| /* |
| * Helpers for integer and multimedia instructions. |
| * |
| * Copyright (c) 2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| #include "qemu/host-utils.h" |
| |
| |
| uint64_t helper_ctpop(uint64_t arg) |
| { |
| return ctpop64(arg); |
| } |
| |
| uint64_t helper_ctlz(uint64_t arg) |
| { |
| return clz64(arg); |
| } |
| |
| uint64_t helper_cttz(uint64_t arg) |
| { |
| return ctz64(arg); |
| } |
| |
| static inline uint64_t byte_zap(uint64_t op, uint8_t mskb) |
| { |
| uint64_t mask; |
| |
| mask = 0; |
| mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL; |
| mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL; |
| mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL; |
| mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL; |
| mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL; |
| mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL; |
| mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL; |
| mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL; |
| |
| return op & ~mask; |
| } |
| |
| uint64_t helper_zap(uint64_t val, uint64_t mask) |
| { |
| return byte_zap(val, mask); |
| } |
| |
| uint64_t helper_zapnot(uint64_t val, uint64_t mask) |
| { |
| return byte_zap(val, ~mask); |
| } |
| |
| uint64_t helper_cmpbge(uint64_t op1, uint64_t op2) |
| { |
| uint8_t opa, opb, res; |
| int i; |
| |
| res = 0; |
| for (i = 0; i < 8; i++) { |
| opa = op1 >> (i * 8); |
| opb = op2 >> (i * 8); |
| if (opa >= opb) { |
| res |= 1 << i; |
| } |
| } |
| return res; |
| } |
| |
| uint64_t helper_minub8(uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| uint8_t opa, opb, opr; |
| int i; |
| |
| for (i = 0; i < 8; ++i) { |
| opa = op1 >> (i * 8); |
| opb = op2 >> (i * 8); |
| opr = opa < opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 8); |
| } |
| return res; |
| } |
| |
| uint64_t helper_minsb8(uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| int8_t opa, opb; |
| uint8_t opr; |
| int i; |
| |
| for (i = 0; i < 8; ++i) { |
| opa = op1 >> (i * 8); |
| opb = op2 >> (i * 8); |
| opr = opa < opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 8); |
| } |
| return res; |
| } |
| |
| uint64_t helper_minuw4(uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| uint16_t opa, opb, opr; |
| int i; |
| |
| for (i = 0; i < 4; ++i) { |
| opa = op1 >> (i * 16); |
| opb = op2 >> (i * 16); |
| opr = opa < opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 16); |
| } |
| return res; |
| } |
| |
| uint64_t helper_minsw4(uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| int16_t opa, opb; |
| uint16_t opr; |
| int i; |
| |
| for (i = 0; i < 4; ++i) { |
| opa = op1 >> (i * 16); |
| opb = op2 >> (i * 16); |
| opr = opa < opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 16); |
| } |
| return res; |
| } |
| |
| uint64_t helper_maxub8(uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| uint8_t opa, opb, opr; |
| int i; |
| |
| for (i = 0; i < 8; ++i) { |
| opa = op1 >> (i * 8); |
| opb = op2 >> (i * 8); |
| opr = opa > opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 8); |
| } |
| return res; |
| } |
| |
| uint64_t helper_maxsb8(uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| int8_t opa, opb; |
| uint8_t opr; |
| int i; |
| |
| for (i = 0; i < 8; ++i) { |
| opa = op1 >> (i * 8); |
