| /* |
| * MIPS emulation helpers for qemu. |
| * |
| * Copyright (c) 2004-2005 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| |
| #include "cpu.h" |
| #include "internal.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| #include "exec/log.h" |
| #include "hw/mips/cpudevs.h" |
| #include "qapi/qapi-commands-machine-target.h" |
| |
| enum { |
| TLBRET_XI = -6, |
| TLBRET_RI = -5, |
| TLBRET_DIRTY = -4, |
| TLBRET_INVALID = -3, |
| TLBRET_NOMATCH = -2, |
| TLBRET_BADADDR = -1, |
| TLBRET_MATCH = 0 |
| }; |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| /* no MMU emulation */ |
| int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, |
| target_ulong address, int rw, int access_type) |
| { |
| *physical = address; |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return TLBRET_MATCH; |
| } |
| |
| /* fixed mapping MMU emulation */ |
| int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, |
| target_ulong address, int rw, int access_type) |
| { |
| if (address <= (int32_t)0x7FFFFFFFUL) { |
| if (!(env->CP0_Status & (1 << CP0St_ERL))) { |
| *physical = address + 0x40000000UL; |
| } else { |
| *physical = address; |
| } |
| } else if (address <= (int32_t)0xBFFFFFFFUL) { |
| *physical = address & 0x1FFFFFFF; |
| } else { |
| *physical = address; |
| } |
| |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return TLBRET_MATCH; |
| } |
| |
| /* MIPS32/MIPS64 R4000-style MMU emulation */ |
| int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot, |
| target_ulong address, int rw, int access_type) |
| { |
| uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; |
| uint32_t MMID = env->CP0_MemoryMapID; |
| bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1); |
| uint32_t tlb_mmid; |
| int i; |
| |
| MMID = mi ? MMID : (uint32_t) ASID; |
| |
| for (i = 0; i < env->tlb->tlb_in_use; i++) { |
| r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i]; |
| /* 1k pages are not supported. */ |
| target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); |
| target_ulong tag = address & ~mask; |
| target_ulong VPN = tlb->VPN & ~mask; |
| #if defined(TARGET_MIPS64) |
| tag &= env->SEGMask; |
| #endif |
| |
| /* Check ASID/MMID, virtual page number & size */ |
| tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID; |
| if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) { |
| /* TLB match */ |
| int n = !!(address & mask & ~(mask >> 1)); |
| /* Check access rights */ |
| if (!(n ? tlb->V1 : tlb->V0)) { |
| return TLBRET_INVALID; |
| } |
| if (rw == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) { |
| return TLBRET_XI; |
| } |
| if (rw == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) { |
| return TLBRET_RI; |
| } |
| if (rw != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) { |
| *physical = tlb->PFN[n] | (address & (mask >> 1)); |
| *prot = PAGE_READ; |
| if (n ? tlb->D1 : tlb->D0) { |
| *prot |= PAGE_WRITE; |
| } |
| if (!(n ? tlb->XI1 : tlb->XI0)) { |
| *prot |= PAGE_EXEC; |
| } |
| return TLBRET_MATCH; |
| } |
| return TLBRET_DIRTY; |
| } |
| } |
| return TLBRET_NOMATCH; |
| } |
| |
| static int is_seg_am_mapped(unsigned int am, bool eu, int mmu_idx) |
| { |
| /* |
| * Interpret access control mode and mmu_idx. |
| * AdE? TLB? |
| * AM K S U E K S U E |
| * UK 0 0 1 1 0 0 - - 0 |
| * MK 1 0 1 1 0 1 - - !eu |
| * MSK 2 0 0 1 0 1 1 - !eu |
| * MUSK 3 0 0 0 0 1 1 1 !eu |
| * MUSUK 4 0 0 0 0 0 1 1 0 |
| * USK 5 0 0 1 0 0 0 - 0 |
| * - 6 - - - - - - - - |
| * UUSK 7 0 0 0 0 0 0 0 0 |
| */ |
| int32_t adetlb_mask; |
| |
| switch (mmu_idx) { |
| case 3: /* ERL */ |
| /* If EU is set, always unmapped */ |
| if (eu) { |
| return 0; |
| } |
| /* fall through */ |
| case MIPS_HFLAG_KM: |
| /* Never AdE, TLB mapped if AM={1,2,3} */ |
| adetlb_mask = 0x70000000; |
| goto check_tlb; |
| |
| case MIPS_HFLAG_SM: |
| /* AdE if AM={0,1}, TLB mapped if AM={2,3,4} */ |
| adetlb_mask = 0xc0380000; |
| goto check_ade; |
| |
| case MIPS_HFLAG_UM: |
| /* AdE if AM={0,1,2,5}, TLB mapped if AM={3,4} */ |
| adetlb_mask = 0xe4180000; |
| /* fall through */ |
| check_ade: |
| /* does this AM cause AdE in current execution mode */ |
| if ((adetlb_mask << am) < 0) { |
| return TLBRET_BADADDR; |
| } |
| adetlb_mask <<= 8; |
| /* fall through */ |
| check_tlb: |
| /* is this AM mapped in current execution mode */ |
| return ((adetlb_mask << am) < 0); |
| default: |
| assert(0); |
| return TLBRET_BADADDR; |
| }; |
| } |
| |
| static int get_seg_physical_address(CPUMIPSState *env, hwaddr *physical, |
| int *prot, target_ulong real_address, |
| int rw, int access_type, int mmu_idx, |
| unsigned int am, bool eu, |
| target_ulong segmask, |
| hwaddr physical_base) |
| { |
| int mapped = is_seg_am_mapped(am, eu, mmu_idx); |
| |
| if (mapped < 0) { |
| /* is_seg_am_mapped can report TLBRET_BADADDR */ |
| return mapped; |
| } else if (mapped) { |
| /* The segment is TLB mapped */ |
| return env->tlb->map_address(env, physical, prot, real_address, rw, |
| access_type); |
| } else { |
| /* The segment is unmapped */ |
| *physical = physical_base | (real_address & segmask); |
| *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| return TLBRET_MATCH; |
| } |
| } |
| |
| static int get_segctl_physical_address(CPUMIPSState *env, hwaddr *physical, |
| int *prot, target_ulong real_address, |
| int rw, int access_type, int mmu_idx, |
| uint16_t segctl, target_ulong segmask) |
| { |
| unsigned int am = (segctl & CP0SC_AM_MASK) >> CP0SC_AM; |
| bool eu = (segctl >> CP0SC_EU) & 1; |
