 
|  |  | 
|  | va_start(ap, type); | 
|  | arg = va_arg(ap, void *); | 
|  | va_end(ap); | 
|  |  | 
|  | trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); | 
|  | accel_cpu_ioctl_begin(cpu); | 
|  | ret = ioctl(cpu->kvm_fd, type, arg); | 
|  | accel_cpu_ioctl_end(cpu); | 
|  | if (ret == -1) { | 
|  | ret = -errno; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_device_ioctl(int fd, int type, ...) | 
|  | { | 
|  | int ret; | 
|  | void *arg; | 
|  | va_list ap; | 
|  |  | 
|  | va_start(ap, type); | 
|  | arg = va_arg(ap, void *); | 
|  | va_end(ap); | 
|  |  | 
|  | trace_kvm_device_ioctl(fd, type, arg); | 
|  | accel_ioctl_begin(); | 
|  | ret = ioctl(fd, type, arg); | 
|  | accel_ioctl_end(); | 
|  | if (ret == -1) { | 
|  | ret = -errno; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr) | 
|  | { | 
|  | int ret; | 
|  | struct kvm_device_attr attribute = { | 
|  | .group = group, | 
|  | .attr = attr, | 
|  | }; | 
|  |  | 
|  | if (!kvm_vm_attributes_allowed) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute); | 
|  | /* kvm returns 0 on success for HAS_DEVICE_ATTR */ | 
|  | return ret ? 0 : 1; | 
|  | } | 
|  |  | 
|  | int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr) | 
|  | { | 
|  | struct kvm_device_attr attribute = { | 
|  | .group = group, | 
|  | .attr = attr, | 
|  | .flags = 0, | 
|  | }; | 
|  |  | 
|  | return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1; | 
|  | } | 
|  |  | 
|  | int kvm_device_access(int fd, int group, uint64_t attr, | 
|  | void *val, bool write, Error **errp) | 
|  | { | 
|  | struct kvm_device_attr kvmattr; | 
|  | int err; | 
|  |  | 
|  | kvmattr.flags = 0; | 
|  | kvmattr.group = group; | 
|  | kvmattr.attr = attr; | 
|  | kvmattr.addr = (uintptr_t)val; | 
|  |  | 
|  | err = kvm_device_ioctl(fd, | 
|  | write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR, | 
|  | &kvmattr); | 
|  | if (err < 0) { | 
|  | error_setg_errno(errp, -err, | 
|  | "KVM_%s_DEVICE_ATTR failed: Group %d " | 
|  | "attr 0x%016" PRIx64, | 
|  | write ? "SET" : "GET", group, attr); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | bool kvm_has_sync_mmu(void) | 
|  | { | 
|  | return kvm_state->sync_mmu; | 
|  | } | 
|  |  | 
|  | int kvm_has_vcpu_events(void) | 
|  | { | 
|  | return kvm_state->vcpu_events; | 
|  | } | 
|  |  | 
|  | int kvm_max_nested_state_length(void) | 
|  | { | 
|  | return kvm_state->max_nested_state_len; | 
|  | } | 
|  |  | 
|  | int kvm_has_gsi_routing(void) | 
|  | { | 
|  | #ifdef KVM_CAP_IRQ_ROUTING | 
|  | return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool kvm_arm_supports_user_irq(void) | 
|  | { | 
|  | return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ); | 
|  | } | 
|  |  | 
|  | #ifdef KVM_CAP_SET_GUEST_DEBUG | 
|  | struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, vaddr pc) | 
|  | { | 
|  | struct kvm_sw_breakpoint *bp; | 
|  |  | 
|  | QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { | 
|  | if (bp->pc == pc) { | 
|  | return bp; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int kvm_sw_breakpoints_active(CPUState *cpu) | 
|  | { | 
|  | return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); | 
|  | } | 
|  |  | 
|  | struct kvm_set_guest_debug_data { | 
|  | struct kvm_guest_debug dbg; | 
|  | int err; | 
|  | }; | 
|  |  | 
|  | static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data) | 
|  | { | 
|  | struct kvm_set_guest_debug_data *dbg_data = | 
|  | (struct kvm_set_guest_debug_data *) data.host_ptr; | 
|  |  | 
|  | dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG, | 
|  | &dbg_data->dbg); | 
|  | } | 
|  |  | 
|  | int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap) | 
|  | { | 
|  | struct kvm_set_guest_debug_data data; | 
|  |  | 