| opb = op2 >> (i * 8); |
| opr = opa > opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 8); |
| } |
| return res; |
| } |
| |
| uint64_t helper_maxuw4(uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| uint16_t opa, opb, opr; |
| int i; |
| |
| for (i = 0; i < 4; ++i) { |
| opa = op1 >> (i * 16); |
| opb = op2 >> (i * 16); |
| opr = opa > opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 16); |
| } |
| return res; |
| } |
| |
| uint64_t helper_maxsw4(uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| int16_t opa, opb; |
| uint16_t opr; |
| int i; |
| |
| for (i = 0; i < 4; ++i) { |
| opa = op1 >> (i * 16); |
| opb = op2 >> (i * 16); |
| opr = opa > opb ? opa : opb; |
| res |= (uint64_t)opr << (i * 16); |
| } |
| return res; |
| } |
| |
| uint64_t helper_perr(uint64_t op1, uint64_t op2) |
| { |
| uint64_t res = 0; |
| uint8_t opa, opb, opr; |
| int i; |
| |
| for (i = 0; i < 8; ++i) { |
| opa = op1 >> (i * 8); |
| opb = op2 >> (i * 8); |
| if (opa >= opb) { |
| opr = opa - opb; |
| } else { |
| opr = opb - opa; |
| } |
| res += opr; |
| } |
| return res; |
| } |
| |
| uint64_t helper_pklb(uint64_t op1) |
| { |
| return (op1 & 0xff) | ((op1 >> 24) & 0xff00); |
| } |
| |
| uint64_t helper_pkwb(uint64_t op1) |
| { |
| return ((op1 & 0xff) |
| | ((op1 >> 8) & 0xff00) |
| | ((op1 >> 16) & 0xff0000) |
| | ((op1 >> 24) & 0xff000000)); |
| } |
| |
| uint64_t helper_unpkbl(uint64_t op1) |
| { |
| return (op1 & 0xff) | ((op1 & 0xff00) << 24); |
| } |
| |
| uint64_t helper_unpkbw(uint64_t op1) |
| { |
| return ((op1 & 0xff) |
| | ((op1 & 0xff00) << 8) |
| | ((op1 & 0xff0000) << 16) |
| | ((op1 & 0xff000000) << 24)); |
| } |
| |
| uint64_t helper_addqv(CPUAlphaState *env, uint64_t op1, uint64_t op2) |
| { |
| uint64_t tmp = op1; |
| op1 += op2; |
| if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) { |
| arith_excp(env, GETPC(), EXC_M_IOV, 0); |
| } |
| return op1; |
| } |
| |
| uint64_t helper_addlv(CPUAlphaState *env, uint64_t op1, uint64_t op2) |
| { |
| uint64_t tmp = op1; |
| op1 = (uint32_t)(op1 + op2); |
| if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) { |
| arith_excp(env, GETPC(), EXC_M_IOV, 0); |
| } |
| return op1; |
| } |
| |
| uint64_t helper_subqv(CPUAlphaState *env, uint64_t op1, uint64_t op2) |
| { |
| uint64_t res; |
| res = op1 - op2; |
| if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) { |
| arith_excp(env, GETPC(), EXC_M_IOV, 0); |
| } |
| return res; |
| } |
| |
| uint64_t helper_sublv(CPUAlphaState *env, uint64_t op1, uint64_t op2) |
| { |
| uint32_t res; |
| res = op1 - op2; |
| if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) { |
| arith_excp(env, GETPC(), EXC_M_IOV, 0); |
| } |
| return res; |
| } |
| |
| uint64_t helper_mullv(CPUAlphaState *env, uint64_t op1, uint64_t op2) |
| { |
| int64_t res = (int64_t)op1 * (int64_t)op2; |
| |
| if (unlikely((int32_t)res != res)) { |
| arith_excp(env, GETPC(), EXC_M_IOV, 0); |
| } |
| return (int64_t)((int32_t)res); |
| } |
| |
| uint64_t helper_mulqv(CPUAlphaState *env, uint64_t op1, uint64_t op2) |
| { |
| uint64_t tl, th; |
| |
| muls64(&tl, &th, op1, op2); |
| /* If th != 0 && th != -1, then we had an overflow */ |
| if (unlikely((th + 1) > 1)) { |
| arith_excp(env, GETPC(), EXC_M_IOV, 0); |
| } |
| return tl; |
| } |