| hwaddr pa = ((hwaddr)segctl & CP0SC_PA_MASK) << 20; |
| |
| return get_seg_physical_address(env, physical, prot, real_address, rw, |
| access_type, mmu_idx, am, eu, segmask, |
| pa & ~(hwaddr)segmask); |
| } |
| |
| static int get_physical_address(CPUMIPSState *env, hwaddr *physical, |
| int *prot, target_ulong real_address, |
| int rw, int access_type, int mmu_idx) |
| { |
| /* User mode can only access useg/xuseg */ |
| #if defined(TARGET_MIPS64) |
| int user_mode = mmu_idx == MIPS_HFLAG_UM; |
| int supervisor_mode = mmu_idx == MIPS_HFLAG_SM; |
| int kernel_mode = !user_mode && !supervisor_mode; |
| int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0; |
| int SX = (env->CP0_Status & (1 << CP0St_SX)) != 0; |
| int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0; |
| #endif |
| int ret = TLBRET_MATCH; |
| /* effective address (modified for KVM T&E kernel segments) */ |
| target_ulong address = real_address; |
| |
| #define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL) |
| #define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL) |
| #define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL) |
| #define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL) |
| #define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL) |
| |
| #define KVM_KSEG0_BASE ((target_ulong)(int32_t)0x40000000UL) |
| #define KVM_KSEG2_BASE ((target_ulong)(int32_t)0x60000000UL) |
| |
| if (mips_um_ksegs_enabled()) { |
| /* KVM T&E adds guest kernel segments in useg */ |
| if (real_address >= KVM_KSEG0_BASE) { |
| if (real_address < KVM_KSEG2_BASE) { |
| /* kseg0 */ |
| address += KSEG0_BASE - KVM_KSEG0_BASE; |
| } else if (real_address <= USEG_LIMIT) { |
| /* kseg2/3 */ |
| address += KSEG2_BASE - KVM_KSEG2_BASE; |
| } |
| } |
| } |
| |
| if (address <= USEG_LIMIT) { |
| /* useg */ |
| uint16_t segctl; |
| |
| if (address >= 0x40000000UL) { |
| segctl = env->CP0_SegCtl2; |
| } else { |
| segctl = env->CP0_SegCtl2 >> 16; |
| } |
| ret = get_segctl_physical_address(env, physical, prot, |
| real_address, rw, access_type, |
| mmu_idx, segctl, 0x3FFFFFFF); |
| #if defined(TARGET_MIPS64) |
| } else if (address < 0x4000000000000000ULL) { |
| /* xuseg */ |
| if (UX && address <= (0x3FFFFFFFFFFFFFFFULL & env->SEGMask)) { |
| ret = env->tlb->map_address(env, physical, prot, |
| real_address, rw, access_type); |
| } else { |
| ret = TLBRET_BADADDR; |
| } |
| } else if (address < 0x8000000000000000ULL) { |
| /* xsseg */ |
| if ((supervisor_mode || kernel_mode) && |
| SX && address <= (0x7FFFFFFFFFFFFFFFULL & env->SEGMask)) { |
| ret = env->tlb->map_address(env, physical, prot, |
| real_address, rw, access_type); |
| } else { |
| ret = TLBRET_BADADDR; |
| } |
| } else if (address < 0xC000000000000000ULL) { |
| /* xkphys */ |
| if ((address & 0x07FFFFFFFFFFFFFFULL) <= env->PAMask) { |
| /* KX/SX/UX bit to check for each xkphys EVA access mode */ |
| static const uint8_t am_ksux[8] = { |
| [CP0SC_AM_UK] = (1u << CP0St_KX), |
| [CP0SC_AM_MK] = (1u << CP0St_KX), |
| [CP0SC_AM_MSK] = (1u << CP0St_SX), |
| [CP0SC_AM_MUSK] = (1u << CP0St_UX), |
| [CP0SC_AM_MUSUK] = (1u << CP0St_UX), |
| [CP0SC_AM_USK] = (1u << CP0St_SX), |
| [6] = (1u << CP0St_KX), |
| [CP0SC_AM_UUSK] = (1u << CP0St_UX), |
| }; |
| unsigned int am = CP0SC_AM_UK; |
| unsigned int xr = (env->CP0_SegCtl2 & CP0SC2_XR_MASK) >> CP0SC2_XR; |
| |
| if (xr & (1 << ((address >> 59) & 0x7))) { |
| am = (env->CP0_SegCtl1 & CP0SC1_XAM_MASK) >> CP0SC1_XAM; |
| } |
| /* Does CP0_Status.KX/SX/UX permit the access mode (am) */ |
| if (env->CP0_Status & am_ksux[am]) { |
| ret = get_seg_physical_address(env, physical, prot, |
| real_address, rw, access_type, |
| mmu_idx, am, false, env->PAMask, |
| 0); |
| } else { |
| ret = TLBRET_BADADDR; |
| } |
| } else { |
| ret = TLBRET_BADADDR; |
| } |
| } else if (address < 0xFFFFFFFF80000000ULL) { |
| /* xkseg */ |
| if (kernel_mode && KX && |
| address <= (0xFFFFFFFF7FFFFFFFULL & env->SEGMask)) { |
| ret = env->tlb->map_address(env, physical, prot, |
| real_address, rw, access_type); |
| } else { |
| ret = TLBRET_BADADDR; |
| } |
| #endif |
| } else if (address < KSEG1_BASE) { |
| /* kseg0 */ |
| ret = get_segctl_physical_address(env, physical, prot, real_address, rw, |
| access_type, mmu_idx, |
| env->CP0_SegCtl1 >> 16, 0x1FFFFFFF); |
| } else if (address < KSEG2_BASE) { |
| /* kseg1 */ |
| ret = get_segctl_physical_address(env, physical, prot, real_address, rw, |
| access_type, mmu_idx, |
| env->CP0_SegCtl1, 0x1FFFFFFF); |
| } else if (address < KSEG3_BASE) { |
| /* sseg (kseg2) */ |
| ret = get_segctl_physical_address(env, physical, prot, real_address, rw, |
| access_type, mmu_idx, |
| env->CP0_SegCtl0 >> 16, 0x1FFFFFFF); |
| } else { |
| /* |
| * kseg3 |
| * XXX: debug segment is not emulated |
| */ |
| ret = get_segctl_physical_address(env, physical, prot, real_address, rw, |
| access_type, mmu_idx, |
| env->CP0_SegCtl0, 0x1FFFFFFF); |
| } |
| return ret; |
| } |
| |
| void cpu_mips_tlb_flush(CPUMIPSState *env) |
| { |
| /* Flush qemu's TLB and discard all shadowed entries. */ |
| tlb_flush(env_cpu(env)); |
| env->tlb->tlb_in_use = env->tlb->nb_tlb; |
| } |
| |
| /* Called for updates to CP0_Status. */ |
| void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc) |
| { |
| int32_t tcstatus, *tcst; |
| uint32_t v = cpu->CP0_Status; |
| uint32_t cu, mx, asid, ksu; |
| uint32_t mask = ((1 << CP0TCSt_TCU3) |
| | (1 << CP0TCSt_TCU2) |
| | (1 << CP0TCSt_TCU1) |
| | (1 << CP0TCSt_TCU0) |
| | (1 << CP0TCSt_TMX) |