|  | data.dbg.control = reinject_trap; | 
|  |  | 
|  | if (cpu->singlestep_enabled) { | 
|  | data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; | 
|  |  | 
|  | if (cpu->singlestep_enabled & SSTEP_NOIRQ) { | 
|  | data.dbg.control |= KVM_GUESTDBG_BLOCKIRQ; | 
|  | } | 
|  | } | 
|  | kvm_arch_update_guest_debug(cpu, &data.dbg); | 
|  |  | 
|  | run_on_cpu(cpu, kvm_invoke_set_guest_debug, | 
|  | RUN_ON_CPU_HOST_PTR(&data)); | 
|  | return data.err; | 
|  | } | 
|  |  | 
|  | bool kvm_supports_guest_debug(void) | 
|  | { | 
|  | /* probed during kvm_init() */ | 
|  | return kvm_has_guest_debug; | 
|  | } | 
|  |  | 
|  | int kvm_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) | 
|  | { | 
|  | struct kvm_sw_breakpoint *bp; | 
|  | int err; | 
|  |  | 
|  | if (type == GDB_BREAKPOINT_SW) { | 
|  | bp = kvm_find_sw_breakpoint(cpu, addr); | 
|  | if (bp) { | 
|  | bp->use_count++; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bp = g_new(struct kvm_sw_breakpoint, 1); | 
|  | bp->pc = addr; | 
|  | bp->use_count = 1; | 
|  | err = kvm_arch_insert_sw_breakpoint(cpu, bp); | 
|  | if (err) { | 
|  | g_free(bp); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); | 
|  | } else { | 
|  | err = kvm_arch_insert_hw_breakpoint(addr, len, type); | 
|  | if (err) { | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | CPU_FOREACH(cpu) { | 
|  | err = kvm_update_guest_debug(cpu, 0); | 
|  | if (err) { | 
|  | return err; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int kvm_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len) | 
|  | { | 
|  | struct kvm_sw_breakpoint *bp; | 
|  | int err; | 
|  |  | 
|  | if (type == GDB_BREAKPOINT_SW) { | 
|  | bp = kvm_find_sw_breakpoint(cpu, addr); | 
|  | if (!bp) { | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | if (bp->use_count > 1) { | 
|  | bp->use_count--; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | err = kvm_arch_remove_sw_breakpoint(cpu, bp); | 
|  | if (err) { | 
|  | return err; | 
|  | } | 
|  |  | 
|  | QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry); | 
|  | g_free(bp); | 
|  | } else { | 
|  | err = kvm_arch_remove_hw_breakpoint(addr, len, type); | 
|  | if (err) { | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | CPU_FOREACH(cpu) { | 
|  | err = kvm_update_guest_debug(cpu, 0); | 
|  | if (err) { | 
|  | return err; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void kvm_remove_all_breakpoints(CPUState *cpu) | 
|  | { | 
|  | struct kvm_sw_breakpoint *bp, *next; | 
|  | KVMState *s = cpu->kvm_state; | 
|  | CPUState *tmpcpu; | 
|  |  | 
|  | QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { | 
|  | if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) { | 
|  | /* Try harder to find a CPU that currently sees the breakpoint. */ | 
|  | CPU_FOREACH(tmpcpu) { | 
|  | if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); | 
|  | g_free(bp); | 
|  | } | 
|  | kvm_arch_remove_all_hw_breakpoints(); | 
|  |  | 
|  | CPU_FOREACH(cpu) { | 
|  | kvm_update_guest_debug(cpu, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* !KVM_CAP_SET_GUEST_DEBUG */ | 
|  |  | 
|  | static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | struct kvm_signal_mask *sigmask; | 
|  | int r; | 
|  |  | 
|  | sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); | 
|  |  | 
|  | sigmask->len = s->sigmask_len; | 
|  | memcpy(sigmask->sigset, sigset, sizeof(*sigset)); | 
|  | r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); | 
|  | g_free(sigmask); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void kvm_ipi_signal(int sig) | 
|  | { | 
|  | if (current_cpu) { | 
|  | assert(kvm_immediate_exit); | 
|  | kvm_cpu_kick(current_cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | void kvm_init_cpu_signals(CPUState *cpu) | 
|  | { | 
|  | int r; | 
