blob: 85648170735f2ec8fab853deffb3762b9470fe6d [file] [log] [blame]
/*
* vhost-vdpa.c
*
* Copyright(c) 2017-2018 Intel Corporation.
* Copyright(c) 2020 Red Hat, Inc.
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "clients.h"
#include "hw/virtio/virtio-net.h"
#include "net/vhost_net.h"
#include "net/vhost-vdpa.h"
#include "hw/virtio/vhost-vdpa.h"
#include "qemu/config-file.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "qemu/memalign.h"
#include "qemu/option.h"
#include "qapi/error.h"
#include <linux/vhost.h>
#include <sys/ioctl.h>
#include <err.h>
#include "standard-headers/linux/virtio_net.h"
#include "monitor/monitor.h"
#include "migration/misc.h"
#include "hw/virtio/vhost.h"
/* Todo:need to add the multiqueue support here */
typedef struct VhostVDPAState {
NetClientState nc;
struct vhost_vdpa vhost_vdpa;
NotifierWithReturn migration_state;
VHostNetState *vhost_net;
/* Control commands shadow buffers */
void *cvq_cmd_out_buffer;
virtio_net_ctrl_ack *status;
/* The device always have SVQ enabled */
bool always_svq;
/* The device can isolate CVQ in its own ASID */
bool cvq_isolated;
bool started;
} VhostVDPAState;
/*
* The array is sorted alphabetically in ascending order,
* with the exception of VHOST_INVALID_FEATURE_BIT,
* which should always be the last entry.
*/
const int vdpa_feature_bits[] = {
VIRTIO_F_ANY_LAYOUT,
VIRTIO_F_IOMMU_PLATFORM,
VIRTIO_F_NOTIFY_ON_EMPTY,
VIRTIO_F_RING_PACKED,
VIRTIO_F_RING_RESET,
VIRTIO_F_VERSION_1,
VIRTIO_NET_F_CSUM,
VIRTIO_NET_F_CTRL_GUEST_OFFLOADS,
VIRTIO_NET_F_CTRL_MAC_ADDR,
VIRTIO_NET_F_CTRL_RX,
VIRTIO_NET_F_CTRL_RX_EXTRA,
VIRTIO_NET_F_CTRL_VLAN,
VIRTIO_NET_F_CTRL_VQ,
VIRTIO_NET_F_GSO,
VIRTIO_NET_F_GUEST_CSUM,
VIRTIO_NET_F_GUEST_ECN,
VIRTIO_NET_F_GUEST_TSO4,
VIRTIO_NET_F_GUEST_TSO6,
VIRTIO_NET_F_GUEST_UFO,
VIRTIO_NET_F_GUEST_USO4,
VIRTIO_NET_F_GUEST_USO6,
VIRTIO_NET_F_HASH_REPORT,
VIRTIO_NET_F_HOST_ECN,
VIRTIO_NET_F_HOST_TSO4,
VIRTIO_NET_F_HOST_TSO6,
VIRTIO_NET_F_HOST_UFO,
VIRTIO_NET_F_HOST_USO,
VIRTIO_NET_F_MQ,
VIRTIO_NET_F_MRG_RXBUF,
VIRTIO_NET_F_MTU,
VIRTIO_NET_F_RSS,
VIRTIO_NET_F_STATUS,
VIRTIO_RING_F_EVENT_IDX,
VIRTIO_RING_F_INDIRECT_DESC,
/* VHOST_INVALID_FEATURE_BIT should always be the last entry */
VHOST_INVALID_FEATURE_BIT
};
/** Supported device specific feature bits with SVQ */
static const uint64_t vdpa_svq_device_features =
BIT_ULL(VIRTIO_NET_F_CSUM) |
BIT_ULL(VIRTIO_NET_F_GUEST_CSUM) |
BIT_ULL(VIRTIO_NET_F_CTRL_GUEST_OFFLOADS) |
BIT_ULL(VIRTIO_NET_F_MTU) |
BIT_ULL(VIRTIO_NET_F_MAC) |
BIT_ULL(VIRTIO_NET_F_GUEST_TSO4) |
BIT_ULL(VIRTIO_NET_F_GUEST_TSO6) |
BIT_ULL(VIRTIO_NET_F_GUEST_ECN) |
BIT_ULL(VIRTIO_NET_F_GUEST_UFO) |
BIT_ULL(VIRTIO_NET_F_HOST_TSO4) |
BIT_ULL(VIRTIO_NET_F_HOST_TSO6) |
BIT_ULL(VIRTIO_NET_F_HOST_ECN) |
BIT_ULL(VIRTIO_NET_F_HOST_UFO) |
BIT_ULL(VIRTIO_NET_F_MRG_RXBUF) |
BIT_ULL(VIRTIO_NET_F_STATUS) |