| | (3 << CP0TCSt_TKSU) |
| | (0xff << CP0TCSt_TASID)); |
| |
| cu = (v >> CP0St_CU0) & 0xf; |
| mx = (v >> CP0St_MX) & 0x1; |
| ksu = (v >> CP0St_KSU) & 0x3; |
| asid = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; |
| |
| tcstatus = cu << CP0TCSt_TCU0; |
| tcstatus |= mx << CP0TCSt_TMX; |
| tcstatus |= ksu << CP0TCSt_TKSU; |
| tcstatus |= asid; |
| |
| if (tc == cpu->current_tc) { |
| tcst = &cpu->active_tc.CP0_TCStatus; |
| } else { |
| tcst = &cpu->tcs[tc].CP0_TCStatus; |
| } |
| |
| *tcst &= ~mask; |
| *tcst |= tcstatus; |
| compute_hflags(cpu); |
| } |
| |
| void cpu_mips_store_status(CPUMIPSState *env, target_ulong val) |
| { |
| uint32_t mask = env->CP0_Status_rw_bitmask; |
| target_ulong old = env->CP0_Status; |
| |
| if (env->insn_flags & ISA_MIPS32R6) { |
| bool has_supervisor = extract32(mask, CP0St_KSU, 2) == 0x3; |
| #if defined(TARGET_MIPS64) |
| uint32_t ksux = (1 << CP0St_KX) & val; |
| ksux |= (ksux >> 1) & val; /* KX = 0 forces SX to be 0 */ |
| ksux |= (ksux >> 1) & val; /* SX = 0 forces UX to be 0 */ |
| val = (val & ~(7 << CP0St_UX)) | ksux; |
| #endif |
| if (has_supervisor && extract32(val, CP0St_KSU, 2) == 0x3) { |
| mask &= ~(3 << CP0St_KSU); |
| } |
| mask &= ~(((1 << CP0St_SR) | (1 << CP0St_NMI)) & val); |
| } |
| |
| env->CP0_Status = (old & ~mask) | (val & mask); |
| #if defined(TARGET_MIPS64) |
| if ((env->CP0_Status ^ old) & (old & (7 << CP0St_UX))) { |
| /* Access to at least one of the 64-bit segments has been disabled */ |
| tlb_flush(env_cpu(env)); |
| } |
| #endif |
| if (env->CP0_Config3 & (1 << CP0C3_MT)) { |
| sync_c0_status(env, env, env->current_tc); |
| } else { |
| compute_hflags(env); |
| } |
| } |
| |
| void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val) |
| { |
| uint32_t mask = 0x00C00300; |
| uint32_t old = env->CP0_Cause; |
| int i; |
| |
| if (env->insn_flags & ISA_MIPS32R2) { |
| mask |= 1 << CP0Ca_DC; |
| } |
| if (env->insn_flags & ISA_MIPS32R6) { |
| mask &= ~((1 << CP0Ca_WP) & val); |
| } |
| |
| env->CP0_Cause = (env->CP0_Cause & ~mask) | (val & mask); |
| |
| if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) { |
| if (env->CP0_Cause & (1 << CP0Ca_DC)) { |
| cpu_mips_stop_count(env); |
| } else { |
| cpu_mips_start_count(env); |
| } |
| } |
| |
| /* Set/reset software interrupts */ |
| for (i = 0 ; i < 2 ; i++) { |
| if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) { |
| cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i))); |
| } |
| } |
| } |
| #endif |
| |
| static void raise_mmu_exception(CPUMIPSState *env, target_ulong address, |
| int rw, int tlb_error) |
| { |
| CPUState *cs = env_cpu(env); |
| int exception = 0, error_code = 0; |
| |
| if (rw == MMU_INST_FETCH) { |
| error_code |= EXCP_INST_NOTAVAIL; |
| } |
| |
| switch (tlb_error) { |
| default: |
| case TLBRET_BADADDR: |
| /* Reference to kernel address from user mode or supervisor mode */ |
| /* Reference to supervisor address from user mode */ |
| if (rw == MMU_DATA_STORE) { |
| exception = EXCP_AdES; |
| } else { |
| exception = EXCP_AdEL; |
| } |
| break; |
| case TLBRET_NOMATCH: |
| /* No TLB match for a mapped address */ |
| if (rw == MMU_DATA_STORE) { |
| exception = EXCP_TLBS; |
| } else { |
| exception = EXCP_TLBL; |
| } |
| error_code |= EXCP_TLB_NOMATCH; |
| break; |
| case TLBRET_INVALID: |
| /* TLB match with no valid bit */ |
| if (rw == MMU_DATA_STORE) { |
| exception = EXCP_TLBS; |
| } else { |
| exception = EXCP_TLBL; |
| } |
| break; |
| case TLBRET_DIRTY: |
| /* TLB match but 'D' bit is cleared */ |
| exception = EXCP_LTLBL; |
| break; |
| case TLBRET_XI: |
| /* Execute-Inhibit Exception */ |
| if (env->CP0_PageGrain & (1 << CP0PG_IEC)) { |
| exception = EXCP_TLBXI; |
| } else { |
| exception = EXCP_TLBL; |
| } |
| break; |
| case TLBRET_RI: |
| /* Read-Inhibit Exception */ |
| if (env->CP0_PageGrain & (1 << CP0PG_IEC)) { |
| exception = EXCP_TLBRI; |
| } else { |
| exception = EXCP_TLBL; |
| } |
| break; |
| } |
| /* Raise exception */ |
| if (!(env->hflags & MIPS_HFLAG_DM)) { |
| env->CP0_BadVAddr = address; |
| } |
| env->CP0_Context = (env->CP0_Context & ~0x007fffff) | |
| ((address >> 9) & 0x007ffff0); |
| env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) | |
| (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) | |
| (address & (TARGET_PAGE_MASK << 1)); |
| #if defined(TARGET_MIPS64) |
| env->CP0_EntryHi &= env->SEGMask; |
| env->CP0_XContext = |
| (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */ |
| (extract64(address, 62, 2) << (env->SEGBITS - 9)) | /* R */ |
| (extract64(address, 13, env->SEGBITS - 13) << 4); /* BadVPN2 */ |
| #endif |
| cs->exception_index = exception; |
| env->error_code = error_code; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| hwaddr mips_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) |
| { |
| MIPSCPU *cpu = MIPS_CPU(cs); |
| CPUMIPSState *env = &cpu->env; |
| hwaddr phys_addr; |
| int prot; |
| |
| if (get_physical_address(env, &phys_addr, &prot, addr, 0, ACCESS_INT, |
| cpu_mmu_index(env, false)) != 0) { |
| return -1; |
| } |
| return phys_addr; |
| } |
| #endif |
| |
| #if !defined(CONFIG_USER_ONLY) |
| #if !defined(TARGET_MIPS64) |
| |
| /* |
| * Perform hardware page table walk |
| * |
| * Memory accesses are performed using the KERNEL privilege level. |
| * Synchronous exceptions detected on memory accesses cause a silent exit |
| * from page table walking, resulting in a TLB or XTLB Refill exception. |
| * |