|  | sigset_t set; | 
|  | struct sigaction sigact; | 
|  |  | 
|  | memset(&sigact, 0, sizeof(sigact)); | 
|  | sigact.sa_handler = kvm_ipi_signal; | 
|  | sigaction(SIG_IPI, &sigact, NULL); | 
|  |  | 
|  | pthread_sigmask(SIG_BLOCK, NULL, &set); | 
|  | #if defined KVM_HAVE_MCE_INJECTION | 
|  | sigdelset(&set, SIGBUS); | 
|  | pthread_sigmask(SIG_SETMASK, &set, NULL); | 
|  | #endif | 
|  | sigdelset(&set, SIG_IPI); | 
|  | if (kvm_immediate_exit) { | 
|  | r = pthread_sigmask(SIG_SETMASK, &set, NULL); | 
|  | } else { | 
|  | r = kvm_set_signal_mask(cpu, &set); | 
|  | } | 
|  | if (r) { | 
|  | fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Called asynchronously in VCPU thread.  */ | 
|  | int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) | 
|  | { | 
|  | #ifdef KVM_HAVE_MCE_INJECTION | 
|  | if (have_sigbus_pending) { | 
|  | return 1; | 
|  | } | 
|  | have_sigbus_pending = true; | 
|  | pending_sigbus_addr = addr; | 
|  | pending_sigbus_code = code; | 
|  | qatomic_set(&cpu->exit_request, 1); | 
|  | return 0; | 
|  | #else | 
|  | return 1; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Called synchronously (via signalfd) in main thread.  */ | 
|  | int kvm_on_sigbus(int code, void *addr) | 
|  | { | 
|  | #ifdef KVM_HAVE_MCE_INJECTION | 
|  | /* Action required MCE kills the process if SIGBUS is blocked.  Because | 
|  | * that's what happens in the I/O thread, where we handle MCE via signalfd, | 
|  | * we can only get action optional here. | 
|  | */ | 
|  | assert(code != BUS_MCEERR_AR); | 
|  | kvm_arch_on_sigbus_vcpu(first_cpu, code, addr); | 
|  | return 0; | 
|  | #else | 
|  | return 1; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int kvm_create_device(KVMState *s, uint64_t type, bool test) | 
|  | { | 
|  | int ret; | 
|  | struct kvm_create_device create_dev; | 
|  |  | 
|  | create_dev.type = type; | 
|  | create_dev.fd = -1; | 
|  | create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0; | 
|  |  | 
|  | if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) { | 
|  | return -ENOTSUP; | 
|  | } | 
|  |  | 
|  | ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return test ? 0 : create_dev.fd; | 
|  | } | 
|  |  | 
|  | bool kvm_device_supported(int vmfd, uint64_t type) | 
|  | { | 
|  | struct kvm_create_device create_dev = { | 
|  | .type = type, | 
|  | .fd = -1, | 
|  | .flags = KVM_CREATE_DEVICE_TEST, | 
|  | }; | 
|  |  | 
|  | if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0); | 
|  | } | 
|  |  | 
|  | int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source) | 
|  | { | 
|  | struct kvm_one_reg reg; | 
|  | int r; | 
|  |  | 
|  | reg.id = id; | 
|  | reg.addr = (uintptr_t) source; | 
|  | r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®); | 
|  | if (r) { | 
|  | trace_kvm_failed_reg_set(id, strerror(-r)); | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target) | 
|  | { | 
|  | struct kvm_one_reg reg; | 
|  | int r; | 
|  |  | 
|  | reg.id = id; | 
|  | reg.addr = (uintptr_t) target; | 
|  | r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®); | 
|  | if (r) { | 
|  | trace_kvm_failed_reg_get(id, strerror(-r)); | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as, | 
|  | hwaddr start_addr, hwaddr size) | 
|  | { | 
|  | KVMState *kvm = KVM_STATE(ms->accelerator); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < kvm->nr_as; ++i) { | 
|  | if (kvm->as[i].as == as && kvm->as[i].ml) { | 
|  | size = MIN(kvm_max_slot_size, size); | 
|  | return NULL != kvm_lookup_matching_slot(kvm->as[i].ml, | 
|  | start_addr, size); | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v, | 
|  | const char *name, void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | KVMState *s = KVM_STATE(obj); | 
|  | int64_t value = s->kvm_shadow_mem; | 