BIT_ULL(VIRTIO_NET_F_CTRL_VQ) |
BIT_ULL(VIRTIO_NET_F_CTRL_RX) |
BIT_ULL(VIRTIO_NET_F_CTRL_VLAN) |
BIT_ULL(VIRTIO_NET_F_CTRL_RX_EXTRA) |
BIT_ULL(VIRTIO_NET_F_MQ) |
BIT_ULL(VIRTIO_F_ANY_LAYOUT) |
BIT_ULL(VIRTIO_NET_F_CTRL_MAC_ADDR) |
/* VHOST_F_LOG_ALL is exposed by SVQ */
BIT_ULL(VHOST_F_LOG_ALL) |
BIT_ULL(VIRTIO_NET_F_HASH_REPORT) |
BIT_ULL(VIRTIO_NET_F_RSS) |
BIT_ULL(VIRTIO_NET_F_RSC_EXT) |
BIT_ULL(VIRTIO_NET_F_STANDBY) |
BIT_ULL(VIRTIO_NET_F_SPEED_DUPLEX);
#define VHOST_VDPA_NET_CVQ_ASID 1
VHostNetState *vhost_vdpa_get_vhost_net(NetClientState *nc)
{
VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
return s->vhost_net;
}
static size_t vhost_vdpa_net_cvq_cmd_len(void)
{
/*
* MAC_TABLE_SET is the ctrl command that produces the longer out buffer.
* In buffer is always 1 byte, so it should fit here
*/
return sizeof(struct virtio_net_ctrl_hdr) +
2 * sizeof(struct virtio_net_ctrl_mac) +
MAC_TABLE_ENTRIES * ETH_ALEN;
}
static size_t vhost_vdpa_net_cvq_cmd_page_len(void)
{
return ROUND_UP(vhost_vdpa_net_cvq_cmd_len(), qemu_real_host_page_size());
}
static bool vhost_vdpa_net_valid_svq_features(uint64_t features, Error **errp)
{
uint64_t invalid_dev_features =
features & ~vdpa_svq_device_features &
/* Transport are all accepted at this point */
~MAKE_64BIT_MASK(VIRTIO_TRANSPORT_F_START,
VIRTIO_TRANSPORT_F_END - VIRTIO_TRANSPORT_F_START);
if (invalid_dev_features) {
error_setg(errp, "vdpa svq does not work with features 0x%" PRIx64,
invalid_dev_features);
return false;
}
return vhost_svq_valid_features(features, errp);
}
static int vhost_vdpa_net_check_device_id(struct vhost_net *net)
{
uint32_t device_id;
int ret;
struct vhost_dev *hdev;
hdev = (struct vhost_dev *)&net->dev;
ret = hdev->vhost_ops->vhost_get_device_id(hdev, &device_id);
if (device_id != VIRTIO_ID_NET) {
return -ENOTSUP;
}
return ret;
}
static int vhost_vdpa_add(NetClientState *ncs, void *be,
int queue_pair_index, int nvqs)
{
VhostNetOptions options;
struct vhost_net *net = NULL;
VhostVDPAState *s;
int ret;
options.backend_type = VHOST_BACKEND_TYPE_VDPA;
assert(ncs->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
s = DO_UPCAST(VhostVDPAState, nc, ncs);
options.net_backend = ncs;
options.opaque = be;
options.busyloop_timeout = 0;
options.nvqs = nvqs;
net = vhost_net_init(&options);
if (!net) {
error_report("failed to init vhost_net for queue");
goto err_init;
}
s->vhost_net = net;
ret = vhost_vdpa_net_check_device_id(net);
if (ret) {
goto err_check;
}
return 0;
err_check:
vhost_net_cleanup(net);
g_free(net);
err_init:
return -1;
}
static void vhost_vdpa_cleanup(NetClientState *nc)
{
VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
/*
* If a peer NIC is attached, do not cleanup anything.
* Cleanup will happen as a part of qemu_cleanup() -> net_cleanup()
* when the guest is shutting down.