| * Implementations are not required to support page table walk memory |
| * accesses from mapped memory regions. When an unsupported access is |
| * attempted, a silent exit is taken, resulting in a TLB or XTLB Refill |
| * exception. |
| * |
| * Note that if an exception is caused by AddressTranslation or LoadMemory |
| * functions, the exception is not taken, a silent exit is taken, |
| * resulting in a TLB or XTLB Refill exception. |
| */ |
| |
| static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size, |
| uint64_t *pte) |
| { |
| if ((vaddr & ((entry_size >> 3) - 1)) != 0) { |
| return false; |
| } |
| if (entry_size == 64) { |
| *pte = cpu_ldq_code(env, vaddr); |
| } else { |
| *pte = cpu_ldl_code(env, vaddr); |
| } |
| return true; |
| } |
| |
| static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry, |
| int entry_size, int ptei) |
| { |
| uint64_t result = entry; |
| uint64_t rixi; |
| if (ptei > entry_size) { |
| ptei -= 32; |
| } |
| result >>= (ptei - 2); |
| rixi = result & 3; |
| result >>= 2; |
| result |= rixi << CP0EnLo_XI; |
| return result; |
| } |
| |
| static int walk_directory(CPUMIPSState *env, uint64_t *vaddr, |
| int directory_index, bool *huge_page, bool *hgpg_directory_hit, |
| uint64_t *pw_entrylo0, uint64_t *pw_entrylo1) |
| { |
| int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1; |
| int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F; |
| int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1; |
| int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F; |
| int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F; |
| int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3; |
| int directory_shift = (ptew > 1) ? -1 : |
| (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift; |
| int leaf_shift = (ptew > 1) ? -1 : |
| (ptew == 1) ? native_shift + 1 : native_shift; |
| uint32_t direntry_size = 1 << (directory_shift + 3); |
| uint32_t leafentry_size = 1 << (leaf_shift + 3); |
| uint64_t entry; |
| uint64_t paddr; |
| int prot; |
| uint64_t lsb = 0; |
| uint64_t w = 0; |
| |
| if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD, |
| ACCESS_INT, cpu_mmu_index(env, false)) != |
| TLBRET_MATCH) { |
| /* wrong base address */ |
| return 0; |
| } |
| if (!get_pte(env, *vaddr, direntry_size, &entry)) { |
| return 0; |
| } |
| |
| if ((entry & (1 << psn)) && hugepg) { |
| *huge_page = true; |
| *hgpg_directory_hit = true; |
| entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew); |
| w = directory_index - 1; |
| if (directory_index & 0x1) { |
| /* Generate adjacent page from same PTE for odd TLB page */ |
| lsb = (1 << w) >> 6; |
| *pw_entrylo0 = entry & ~lsb; /* even page */ |
| *pw_entrylo1 = entry | lsb; /* odd page */ |
| } else if (dph) { |
| int oddpagebit = 1 << leaf_shift; |
| uint64_t vaddr2 = *vaddr ^ oddpagebit; |
| if (*vaddr & oddpagebit) { |
| *pw_entrylo1 = entry; |
| } else { |
| *pw_entrylo0 = entry; |
| } |
| if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD, |
| ACCESS_INT, cpu_mmu_index(env, false)) != |
| TLBRET_MATCH) { |
| return 0; |
| } |
| if (!get_pte(env, vaddr2, leafentry_size, &entry)) { |
| return 0; |
| } |
| entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew); |
| if (*vaddr & oddpagebit) { |
| *pw_entrylo0 = entry; |
| } else { |
| *pw_entrylo1 = entry; |
| } |
| } else { |
| return 0; |
| } |
| return 1; |
| } else { |
| *vaddr = entry; |
| return 2; |
| } |
| } |
| |
| static bool page_table_walk_refill(CPUMIPSState *env, vaddr address, int rw, |
| int mmu_idx) |
| { |
| int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F; |
| int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F; |
| int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F; |
| int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F; |
| int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F; |
| |
| /* Initial values */ |
| bool huge_page = false; |
| bool hgpg_bdhit = false; |
| bool hgpg_gdhit = false; |
| bool hgpg_udhit = false; |
| bool hgpg_mdhit = false; |
| |
| int32_t pw_pagemask = 0; |
| target_ulong pw_entryhi = 0; |
| uint64_t pw_entrylo0 = 0; |
| uint64_t pw_entrylo1 = 0; |
| |
| /* Native pointer size */ |
| /*For the 32-bit architectures, this bit is fixed to 0.*/ |
| int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3; |
| |
| /* Indices from PWField */ |
| int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F; |
| int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F; |
| int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F; |
| int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F; |
| int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F; |
| |
| /* Indices computed from faulting address */ |
| int gindex = (address >> pf_gdw) & ((1 << gdw) - 1); |
| int uindex = (address >> pf_udw) & ((1 << udw) - 1); |
| int mindex = (address >> pf_mdw) & ((1 << mdw) - 1); |
| int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1); |
| |
| /* Other HTW configs */ |
| int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1; |
| |
| /* HTW Shift values (depend on entry size) */ |
| int directory_shift = (ptew > 1) ? -1 : |
| (hugepg && (ptew == 1)) ? native_shift + 1 : native_shift; |
| int leaf_shift = (ptew > 1) ? -1 : |
| (ptew == 1) ? native_shift + 1 : native_shift; |
| |
| /* Offsets into tables */ |
| int goffset = gindex << directory_shift; |
| int uoffset = uindex << directory_shift; |
| int moffset = mindex << directory_shift; |
| int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1); |