|  |  | 
|  | visit_type_int(v, name, &value, errp); | 
|  | } | 
|  |  | 
|  | static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v, | 
|  | const char *name, void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | KVMState *s = KVM_STATE(obj); | 
|  | int64_t value; | 
|  |  | 
|  | if (s->fd != -1) { | 
|  | error_setg(errp, "Cannot set properties after the accelerator has been initialized"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!visit_type_int(v, name, &value, errp)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | s->kvm_shadow_mem = value; | 
|  | } | 
|  |  | 
|  | static void kvm_set_kernel_irqchip(Object *obj, Visitor *v, | 
|  | const char *name, void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | KVMState *s = KVM_STATE(obj); | 
|  | OnOffSplit mode; | 
|  |  | 
|  | if (s->fd != -1) { | 
|  | error_setg(errp, "Cannot set properties after the accelerator has been initialized"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!visit_type_OnOffSplit(v, name, &mode, errp)) { | 
|  | return; | 
|  | } | 
|  | switch (mode) { | 
|  | case ON_OFF_SPLIT_ON: | 
|  | s->kernel_irqchip_allowed = true; | 
|  | s->kernel_irqchip_required = true; | 
|  | s->kernel_irqchip_split = ON_OFF_AUTO_OFF; | 
|  | break; | 
|  | case ON_OFF_SPLIT_OFF: | 
|  | s->kernel_irqchip_allowed = false; | 
|  | s->kernel_irqchip_required = false; | 
|  | s->kernel_irqchip_split = ON_OFF_AUTO_OFF; | 
|  | break; | 
|  | case ON_OFF_SPLIT_SPLIT: | 
|  | s->kernel_irqchip_allowed = true; | 
|  | s->kernel_irqchip_required = true; | 
|  | s->kernel_irqchip_split = ON_OFF_AUTO_ON; | 
|  | break; | 
|  | default: | 
|  | /* The value was checked in visit_type_OnOffSplit() above. If | 
|  | * we get here, then something is wrong in QEMU. | 
|  | */ | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool kvm_kernel_irqchip_allowed(void) | 
|  | { | 
|  | return kvm_state->kernel_irqchip_allowed; | 
|  | } | 
|  |  | 
|  | bool kvm_kernel_irqchip_required(void) | 
|  | { | 
|  | return kvm_state->kernel_irqchip_required; | 
|  | } | 
|  |  | 
|  | bool kvm_kernel_irqchip_split(void) | 
|  | { | 
|  | return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON; | 
|  | } | 
|  |  | 
|  | static void kvm_get_dirty_ring_size(Object *obj, Visitor *v, | 
|  | const char *name, void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | KVMState *s = KVM_STATE(obj); | 
|  | uint32_t value = s->kvm_dirty_ring_size; | 
|  |  | 
|  | visit_type_uint32(v, name, &value, errp); | 
|  | } | 
|  |  | 
|  | static void kvm_set_dirty_ring_size(Object *obj, Visitor *v, | 
|  | const char *name, void *opaque, | 
|  | Error **errp) | 
|  | { | 
|  | KVMState *s = KVM_STATE(obj); | 
|  | uint32_t value; | 
|  |  | 
|  | if (s->fd != -1) { | 
|  | error_setg(errp, "Cannot set properties after the accelerator has been initialized"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!visit_type_uint32(v, name, &value, errp)) { | 
|  | return; | 
|  | } | 
|  | if (value & (value - 1)) { | 
|  | error_setg(errp, "dirty-ring-size must be a power of two."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | s->kvm_dirty_ring_size = value; | 
|  | } | 
|  |  | 
|  | static void kvm_accel_instance_init(Object *obj) | 
|  | { | 
|  | KVMState *s = KVM_STATE(obj); | 
|  |  | 
|  | s->fd = -1; | 
|  | s->vmfd = -1; | 
|  | s->kvm_shadow_mem = -1; | 
|  | s->kernel_irqchip_allowed = true; | 
|  | s->kernel_irqchip_split = ON_OFF_AUTO_AUTO; | 
|  | /* KVM dirty ring is by default off */ | 
|  | s->kvm_dirty_ring_size = 0; | 
|  | s->kvm_dirty_ring_with_bitmap = false; | 
|  | s->kvm_eager_split_size = 0; | 
|  | s->notify_vmexit = NOTIFY_VMEXIT_OPTION_RUN; | 
|  | s->notify_window = 0; | 
|  | s->xen_version = 0; | 
|  | s->xen_gnttab_max_frames = 64; | 
