blob: ec1fc6a29daac4b8df950e088b3979c580403827 [file] [log] [blame]
/*
* RISC-V GDB Server Stub
*
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "exec/gdbstub.h"
#include "gdbstub/helpers.h"
#include "cpu.h"
struct TypeSize {
const char *gdb_type;
const char *id;
int size;
const char suffix;
};
static const struct TypeSize vec_lanes[] = {
/* quads */
{ "uint128", "quads", 128, 'q' },
/* 64 bit */
{ "uint64", "longs", 64, 'l' },
/* 32 bit */
{ "uint32", "words", 32, 'w' },
/* 16 bit */
{ "uint16", "shorts", 16, 's' },
/*
* TODO: currently there is no reliable way of telling
* if the remote gdb actually understands ieee_half so
* we don't expose it in the target description for now.
* { "ieee_half", 16, 'h', 'f' },
*/
/* bytes */
{ "uint8", "bytes", 8, 'b' },
};
int riscv_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
{
RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cs);
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
target_ulong tmp;
if (n < 32) {
tmp = env->gpr[n];
} else if (n == 32) {
tmp = env->pc;
} else {
return 0;
}
switch (mcc->misa_mxl_max) {
case MXL_RV32:
return gdb_get_reg32(mem_buf, tmp);
case MXL_RV64:
case MXL_RV128:
return gdb_get_reg64(mem_buf, tmp);
default:
g_assert_not_reached();
}
return 0;
}
int riscv_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cs);
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
int length = 0;
target_ulong tmp;
switch (mcc->misa_mxl_max) {
case MXL_RV32:
tmp = (int32_t)ldl_p(mem_buf);
length = 4;
break;
case MXL_RV64:
case MXL_RV128:
if (env->xl < MXL_RV64) {
tmp = (int32_t)ldq_p(mem_buf);
} else {
tmp = ldq_p(mem_buf);
}
length = 8;
break;
default:
g_assert_not_reached();
}
if (n > 0 && n < 32) {
env->gpr[n] = tmp;
} else if (n == 32) {
env->pc = tmp;
}
return length;
}
static int riscv_gdb_get_fpu(CPURISCVState *env, GByteArray *buf, int n)
{
if (n < 32) {
if (env->misa_ext & RVD) {
return gdb_get_reg64(buf, env->fpr[n]);
}
if (env->misa_ext & RVF) {
return gdb_get_reg32(buf, env->fpr[n]);
}
}
return 0;
}
static int riscv_gdb_set_fpu(CPURISCVState *env, uint8_t *mem_buf, int n)
{
if (n < 32) {
env->fpr[n] = ldq_p(mem_buf); /* always 64-bit */
return sizeof(uint64_t);
}
return 0;
}
static int riscv_gdb_get_vector(CPURISCVState *env, GByteArray *buf, int n)
{
uint16_t vlenb = riscv_cpu_cfg(env)->vlenb;
if (n < 32) {
int i;
int cnt = 0;
for (i = 0; i < vlenb; i += 8) {
cnt += gdb_get_reg64(buf,
env->vreg[(n * vlenb + i) / 8]);
}
return cnt;
}
return 0;
}
static int riscv_gdb_set_vector(CPURISCVState *env, uint8_t *mem_buf, int n)
{
uint16_t vlenb = riscv_cpu_cfg(env)->vlenb;
if (n < 32) {
int i;
for (i = 0; i < vlenb; i += 8) {
env->vreg[(n * vlenb + i) / 8] = ldq_p(mem_buf + i);
}
return vlenb;
}
return 0;
}
static int riscv_gdb_get_csr(CPURISCVState *env, GByteArray *buf, int n)
{
if (n < CSR_TABLE_SIZE) {
target_ulong val = 0;
int result;
result = riscv_csrrw_debug(env, n, &val, 0, 0);
if (result == RISCV_EXCP_NONE) {
return gdb_get_regl(buf, val);
}
}
return 0;
}
static int riscv_gdb_set_csr(CPURISCVState *env, uint8_t *mem_buf, int n)
{
if (n < CSR_TABLE_SIZE) {
target_ulong val = ldtul_p(mem_buf);
int result;
result = riscv_csrrw_debug(env, n, NULL, val, -1);
if (result == RISCV_EXCP_NONE) {
return sizeof(target_ulong);
}
}
return 0;
}
static int riscv_gdb_get_virtual(CPURISCVState *cs, GByteArray *buf, int n)
{
if (n == 0) {
#ifdef CONFIG_USER_ONLY
return gdb_get_regl(buf, 0);
#else
return gdb_get_regl(buf, cs->priv);
#endif
}
return 0;
}
static int riscv_gdb_set_virtual(CPURISCVState *cs, uint8_t *mem_buf, int n)
{
if (n == 0) {