| int ptoffset1 = ptoffset0 | (1 << (leaf_shift)); |
| |
| uint32_t leafentry_size = 1 << (leaf_shift + 3); |
| |
| /* Starting address - Page Table Base */ |
| uint64_t vaddr = env->CP0_PWBase; |
| |
| uint64_t dir_entry; |
| uint64_t paddr; |
| int prot; |
| int m; |
| |
| if (!(env->CP0_Config3 & (1 << CP0C3_PW))) { |
| /* walker is unimplemented */ |
| return false; |
| } |
| if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) { |
| /* walker is disabled */ |
| return false; |
| } |
| if (!(gdw > 0 || udw > 0 || mdw > 0)) { |
| /* no structure to walk */ |
| return false; |
| } |
| if ((directory_shift == -1) || (leaf_shift == -1)) { |
| return false; |
| } |
| |
| /* Global Directory */ |
| if (gdw > 0) { |
| vaddr |= goffset; |
| switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit, |
| &pw_entrylo0, &pw_entrylo1)) |
| { |
| case 0: |
| return false; |
| case 1: |
| goto refill; |
| case 2: |
| default: |
| break; |
| } |
| } |
| |
| /* Upper directory */ |
| if (udw > 0) { |
| vaddr |= uoffset; |
| switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit, |
| &pw_entrylo0, &pw_entrylo1)) |
| { |
| case 0: |
| return false; |
| case 1: |
| goto refill; |
| case 2: |
| default: |
| break; |
| } |
| } |
| |
| /* Middle directory */ |
| if (mdw > 0) { |
| vaddr |= moffset; |
| switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit, |
| &pw_entrylo0, &pw_entrylo1)) |
| { |
| case 0: |
| return false; |
| case 1: |
| goto refill; |
| case 2: |
| default: |
| break; |
| } |
| } |
| |
| /* Leaf Level Page Table - First half of PTE pair */ |
| vaddr |= ptoffset0; |
| if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD, |
| ACCESS_INT, cpu_mmu_index(env, false)) != |
| TLBRET_MATCH) { |
| return false; |
| } |
| if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) { |
| return false; |
| } |
| dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew); |
| pw_entrylo0 = dir_entry; |
| |
| /* Leaf Level Page Table - Second half of PTE pair */ |
| vaddr |= ptoffset1; |
| if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD, |
| ACCESS_INT, cpu_mmu_index(env, false)) != |
| TLBRET_MATCH) { |
| return false; |
| } |
| if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) { |
| return false; |
| } |
| dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew); |
| pw_entrylo1 = dir_entry; |
| |
| refill: |
| |
| m = (1 << pf_ptw) - 1; |
| |
| if (huge_page) { |
| switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 | |
| hgpg_mdhit) |
| { |
| case 4: |
| m = (1 << pf_gdw) - 1; |
| if (pf_gdw & 1) { |
| m >>= 1; |
| } |
| break; |
| case 2: |
| m = (1 << pf_udw) - 1; |
| if (pf_udw & 1) { |
| m >>= 1; |
| } |
| break; |
| case 1: |
| m = (1 << pf_mdw) - 1; |
| if (pf_mdw & 1) { |
| m >>= 1; |
| } |
| break; |
| } |
| } |
| pw_pagemask = m >> 12; |
| update_pagemask(env, pw_pagemask << 13, &pw_pagemask); |
| pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF); |
| { |
| target_ulong tmp_entryhi = env->CP0_EntryHi; |
| int32_t tmp_pagemask = env->CP0_PageMask; |
| uint64_t tmp_entrylo0 = env->CP0_EntryLo0; |
| uint64_t tmp_entrylo1 = env->CP0_EntryLo1; |
| |
| env->CP0_EntryHi = pw_entryhi; |
| env->CP0_PageMask = pw_pagemask; |
| env->CP0_EntryLo0 = pw_entrylo0; |
| env->CP0_EntryLo1 = pw_entrylo1; |
| |
| /* |
| * The hardware page walker inserts a page into the TLB in a manner |
| * identical to a TLBWR instruction as executed by the software refill |
| * handler. |
| */ |
| r4k_helper_tlbwr(env); |
| |
| env->CP0_EntryHi = tmp_entryhi; |
| env->CP0_PageMask = tmp_pagemask; |
| env->CP0_EntryLo0 = tmp_entrylo0; |
| env->CP0_EntryLo1 = tmp_entrylo1; |
| } |
| return true; |
| } |
| #endif |
| #endif |
| |
| bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size, |
| MMUAccessType access_type, int mmu_idx, |
| bool probe, uintptr_t retaddr) |
| { |
| MIPSCPU *cpu = MIPS_CPU(cs); |
| CPUMIPSState *env = &cpu->env; |
| #if !defined(CONFIG_USER_ONLY) |
| hwaddr physical; |
| int prot; |
| int mips_access_type; |
| #endif |
| int ret = TLBRET_BADADDR; |
| |
| /* data access */ |
| #if !defined(CONFIG_USER_ONLY) |
| /* XXX: put correct access by using cpu_restore_state() correctly */ |
| mips_access_type = ACCESS_INT; |
| ret = get_physical_address(env, &physical, &prot, address, |
| access_type, mips_access_type, mmu_idx); |
| switch (ret) { |
| case TLBRET_MATCH: |
| qemu_log_mask(CPU_LOG_MMU, |
| "%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx |
| " prot %d\n", __func__, address, physical, prot); |
| break; |
| default: |
| qemu_log_mask(CPU_LOG_MMU, |
| "%s address=%" VADDR_PRIx " ret %d\n", __func__, address, |
| ret); |
| break; |
| } |
| if (ret == TLBRET_MATCH) { |
| tlb_set_page(cs, address & TARGET_PAGE_MASK, |
| physical & TARGET_PAGE_MASK, prot, |
| mmu_idx, TARGET_PAGE_SIZE); |
| return true; |
| } |
| #if !defined(TARGET_MIPS64) |
| if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) { |
| /* |
| * Memory reads during hardware page table walking are performed |
| * as if they were kernel-mode load instructions. |
| */ |
| int mode = (env->hflags & MIPS_HFLAG_KSU); |
| bool ret_walker; |
| env->hflags &= ~MIPS_HFLAG_KSU; |
| ret_walker = page_table_walk_refill(env, address, access_type, mmu_idx); |
| env->hflags |= mode; |
| if (ret_walker) { |
| ret = get_physical_address(env, &physical, &prot, address, |
| access_type, mips_access_type, mmu_idx); |
| if (ret == TLBRET_MATCH) { |