|  | s->xen_evtchn_max_pirq = 256; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * kvm_gdbstub_sstep_flags(): | 
|  | * | 
|  | * Returns: SSTEP_* flags that KVM supports for guest debug. The | 
|  | * support is probed during kvm_init() | 
|  | */ | 
|  | static int kvm_gdbstub_sstep_flags(void) | 
|  | { | 
|  | return kvm_sstep_flags; | 
|  | } | 
|  |  | 
|  | static void kvm_accel_class_init(ObjectClass *oc, void *data) | 
|  | { | 
|  | AccelClass *ac = ACCEL_CLASS(oc); | 
|  | ac->name = "KVM"; | 
|  | ac->init_machine = kvm_init; | 
|  | ac->has_memory = kvm_accel_has_memory; | 
|  | ac->allowed = &kvm_allowed; | 
|  | ac->gdbstub_supported_sstep_flags = kvm_gdbstub_sstep_flags; | 
|  |  | 
|  | object_class_property_add(oc, "kernel-irqchip", "on|off|split", | 
|  | NULL, kvm_set_kernel_irqchip, | 
|  | NULL, NULL); | 
|  | object_class_property_set_description(oc, "kernel-irqchip", | 
|  | "Configure KVM in-kernel irqchip"); | 
|  |  | 
|  | object_class_property_add(oc, "kvm-shadow-mem", "int", | 
|  | kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem, | 
|  | NULL, NULL); | 
|  | object_class_property_set_description(oc, "kvm-shadow-mem", | 
|  | "KVM shadow MMU size"); | 
|  |  | 
|  | object_class_property_add(oc, "dirty-ring-size", "uint32", | 
|  | kvm_get_dirty_ring_size, kvm_set_dirty_ring_size, | 
|  | NULL, NULL); | 
|  | object_class_property_set_description(oc, "dirty-ring-size", | 
|  | "Size of KVM dirty page ring buffer (default: 0, i.e. use bitmap)"); | 
|  |  | 
|  | kvm_arch_accel_class_init(oc); | 
|  | } | 
|  |  | 
|  | static const TypeInfo kvm_accel_type = { | 
|  | .name = TYPE_KVM_ACCEL, | 
|  | .parent = TYPE_ACCEL, | 
|  | .instance_init = kvm_accel_instance_init, | 
|  | .class_init = kvm_accel_class_init, | 
|  | .instance_size = sizeof(KVMState), | 
|  | }; | 
|  |  | 
|  | static void kvm_type_init(void) | 
|  | { | 
|  | type_register_static(&kvm_accel_type); | 
|  | } | 
|  |  | 
|  | type_init(kvm_type_init); | 
|  |  | 
|  | typedef struct StatsArgs { | 
|  | union StatsResultsType { | 
|  | StatsResultList **stats; | 
|  | StatsSchemaList **schema; | 
|  | } result; | 
|  | strList *names; | 
|  | Error **errp; | 
|  | } StatsArgs; | 
|  |  | 
|  | static StatsList *add_kvmstat_entry(struct kvm_stats_desc *pdesc, | 
|  | uint64_t *stats_data, | 
|  | StatsList *stats_list, | 
|  | Error **errp) | 
|  | { | 
|  |  | 
|  | Stats *stats; | 
|  | uint64List *val_list = NULL; | 
|  |  | 
|  | /* Only add stats that we understand.  */ | 
|  | switch (pdesc->flags & KVM_STATS_TYPE_MASK) { | 
|  | case KVM_STATS_TYPE_CUMULATIVE: | 
|  | case KVM_STATS_TYPE_INSTANT: | 
|  | case KVM_STATS_TYPE_PEAK: | 
|  | case KVM_STATS_TYPE_LINEAR_HIST: | 
|  | case KVM_STATS_TYPE_LOG_HIST: | 
|  | break; | 
|  | default: | 
|  | return stats_list; | 
|  | } | 
|  |  | 
|  | switch (pdesc->flags & KVM_STATS_UNIT_MASK) { | 
|  | case KVM_STATS_UNIT_NONE: | 
|  | case KVM_STATS_UNIT_BYTES: | 
|  | case KVM_STATS_UNIT_CYCLES: | 
|  | case KVM_STATS_UNIT_SECONDS: | 
|  | case KVM_STATS_UNIT_BOOLEAN: | 
|  | break; | 
|  | default: | 
|  | return stats_list; | 
|  | } | 
|  |  | 
|  | switch (pdesc->flags & KVM_STATS_BASE_MASK) { | 
|  | case KVM_STATS_BASE_POW10: | 
|  | case KVM_STATS_BASE_POW2: | 
|  | break; | 
|  | default: | 
|  | return stats_list; | 
|  | } | 
|  |  | 
|  | /* Alloc and populate data list */ | 
|  | stats = g_new0(Stats, 1); | 
|  | stats->name = g_strdup(pdesc->name); | 
|  | stats->value = g_new0(StatsValue, 1);; | 
|  |  | 
|  | if ((pdesc->flags & KVM_STATS_UNIT_MASK) == KVM_STATS_UNIT_BOOLEAN) { | 
|  | stats->value->u.boolean = *stats_data; | 
|  | stats->value->type = QTYPE_QBOOL; | 
|  | } else if (pdesc->size == 1) { | 
|  | stats->value->u.scalar = *stats_data; | 
|  | stats->value->type = QTYPE_QNUM; | 