#ifndef CONFIG_USER_ONLY
cs->priv = ldtul_p(mem_buf) & 0x3;
if (cs->priv == PRV_RESERVED) {
cs->priv = PRV_S;
}
#endif
return sizeof(target_ulong);
}
return 0;
}
static GDBFeature *riscv_gen_dynamic_csr_feature(CPUState *cs, int base_reg)
{
RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cs);
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
GDBFeatureBuilder builder;
riscv_csr_predicate_fn predicate;
int bitsize = riscv_cpu_max_xlen(mcc);
const char *name;
int i;
#if !defined(CONFIG_USER_ONLY)
env->debugger = true;
#endif
/* Until gdb knows about 128-bit registers */
if (bitsize > 64) {
bitsize = 64;
}
gdb_feature_builder_init(&builder, &cpu->dyn_csr_feature,
"org.gnu.gdb.riscv.csr", "riscv-csr.xml",
base_reg);
for (i = 0; i < CSR_TABLE_SIZE; i++) {
if (env->priv_ver < csr_ops[i].min_priv_ver) {
continue;
}
predicate = csr_ops[i].predicate;
if (predicate && (predicate(env, i) == RISCV_EXCP_NONE)) {
g_autofree char *dynamic_name = NULL;
name = csr_ops[i].name;
if (!name) {
dynamic_name = g_strdup_printf("csr%03x", i);
name = dynamic_name;
}
gdb_feature_builder_append_reg(&builder, name, bitsize, i,
"int", NULL);
}
}
gdb_feature_builder_end(&builder);
#if !defined(CONFIG_USER_ONLY)
env->debugger = false;
#endif
return &cpu->dyn_csr_feature;
}
static GDBFeature *ricsv_gen_dynamic_vector_feature(CPUState *cs, int base_reg)
{
RISCVCPU *cpu = RISCV_CPU(cs);
int reg_width = cpu->cfg.vlenb;
GDBFeatureBuilder builder;
int i;
gdb_feature_builder_init(&builder, &cpu->dyn_vreg_feature,
"org.gnu.gdb.riscv.vector", "riscv-vector.xml",
base_reg);
/* First define types and totals in a whole VL */
for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
int count = reg_width / vec_lanes[i].size;
gdb_feature_builder_append_tag(
&builder, "<vector id=\"%s\" type=\"%s\" count=\"%d\"/>",
vec_lanes[i].id, vec_lanes[i].gdb_type, count);
}
/* Define unions */
gdb_feature_builder_append_tag(&builder, "<union id=\"riscv_vector\">");
for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
gdb_feature_builder_append_tag(&builder,
"<field name=\"%c\" type=\"%s\"/>",
vec_lanes[i].suffix, vec_lanes[i].id);
}
gdb_feature_builder_append_tag(&builder, "</union>");
/* Define vector registers */
for (i = 0; i < 32; i++) {
gdb_feature_builder_append_reg(&builder, g_strdup_printf("v%d", i),
reg_width, i, "riscv_vector", "vector");
}
gdb_feature_builder_end(&builder);
return &cpu->dyn_vreg_feature;
}
void riscv_cpu_register_gdb_regs_for_features(CPUState *cs)
{
RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(cs);
RISCVCPU *cpu = RISCV_CPU(cs);
CPURISCVState *env = &cpu->env;
if (env->misa_ext & RVD) {
gdb_register_coprocessor(cs, riscv_gdb_get_fpu, riscv_gdb_set_fpu,
gdb_find_static_feature("riscv-64bit-fpu.xml"),
0);
} else if (env->misa_ext & RVF) {
gdb_register_coprocessor(cs, riscv_gdb_get_fpu, riscv_gdb_set_fpu,
gdb_find_static_feature("riscv-32bit-fpu.xml"),
0);
}
if (env->misa_ext & RVV) {
gdb_register_coprocessor(cs, riscv_gdb_get_vector,
riscv_gdb_set_vector,
ricsv_gen_dynamic_vector_feature(cs, cs->gdb_num_regs),
0);
}
switch (mcc->misa_mxl_max) {
case MXL_RV32:
gdb_register_coprocessor(cs, riscv_gdb_get_virtual,
riscv_gdb_set_virtual,
gdb_find_static_feature("riscv-32bit-virtual.xml"),
0);
break;
case MXL_RV64:
case MXL_RV128:
gdb_register_coprocessor(cs, riscv_gdb_get_virtual,
riscv_gdb_set_virtual,
gdb_find_static_feature("riscv-64bit-virtual.xml"),
0);
break;
default:
g_assert_not_reached();
}
if (cpu->cfg.ext_zicsr) {
gdb_register_coprocessor(cs, riscv_gdb_get_csr, riscv_gdb_set_csr,
riscv_gen_dynamic_csr_feature(cs, cs->gdb_num_regs),
0);
}
}