*/
if (nc->peer && nc->peer->info->type == NET_CLIENT_DRIVER_NIC) {
return;
}
munmap(s->cvq_cmd_out_buffer, vhost_vdpa_net_cvq_cmd_page_len());
munmap(s->status, vhost_vdpa_net_cvq_cmd_page_len());
if (s->vhost_net) {
vhost_net_cleanup(s->vhost_net);
g_free(s->vhost_net);
s->vhost_net = NULL;
}
if (s->vhost_vdpa.index != 0) {
return;
}
qemu_close(s->vhost_vdpa.shared->device_fd);
g_free(s->vhost_vdpa.shared);
}
/** Dummy SetSteeringEBPF to support RSS for vhost-vdpa backend */
static bool vhost_vdpa_set_steering_ebpf(NetClientState *nc, int prog_fd)
{
return true;
}
static bool vhost_vdpa_has_vnet_hdr(NetClientState *nc)
{
assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
return true;
}
static bool vhost_vdpa_has_ufo(NetClientState *nc)
{
assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
uint64_t features = 0;
features |= (1ULL << VIRTIO_NET_F_HOST_UFO);
features = vhost_net_get_features(s->vhost_net, features);
return !!(features & (1ULL << VIRTIO_NET_F_HOST_UFO));
}
static bool vhost_vdpa_check_peer_type(NetClientState *nc, ObjectClass *oc,
Error **errp)
{
const char *driver = object_class_get_name(oc);
if (!g_str_has_prefix(driver, "virtio-net-")) {
error_setg(errp, "vhost-vdpa requires frontend driver virtio-net-*");
return false;
}
return true;
}
/** Dummy receive in case qemu falls back to userland tap networking */
static ssize_t vhost_vdpa_receive(NetClientState *nc, const uint8_t *buf,
size_t size)
{
return size;
}
static void vhost_vdpa_net_log_global_enable(VhostVDPAState *s, bool enable)
{
struct vhost_vdpa *v = &s->vhost_vdpa;
VirtIONet *n;
VirtIODevice *vdev;
int data_queue_pairs, cvq, r;
/* We are only called on the first data vqs and only if x-svq is not set */
if (s->vhost_vdpa.shadow_vqs_enabled == enable) {
return;
}
vdev = v->dev->vdev;
n = VIRTIO_NET(vdev);
if (!n->vhost_started) {
return;
}
data_queue_pairs = n->multiqueue ? n->max_queue_pairs : 1;
cvq = virtio_vdev_has_feature(vdev, VIRTIO_NET_F_CTRL_VQ) ?
n->max_ncs - n->max_queue_pairs : 0;
/*
* TODO: vhost_net_stop does suspend, get_base and reset. We can be smarter
* in the future and resume the device if read-only operations between
* suspend and reset goes wrong.
*/
vhost_net_stop(vdev, n->nic->ncs, data_queue_pairs, cvq);
/* Start will check migration setup_or_active to configure or not SVQ */
r = vhost_net_start(vdev, n->nic->ncs, data_queue_pairs, cvq);
if (unlikely(r < 0)) {
error_report("unable to start vhost net: %s(%d)", g_strerror(-r), -r);
}
}
static int vdpa_net_migration_state_notifier(NotifierWithReturn *notifier,
MigrationEvent *e, Error **errp)
{
VhostVDPAState *s = container_of(notifier, VhostVDPAState, migration_state);
if (e->type == MIG_EVENT_PRECOPY_SETUP) {
vhost_vdpa_net_log_global_enable(s, true);
} else if (e->type == MIG_EVENT_PRECOPY_FAILED) {
vhost_vdpa_net_log_global_enable(s, false);
}
return 0;
}
static void vhost_vdpa_net_data_start_first(VhostVDPAState *s)
{
struct vhost_vdpa *v = &s->vhost_vdpa;
migration_add_notifier(&s->migration_state,
vdpa_net_migration_state_notifier);
if (v->shadow_vqs_enabled) {
v->shared->iova_tree = vhost_iova_tree_new(v->shared->iova_range.first,
v->shared->iova_range.last);
}
}
static int vhost_vdpa_net_data_start(NetClientState *nc)
{
VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
struct vhost_vdpa *v = &s->vhost_vdpa;
assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
if (s->always_svq ||
migration_is_setup_or_active()) {
v->shadow_vqs_enabled = true;
} else {
v->shadow_vqs_enabled = false;
}
if (v->index == 0) {