|  | } else { | 
|  | int i; | 
|  | for (i = 0; i < pdesc->size; i++) { | 
|  | QAPI_LIST_PREPEND(val_list, stats_data[i]); | 
|  | } | 
|  | stats->value->u.list = val_list; | 
|  | stats->value->type = QTYPE_QLIST; | 
|  | } | 
|  |  | 
|  | QAPI_LIST_PREPEND(stats_list, stats); | 
|  | return stats_list; | 
|  | } | 
|  |  | 
|  | static StatsSchemaValueList *add_kvmschema_entry(struct kvm_stats_desc *pdesc, | 
|  | StatsSchemaValueList *list, | 
|  | Error **errp) | 
|  | { | 
|  | StatsSchemaValueList *schema_entry = g_new0(StatsSchemaValueList, 1); | 
|  | schema_entry->value = g_new0(StatsSchemaValue, 1); | 
|  |  | 
|  | switch (pdesc->flags & KVM_STATS_TYPE_MASK) { | 
|  | case KVM_STATS_TYPE_CUMULATIVE: | 
|  | schema_entry->value->type = STATS_TYPE_CUMULATIVE; | 
|  | break; | 
|  | case KVM_STATS_TYPE_INSTANT: | 
|  | schema_entry->value->type = STATS_TYPE_INSTANT; | 
|  | break; | 
|  | case KVM_STATS_TYPE_PEAK: | 
|  | schema_entry->value->type = STATS_TYPE_PEAK; | 
|  | break; | 
|  | case KVM_STATS_TYPE_LINEAR_HIST: | 
|  | schema_entry->value->type = STATS_TYPE_LINEAR_HISTOGRAM; | 
|  | schema_entry->value->bucket_size = pdesc->bucket_size; | 
|  | schema_entry->value->has_bucket_size = true; | 
|  | break; | 
|  | case KVM_STATS_TYPE_LOG_HIST: | 
|  | schema_entry->value->type = STATS_TYPE_LOG2_HISTOGRAM; | 
|  | break; | 
|  | default: | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | switch (pdesc->flags & KVM_STATS_UNIT_MASK) { | 
|  | case KVM_STATS_UNIT_NONE: | 
|  | break; | 
|  | case KVM_STATS_UNIT_BOOLEAN: | 
|  | schema_entry->value->has_unit = true; | 
|  | schema_entry->value->unit = STATS_UNIT_BOOLEAN; | 
|  | break; | 
|  | case KVM_STATS_UNIT_BYTES: | 
|  | schema_entry->value->has_unit = true; | 
|  | schema_entry->value->unit = STATS_UNIT_BYTES; | 
|  | break; | 
|  | case KVM_STATS_UNIT_CYCLES: | 
|  | schema_entry->value->has_unit = true; | 
|  | schema_entry->value->unit = STATS_UNIT_CYCLES; | 
|  | break; | 
|  | case KVM_STATS_UNIT_SECONDS: | 
|  | schema_entry->value->has_unit = true; | 
|  | schema_entry->value->unit = STATS_UNIT_SECONDS; | 
|  | break; | 
|  | default: | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | schema_entry->value->exponent = pdesc->exponent; | 
|  | if (pdesc->exponent) { | 
|  | switch (pdesc->flags & KVM_STATS_BASE_MASK) { | 
|  | case KVM_STATS_BASE_POW10: | 
|  | schema_entry->value->has_base = true; | 
|  | schema_entry->value->base = 10; | 
|  | break; | 
|  | case KVM_STATS_BASE_POW2: | 
|  | schema_entry->value->has_base = true; | 
|  | schema_entry->value->base = 2; | 
|  | break; | 
|  | default: | 
|  | goto exit; | 
|  | } | 
|  | } | 
|  |  | 
|  | schema_entry->value->name = g_strdup(pdesc->name); | 
|  | schema_entry->next = list; | 
|  | return schema_entry; | 
|  | exit: | 
|  | g_free(schema_entry->value); | 
|  | g_free(schema_entry); | 
|  | return list; | 
|  | } | 
|  |  | 
|  | /* Cached stats descriptors */ | 
|  | typedef struct StatsDescriptors { | 
|  | const char *ident; /* cache key, currently the StatsTarget */ | 
|  | struct kvm_stats_desc *kvm_stats_desc; | 
|  | struct kvm_stats_header kvm_stats_header; | 
|  | QTAILQ_ENTRY(StatsDescriptors) next; | 
|  | } StatsDescriptors; | 
|  |  | 
|  | static QTAILQ_HEAD(, StatsDescriptors) stats_descriptors = | 
|  | QTAILQ_HEAD_INITIALIZER(stats_descriptors); | 
|  |  | 
|  | /* | 
|  | * Return the descriptors for 'target', that either have already been read | 
|  | * or are retrieved from 'stats_fd'. | 
|  | */ | 
|  | static StatsDescriptors *find_stats_descriptors(StatsTarget target, int stats_fd, | 
|  | Error **errp) | 
|  | { | 
|  | StatsDescriptors *descriptors; | 
|  | const char *ident; | 
|  | struct kvm_stats_desc *kvm_stats_desc; | 