| tlb_set_page(cs, address & TARGET_PAGE_MASK, |
| physical & TARGET_PAGE_MASK, prot, |
| mmu_idx, TARGET_PAGE_SIZE); |
| return true; |
| } |
| } |
| } |
| #endif |
| if (probe) { |
| return false; |
| } |
| #endif |
| |
| raise_mmu_exception(env, address, access_type, ret); |
| do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr); |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address, |
| int rw) |
| { |
| hwaddr physical; |
| int prot; |
| int access_type; |
| int ret = 0; |
| |
| /* data access */ |
| access_type = ACCESS_INT; |
| ret = get_physical_address(env, &physical, &prot, address, rw, access_type, |
| cpu_mmu_index(env, false)); |
| if (ret != TLBRET_MATCH) { |
| raise_mmu_exception(env, address, rw, ret); |
| return -1LL; |
| } else { |
| return physical; |
| } |
| } |
| |
| static const char * const excp_names[EXCP_LAST + 1] = { |
| [EXCP_RESET] = "reset", |
| [EXCP_SRESET] = "soft reset", |
| [EXCP_DSS] = "debug single step", |
| [EXCP_DINT] = "debug interrupt", |
| [EXCP_NMI] = "non-maskable interrupt", |
| [EXCP_MCHECK] = "machine check", |
| [EXCP_EXT_INTERRUPT] = "interrupt", |
| [EXCP_DFWATCH] = "deferred watchpoint", |
| [EXCP_DIB] = "debug instruction breakpoint", |
| [EXCP_IWATCH] = "instruction fetch watchpoint", |
| [EXCP_AdEL] = "address error load", |
| [EXCP_AdES] = "address error store", |
| [EXCP_TLBF] = "TLB refill", |
| [EXCP_IBE] = "instruction bus error", |
| [EXCP_DBp] = "debug breakpoint", |
| [EXCP_SYSCALL] = "syscall", |
| [EXCP_BREAK] = "break", |
| [EXCP_CpU] = "coprocessor unusable", |
| [EXCP_RI] = "reserved instruction", |
| [EXCP_OVERFLOW] = "arithmetic overflow", |
| [EXCP_TRAP] = "trap", |
| [EXCP_FPE] = "floating point", |
| [EXCP_DDBS] = "debug data break store", |
| [EXCP_DWATCH] = "data watchpoint", |
| [EXCP_LTLBL] = "TLB modify", |
| [EXCP_TLBL] = "TLB load", |
| [EXCP_TLBS] = "TLB store", |
| [EXCP_DBE] = "data bus error", |
| [EXCP_DDBL] = "debug data break load", |
| [EXCP_THREAD] = "thread", |
| [EXCP_MDMX] = "MDMX", |
| [EXCP_C2E] = "precise coprocessor 2", |
| [EXCP_CACHE] = "cache error", |
| [EXCP_TLBXI] = "TLB execute-inhibit", |
| [EXCP_TLBRI] = "TLB read-inhibit", |
| [EXCP_MSADIS] = "MSA disabled", |
| [EXCP_MSAFPE] = "MSA floating point", |
| }; |
| #endif |
| |
| target_ulong exception_resume_pc(CPUMIPSState *env) |
| { |
| target_ulong bad_pc; |
| target_ulong isa_mode; |
| |
| isa_mode = !!(env->hflags & MIPS_HFLAG_M16); |
| bad_pc = env->active_tc.PC | isa_mode; |
| if (env->hflags & MIPS_HFLAG_BMASK) { |
| /* |
| * If the exception was raised from a delay slot, come back to |
| * the jump. |
| */ |
| bad_pc -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4); |
| } |
| |
| return bad_pc; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| static void set_hflags_for_handler(CPUMIPSState *env) |
| { |
| /* Exception handlers are entered in 32-bit mode. */ |
| env->hflags &= ~(MIPS_HFLAG_M16); |
| /* ...except that microMIPS lets you choose. */ |
| if (env->insn_flags & ASE_MICROMIPS) { |
| env->hflags |= (!!(env->CP0_Config3 & |
| (1 << CP0C3_ISA_ON_EXC)) |
| << MIPS_HFLAG_M16_SHIFT); |
| } |
| } |
| |
| static inline void set_badinstr_registers(CPUMIPSState *env) |
| { |
| if (env->insn_flags & ISA_NANOMIPS32) { |
| if (env->CP0_Config3 & (1 << CP0C3_BI)) { |
| uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16; |
| if ((instr & 0x10000000) == 0) { |
| instr |= cpu_lduw_code(env, env->active_tc.PC + 2); |
| } |
| env->CP0_BadInstr = instr; |
| |
| if ((instr & 0xFC000000) == 0x60000000) { |
| instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16; |
| env->CP0_BadInstrX = instr; |
| } |
| } |
| return; |
| } |
| |
| if (env->hflags & MIPS_HFLAG_M16) { |
| /* TODO: add BadInstr support for microMIPS */ |
| return; |
| } |
| if (env->CP0_Config3 & (1 << CP0C3_BI)) { |
| env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC); |
| } |
| if ((env->CP0_Config3 & (1 << CP0C3_BP)) && |
| (env->hflags & MIPS_HFLAG_BMASK)) { |
| env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4); |
| } |
| } |
| #endif |
| |
| void mips_cpu_do_interrupt(CPUState *cs) |
| { |
| #if !defined(CONFIG_USER_ONLY) |
| MIPSCPU *cpu = MIPS_CPU(cs); |
| CPUMIPSState *env = &cpu->env; |
| bool update_badinstr = 0; |
| target_ulong offset; |
| int cause = -1; |
| const char *name; |
| |
| if (qemu_loglevel_mask(CPU_LOG_INT) |
| && cs->exception_index != EXCP_EXT_INTERRUPT) { |
| if (cs->exception_index < 0 || cs->exception_index > EXCP_LAST) { |
| name = "unknown"; |
| } else { |
| name = excp_names[cs->exception_index]; |
| } |
| |
| qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx |
| " %s exception\n", |
| __func__, env->active_tc.PC, env->CP0_EPC, name); |
| } |
| if (cs->exception_index == EXCP_EXT_INTERRUPT && |
| (env->hflags & MIPS_HFLAG_DM)) { |
| cs->exception_index = EXCP_DINT; |
| } |
| offset = 0x180; |
| switch (cs->exception_index) { |
| case EXCP_DSS: |
| env->CP0_Debug |= 1 << CP0DB_DSS; |
| /* |
| * Debug single step cannot be raised inside a delay slot and |
| * resume will always occur on the next instruction |
| * (but we assume the pc has always been updated during |
| * code translation). |
| */ |
| env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16); |
| goto enter_debug_mode; |
| case EXCP_DINT: |
| env->CP0_Debug |= 1 << CP0DB_DINT; |
| goto set_DEPC; |
| case EXCP_DIB: |
| env->CP0_Debug |= 1 << CP0DB_DIB; |
| goto set_DEPC; |
| case EXCP_DBp: |
| env->CP0_Debug |= 1 << CP0DB_DBp; |