|  | struct kvm_stats_header *kvm_stats_header; | 
|  | size_t size_desc; | 
|  | ssize_t ret; | 
|  |  | 
|  | ident = StatsTarget_str(target); | 
|  | QTAILQ_FOREACH(descriptors, &stats_descriptors, next) { | 
|  | if (g_str_equal(descriptors->ident, ident)) { | 
|  | return descriptors; | 
|  | } | 
|  | } | 
|  |  | 
|  | descriptors = g_new0(StatsDescriptors, 1); | 
|  |  | 
|  | /* Read stats header */ | 
|  | kvm_stats_header = &descriptors->kvm_stats_header; | 
|  | ret = pread(stats_fd, kvm_stats_header, sizeof(*kvm_stats_header), 0); | 
|  | if (ret != sizeof(*kvm_stats_header)) { | 
|  | error_setg(errp, "KVM stats: failed to read stats header: " | 
|  | "expected %zu actual %zu", | 
|  | sizeof(*kvm_stats_header), ret); | 
|  | g_free(descriptors); | 
|  | return NULL; | 
|  | } | 
|  | size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; | 
|  |  | 
|  | /* Read stats descriptors */ | 
|  | kvm_stats_desc = g_malloc0_n(kvm_stats_header->num_desc, size_desc); | 
|  | ret = pread(stats_fd, kvm_stats_desc, | 
|  | size_desc * kvm_stats_header->num_desc, | 
|  | kvm_stats_header->desc_offset); | 
|  |  | 
|  | if (ret != size_desc * kvm_stats_header->num_desc) { | 
|  | error_setg(errp, "KVM stats: failed to read stats descriptors: " | 
|  | "expected %zu actual %zu", | 
|  | size_desc * kvm_stats_header->num_desc, ret); | 
|  | g_free(descriptors); | 
|  | g_free(kvm_stats_desc); | 
|  | return NULL; | 
|  | } | 
|  | descriptors->kvm_stats_desc = kvm_stats_desc; | 
|  | descriptors->ident = ident; | 
|  | QTAILQ_INSERT_TAIL(&stats_descriptors, descriptors, next); | 
|  | return descriptors; | 
|  | } | 
|  |  | 
|  | static void query_stats(StatsResultList **result, StatsTarget target, | 
|  | strList *names, int stats_fd, CPUState *cpu, | 
|  | Error **errp) | 
|  | { | 
|  | struct kvm_stats_desc *kvm_stats_desc; | 
|  | struct kvm_stats_header *kvm_stats_header; | 
|  | StatsDescriptors *descriptors; | 
|  | g_autofree uint64_t *stats_data = NULL; | 
|  | struct kvm_stats_desc *pdesc; | 
|  | StatsList *stats_list = NULL; | 
|  | size_t size_desc, size_data = 0; | 
|  | ssize_t ret; | 
|  | int i; | 
|  |  | 
|  | descriptors = find_stats_descriptors(target, stats_fd, errp); | 
|  | if (!descriptors) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | kvm_stats_header = &descriptors->kvm_stats_header; | 
|  | kvm_stats_desc = descriptors->kvm_stats_desc; | 
|  | size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; | 
|  |  | 
|  | /* Tally the total data size; read schema data */ | 
|  | for (i = 0; i < kvm_stats_header->num_desc; ++i) { | 
|  | pdesc = (void *)kvm_stats_desc + i * size_desc; | 
|  | size_data += pdesc->size * sizeof(*stats_data); | 
|  | } | 
|  |  | 
|  | stats_data = g_malloc0(size_data); | 
|  | ret = pread(stats_fd, stats_data, size_data, kvm_stats_header->data_offset); | 
|  |  | 
|  | if (ret != size_data) { | 
|  | error_setg(errp, "KVM stats: failed to read data: " | 
|  | "expected %zu actual %zu", size_data, ret); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < kvm_stats_header->num_desc; ++i) { | 
|  | uint64_t *stats; | 
|  | pdesc = (void *)kvm_stats_desc + i * size_desc; | 
|  |  | 
|  | /* Add entry to the list */ | 
|  | stats = (void *)stats_data + pdesc->offset; | 
|  | if (!apply_str_list_filter(pdesc->name, names)) { | 
|  | continue; | 
|  | } | 
|  | stats_list = add_kvmstat_entry(pdesc, stats, stats_list, errp); | 
|  | } | 
|  |  | 
|  | if (!stats_list) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (target) { | 
|  | case STATS_TARGET_VM: | 
|  | add_stats_entry(result, STATS_PROVIDER_KVM, NULL, stats_list); | 
|  | break; | 
|  | case STATS_TARGET_VCPU: | 
|  | add_stats_entry(result, STATS_PROVIDER_KVM, | 
|  | cpu->parent_obj.canonical_path, | 
|  | stats_list); | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void query_stats_schema(StatsSchemaList **result, StatsTarget target, | 
|  | int stats_fd, Error **errp) | 
|  | { | 
|  | struct kvm_stats_desc *kvm_stats_desc; | 
|  | struct kvm_stats_header *kvm_stats_header; | 
|  | StatsDescriptors *descriptors; | 
|  | struct kvm_stats_desc *pdesc; | 
|  | StatsSchemaValueList *stats_list = NULL; | 
|  | size_t size_desc; | 
|  | int i; | 
|  |  | 
|  | descriptors = find_stats_descriptors(target, stats_fd, errp); | 
|  | if (!descriptors) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | kvm_stats_header = &descriptors->kvm_stats_header; | 
|  | kvm_stats_desc = descriptors->kvm_stats_desc; | 
|  | size_desc = sizeof(*kvm_stats_desc) + kvm_stats_header->name_size; | 
|  |  | 
|  | /* Tally the total data size; read schema data */ | 
|  | for (i = 0; i < kvm_stats_header->num_desc; ++i) { | 
|  | pdesc = (void *)kvm_stats_desc + i * size_desc; | 
|  | stats_list = add_kvmschema_entry(pdesc, stats_list, errp); | 
|  | } | 
|  |  | 
|  | add_stats_schema(result, STATS_PROVIDER_KVM, target, stats_list); | 
|  | } | 
|  |  | 
|  | static void query_stats_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) | 
|  | { | 
|  | int stats_fd = cpu->kvm_vcpu_stats_fd; | 
|  | Error *local_err = NULL; | 
|  |  | 
|  | if (stats_fd == -1) { | 
|  | error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); | 
|  | error_propagate(kvm_stats_args->errp, local_err); | 
|  | return; | 
|  | } | 
|  | query_stats(kvm_stats_args->result.stats, STATS_TARGET_VCPU, | 
|  | kvm_stats_args->names, stats_fd, cpu, | 
|  | kvm_stats_args->errp); | 
|  | } | 
|  |  | 
|  | static void query_stats_schema_vcpu(CPUState *cpu, StatsArgs *kvm_stats_args) | 
|  | { | 
|  | int stats_fd = cpu->kvm_vcpu_stats_fd; | 
|  | Error *local_err = NULL; | 
|  |  | 
|  | if (stats_fd == -1) { | 
|  | error_setg_errno(&local_err, errno, "KVM stats: ioctl failed"); | 
|  | error_propagate(kvm_stats_args->errp, local_err); | 
|  | return; | 
|  | } | 
|  | query_stats_schema(kvm_stats_args->result.schema, STATS_TARGET_VCPU, stats_fd, | 
|  | kvm_stats_args->errp); | 
|  | } | 
|  |  | 
|  | static void query_stats_cb(StatsResultList **result, StatsTarget target, | 
|  | strList *names, strList *targets, Error **errp) | 
|  | { | 
|  | KVMState *s = kvm_state; | 
|  | CPUState *cpu; | 
|  | int stats_fd; | 
|  |  | 
|  | switch (target) { | 
|  | case STATS_TARGET_VM: | 
|  | { | 
|  | stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); | 
|  | if (stats_fd == -1) { | 
|  | error_setg_errno(errp, errno, "KVM stats: ioctl failed"); | 
|  | return; | 
|  | } | 
|  | query_stats(result, target, names, stats_fd, NULL, errp); | 
|  | close(stats_fd); | 
|  | break; | 
|  | } | 
|  | case STATS_TARGET_VCPU: | 
|  | { | 
|  | StatsArgs stats_args; | 
|  | stats_args.result.stats = result; | 
|  | stats_args.names = names; | 
|  | stats_args.errp = errp; | 
|  | CPU_FOREACH(cpu) { | 
|  | if (!apply_str_list_filter(cpu->parent_obj.canonical_path, targets)) { | 
|  | continue; | 
|  | } | 
|  | query_stats_vcpu(cpu, &stats_args); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void query_stats_schemas_cb(StatsSchemaList **result, Error **errp) | 
|  | { | 
|  | StatsArgs stats_args; | 
|  | KVMState *s = kvm_state; | 
|  | int stats_fd; | 
|  |  | 
|  | stats_fd = kvm_vm_ioctl(s, KVM_GET_STATS_FD, NULL); | 
|  | if (stats_fd == -1) { | 
|  | error_setg_errno(errp, errno, "KVM stats: ioctl failed"); | 
|  | return; | 
|  | } | 
|  | query_stats_schema(result, STATS_TARGET_VM, stats_fd, errp); | 
|  | close(stats_fd); | 
|  |  | 
|  | if (first_cpu) { | 
|  | stats_args.result.schema = result; | 
|  | stats_args.errp = errp; | 
|  | query_stats_schema_vcpu(first_cpu, &stats_args); | 
|  | } | 
|  | } |