| /* Setup DExcCode - SDBBP instruction */ |
| env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) | |
| (9 << CP0DB_DEC); |
| goto set_DEPC; |
| case EXCP_DDBS: |
| env->CP0_Debug |= 1 << CP0DB_DDBS; |
| goto set_DEPC; |
| case EXCP_DDBL: |
| env->CP0_Debug |= 1 << CP0DB_DDBL; |
| set_DEPC: |
| env->CP0_DEPC = exception_resume_pc(env); |
| env->hflags &= ~MIPS_HFLAG_BMASK; |
| enter_debug_mode: |
| if (env->insn_flags & ISA_MIPS3) { |
| env->hflags |= MIPS_HFLAG_64; |
| if (!(env->insn_flags & ISA_MIPS64R6) || |
| env->CP0_Status & (1 << CP0St_KX)) { |
| env->hflags &= ~MIPS_HFLAG_AWRAP; |
| } |
| } |
| env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0; |
| env->hflags &= ~(MIPS_HFLAG_KSU); |
| /* EJTAG probe trap enable is not implemented... */ |
| if (!(env->CP0_Status & (1 << CP0St_EXL))) { |
| env->CP0_Cause &= ~(1U << CP0Ca_BD); |
| } |
| env->active_tc.PC = env->exception_base + 0x480; |
| set_hflags_for_handler(env); |
| break; |
| case EXCP_RESET: |
| cpu_reset(CPU(cpu)); |
| break; |
| case EXCP_SRESET: |
| env->CP0_Status |= (1 << CP0St_SR); |
| memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo)); |
| goto set_error_EPC; |
| case EXCP_NMI: |
| env->CP0_Status |= (1 << CP0St_NMI); |
| set_error_EPC: |
| env->CP0_ErrorEPC = exception_resume_pc(env); |
| env->hflags &= ~MIPS_HFLAG_BMASK; |
| env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV); |
| if (env->insn_flags & ISA_MIPS3) { |
| env->hflags |= MIPS_HFLAG_64; |
| if (!(env->insn_flags & ISA_MIPS64R6) || |
| env->CP0_Status & (1 << CP0St_KX)) { |
| env->hflags &= ~MIPS_HFLAG_AWRAP; |
| } |
| } |
| env->hflags |= MIPS_HFLAG_CP0; |
| env->hflags &= ~(MIPS_HFLAG_KSU); |
| if (!(env->CP0_Status & (1 << CP0St_EXL))) { |
| env->CP0_Cause &= ~(1U << CP0Ca_BD); |
| } |
| env->active_tc.PC = env->exception_base; |
| set_hflags_for_handler(env); |
| break; |
| case EXCP_EXT_INTERRUPT: |
| cause = 0; |
| if (env->CP0_Cause & (1 << CP0Ca_IV)) { |
| uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f; |
| |
| if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) { |
| offset = 0x200; |
| } else { |
| uint32_t vector = 0; |
| uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP; |
| |
| if (env->CP0_Config3 & (1 << CP0C3_VEIC)) { |
| /* |
| * For VEIC mode, the external interrupt controller feeds |
| * the vector through the CP0Cause IP lines. |
| */ |
| vector = pending; |
| } else { |
| /* |
| * Vectored Interrupts |
| * Mask with Status.IM7-IM0 to get enabled interrupts. |
| */ |
| pending &= (env->CP0_Status >> CP0St_IM) & 0xff; |
| /* Find the highest-priority interrupt. */ |
| while (pending >>= 1) { |
| vector++; |
| } |
| } |
| offset = 0x200 + (vector * (spacing << 5)); |
| } |
| } |
| goto set_EPC; |
| case EXCP_LTLBL: |
| cause = 1; |
| update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL); |
| goto set_EPC; |
| case EXCP_TLBL: |
| cause = 2; |
| update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL); |
| if ((env->error_code & EXCP_TLB_NOMATCH) && |
| !(env->CP0_Status & (1 << CP0St_EXL))) { |
| #if defined(TARGET_MIPS64) |
| int R = env->CP0_BadVAddr >> 62; |
| int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0; |
| int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0; |
| |
| if ((R != 0 || UX) && (R != 3 || KX) && |
| (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) { |
| offset = 0x080; |
| } else { |
| #endif |
| offset = 0x000; |
| #if defined(TARGET_MIPS64) |
| } |
| #endif |
| } |
| goto set_EPC; |
| case EXCP_TLBS: |
| cause = 3; |
| update_badinstr = 1; |
| if ((env->error_code & EXCP_TLB_NOMATCH) && |
| !(env->CP0_Status & (1 << CP0St_EXL))) { |
| #if defined(TARGET_MIPS64) |
| int R = env->CP0_BadVAddr >> 62; |
| int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0; |
| int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0; |
| |
| if ((R != 0 || UX) && (R != 3 || KX) && |
| (!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) { |
| offset = 0x080; |
| } else { |
| #endif |
| offset = 0x000; |
| #if defined(TARGET_MIPS64) |
| } |
| #endif |
| } |
| goto set_EPC; |
| case EXCP_AdEL: |
| cause = 4; |
| update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL); |
| goto set_EPC; |
| case EXCP_AdES: |
| cause = 5; |
| update_badinstr = 1; |
| goto set_EPC; |
| case EXCP_IBE: |
| cause = 6; |
| goto set_EPC; |
| case EXCP_DBE: |
| cause = 7; |
| goto set_EPC; |
| case EXCP_SYSCALL: |
| cause = 8; |
| update_badinstr = 1; |
| goto set_EPC; |
| case EXCP_BREAK: |
| cause = 9; |
| update_badinstr = 1; |
| goto set_EPC; |
| case EXCP_RI: |
| cause = 10; |
| update_badinstr = 1; |
| goto set_EPC; |
| case EXCP_CpU: |
| cause = 11; |
| update_badinstr = 1; |
| env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) | |
| (env->error_code << CP0Ca_CE); |
| goto set_EPC; |
| case EXCP_OVERFLOW: |
| cause = 12; |
| update_badinstr = 1; |
| goto set_EPC; |
| case EXCP_TRAP: |
| cause = 13; |
| update_badinstr = 1; |
| goto set_EPC; |
| case EXCP_MSAFPE: |
| cause = 14; |
| update_badinstr = 1; |
| goto set_EPC; |
| case EXCP_FPE: |
| cause = 15; |
| update_badinstr = 1; |
| goto set_EPC; |
| case EXCP_C2E: |
| cause = 18; |
| goto set_EPC; |
| case EXCP_TLBRI: |
| cause = 19; |
| update_badinstr = 1; |
| goto set_EPC; |
| case EXCP_TLBXI: |
| cause = 20; |
| goto set_EPC; |
| case EXCP_MSADIS: |
| cause = 21; |
| update_badinstr = 1; |
| goto set_EPC; |
| case EXCP_MDMX: |
| cause = 22; |
| goto set_EPC; |
| case EXCP_DWATCH: |
| cause = 23; |
| /* XXX: TODO: manage deferred watch exceptions */ |
| goto set_EPC; |
| case EXCP_MCHECK: |
| cause = 24; |
| goto set_EPC; |
| case EXCP_THREAD: |
| cause = 25; |
| goto set_EPC; |
| case EXCP_DSPDIS: |
| cause = 26; |
| goto set_EPC; |
| case EXCP_CACHE: |
| cause = 30; |
| offset = 0x100; |
| set_EPC: |
| if (!(env->CP0_Status & (1 << CP0St_EXL))) { |
| env->CP0_EPC = exception_resume_pc(env); |
| if (update_badinstr) { |
| set_badinstr_registers(env); |
| } |
| if (env->hflags & MIPS_HFLAG_BMASK) { |
| env->CP0_Cause |= (1U << CP0Ca_BD); |
| } else { |
| env->CP0_Cause &= ~(1U << CP0Ca_BD); |
| } |
| env->CP0_Status |= (1 << CP0St_EXL); |
| if (env->insn_flags & ISA_MIPS3) { |
| env->hflags |= MIPS_HFLAG_64; |
| if (!(env->insn_flags & ISA_MIPS64R6) || |
| env->CP0_Status & (1 << CP0St_KX)) { |
| env->hflags &= ~MIPS_HFLAG_AWRAP; |
| } |
| } |
| env->hflags |= MIPS_HFLAG_CP0; |
| env->hflags &= ~(MIPS_HFLAG_KSU); |
| } |
| env->hflags &= ~MIPS_HFLAG_BMASK; |
| if (env->CP0_Status & (1 << CP0St_BEV)) { |
| env->active_tc.PC = env->exception_base + 0x200; |
| } else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) && |
| env->CP0_Config5 & (1 << CP0C5_CV))) { |
| /* Force KSeg1 for cache errors */ |
| env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000); |
| } else { |
| env->active_tc.PC = env->CP0_EBase & ~0xfff; |
| } |
| |
| env->active_tc.PC += offset; |
| set_hflags_for_handler(env); |
| env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) | |
| (cause << CP0Ca_EC); |
| break; |
| default: |
| abort(); |
| } |
| if (qemu_loglevel_mask(CPU_LOG_INT) |
| && cs->exception_index != EXCP_EXT_INTERRUPT) { |
| qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n" |
| " S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n", |
| __func__, env->active_tc.PC, env->CP0_EPC, cause, |
| env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr, |
| env->CP0_DEPC); |
| } |
| #endif |
| cs->exception_index = EXCP_NONE; |
| } |
| |
| bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request) |
| { |
| if (interrupt_request & CPU_INTERRUPT_HARD) { |
| MIPSCPU *cpu = MIPS_CPU(cs); |
| CPUMIPSState *env = &cpu->env; |
| |
| if (cpu_mips_hw_interrupts_enabled(env) && |
| cpu_mips_hw_interrupts_pending(env)) { |
| /* Raise it */ |
| cs->exception_index = EXCP_EXT_INTERRUPT; |
| env->error_code = 0; |
| mips_cpu_do_interrupt(cs); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra) |
| { |
| CPUState *cs = env_cpu(env); |
| r4k_tlb_t *tlb; |
| target_ulong addr; |
| target_ulong end; |
| uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask; |
| uint32_t MMID = env->CP0_MemoryMapID; |
| bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1); |
| uint32_t tlb_mmid; |
| target_ulong mask; |
| |
| MMID = mi ? MMID : (uint32_t) ASID; |
| |
| tlb = &env->tlb->mmu.r4k.tlb[idx]; |
| /* |
| * The qemu TLB is flushed when the ASID/MMID changes, so no need to |
| * flush these entries again. |
| */ |
| tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID; |
| if (tlb->G == 0 && tlb_mmid != MMID) { |
| return; |
| } |
| |
| if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) { |
| /* |
| * For tlbwr, we can shadow the discarded entry into |
| * a new (fake) TLB entry, as long as the guest can not |
| * tell that it's there. |
| */ |
| env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb; |
| env->tlb->tlb_in_use++; |
| return; |
| } |
| |
| /* 1k pages are not supported. */ |
| mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); |
| if (tlb->V0) { |
| addr = tlb->VPN & ~mask; |
| #if defined(TARGET_MIPS64) |
| if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) { |
| addr |= 0x3FFFFF0000000000ULL; |
| } |
| #endif |
| end = addr | (mask >> 1); |
| while (addr < end) { |
| tlb_flush_page(cs, addr); |
| addr += TARGET_PAGE_SIZE; |
| } |
| } |
| if (tlb->V1) { |
| addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1); |
| #if defined(TARGET_MIPS64) |
| if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) { |
| addr |= 0x3FFFFF0000000000ULL; |
| } |
| #endif |
| end = addr | mask; |
| while (addr - 1 < end) { |
| tlb_flush_page(cs, addr); |
| addr += TARGET_PAGE_SIZE; |
| } |
| } |
| } |
| #endif |
| |
| void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env, |
| uint32_t exception, |
| int error_code, |
| uintptr_t pc) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| qemu_log_mask(CPU_LOG_INT, "%s: %d %d\n", |
| __func__, exception, error_code); |
| cs->exception_index = exception; |
| env->error_code = error_code; |
| |
| cpu_loop_exit_restore(cs, pc); |
| } |
| |
| static void mips_cpu_add_definition(gpointer data, gpointer user_data) |
| { |
| ObjectClass *oc = data; |
| CpuDefinitionInfoList **cpu_list = user_data; |
| CpuDefinitionInfoList *entry; |
| CpuDefinitionInfo *info; |
| const char *typename; |
| |
| typename = object_class_get_name(oc); |
| info = g_malloc0(sizeof(*info)); |
| info->name = g_strndup(typename, |
| strlen(typename) - strlen("-" TYPE_MIPS_CPU)); |
| info->q_typename = g_strdup(typename); |
| |
| entry = g_malloc0(sizeof(*entry)); |
| entry->value = info; |
| entry->next = *cpu_list; |
| *cpu_list = entry; |
| } |
| |
| CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) |
| { |
| CpuDefinitionInfoList *cpu_list = NULL; |
| GSList *list; |
| |
| list = object_class_get_list(TYPE_MIPS_CPU, false); |
| g_slist_foreach(list, mips_cpu_add_definition, &cpu_list); |
| g_slist_free(list); |
| |
| return cpu_list; |
| } |