v->shared->shadow_data = v->shadow_vqs_enabled;
vhost_vdpa_net_data_start_first(s);
return 0;
}
return 0;
}
static int vhost_vdpa_net_data_load(NetClientState *nc)
{
VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
struct vhost_vdpa *v = &s->vhost_vdpa;
bool has_cvq = v->dev->vq_index_end % 2;
if (has_cvq) {
return 0;
}
for (int i = 0; i < v->dev->nvqs; ++i) {
vhost_vdpa_set_vring_ready(v, i + v->dev->vq_index);
}
return 0;
}
static void vhost_vdpa_net_client_stop(NetClientState *nc)
{
VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
struct vhost_dev *dev;
assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
if (s->vhost_vdpa.index == 0) {
migration_remove_notifier(&s->migration_state);
}
dev = s->vhost_vdpa.dev;
if (dev->vq_index + dev->nvqs == dev->vq_index_end) {
g_clear_pointer(&s->vhost_vdpa.shared->iova_tree,
vhost_iova_tree_delete);
}
}
static NetClientInfo net_vhost_vdpa_info = {
.type = NET_CLIENT_DRIVER_VHOST_VDPA,
.size = sizeof(VhostVDPAState),
.receive = vhost_vdpa_receive,
.start = vhost_vdpa_net_data_start,
.load = vhost_vdpa_net_data_load,
.stop = vhost_vdpa_net_client_stop,
.cleanup = vhost_vdpa_cleanup,
.has_vnet_hdr = vhost_vdpa_has_vnet_hdr,
.has_ufo = vhost_vdpa_has_ufo,
.check_peer_type = vhost_vdpa_check_peer_type,
.set_steering_ebpf = vhost_vdpa_set_steering_ebpf,
};
static int64_t vhost_vdpa_get_vring_group(int device_fd, unsigned vq_index,
Error **errp)
{
struct vhost_vring_state state = {
.index = vq_index,
};
int r = ioctl(device_fd, VHOST_VDPA_GET_VRING_GROUP, &state);
if (unlikely(r < 0)) {
r = -errno;
error_setg_errno(errp, errno, "Cannot get VQ %u group", vq_index);
return r;
}
return state.num;
}
static int vhost_vdpa_set_address_space_id(struct vhost_vdpa *v,
unsigned vq_group,
unsigned asid_num)
{
struct vhost_vring_state asid = {
.index = vq_group,
.num = asid_num,
};
int r;
r = ioctl(v->shared->device_fd, VHOST_VDPA_SET_GROUP_ASID, &asid);
if (unlikely(r < 0)) {
error_report("Can't set vq group %u asid %u, errno=%d (%s)",
asid.index, asid.num, errno, g_strerror(errno));
}
return r;
}
static void vhost_vdpa_cvq_unmap_buf(struct vhost_vdpa *v, void *addr)
{
VhostIOVATree *tree = v->shared->iova_tree;
DMAMap needle = {
/*
* No need to specify size or to look for more translations since
* this contiguous chunk was allocated by us.
*/
.translated_addr = (hwaddr)(uintptr_t)addr,
};
const DMAMap *map = vhost_iova_tree_find_iova(tree, &needle);
int r;
if (unlikely(!map)) {
error_report("Cannot locate expected map");
return;
}
r = vhost_vdpa_dma_unmap(v->shared, v->address_space_id, map->iova,
map->size + 1);
if (unlikely(r != 0)) {
error_report("Device cannot unmap: %s(%d)", g_strerror(r), r);
}
vhost_iova_tree_remove(tree, *map);
}
/** Map CVQ buffer. */
static int vhost_vdpa_cvq_map_buf(struct vhost_vdpa *v, void *buf, size_t size,
bool write)
{
DMAMap map = {};
int r;
map.translated_addr = (hwaddr)(uintptr_t)buf;
map.size = size - 1;
map.perm = write ? IOMMU_RW : IOMMU_RO,
r = vhost_iova_tree_map_alloc(v->shared->iova_tree, &map);
if (unlikely(r != IOVA_OK)) {
error_report("Cannot map injected element");
return r;
}
r = vhost_vdpa_dma_map(v->shared, v->address_space_id, map.iova,
vhost_vdpa_net_cvq_cmd_page_len(), buf, !write);
if (unlikely(r < 0)) {
goto dma_map_err;
}
return 0;
dma_map_err:
vhost_iova_tree_remove(v->shared->iova_tree, map);
return r;
}
static int vhost_vdpa_net_cvq_start(NetClientState *nc)
{
VhostVDPAState *s;
struct vhost_vdpa *v;
int64_t cvq_group;
int r;
Error *err = NULL;
assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
s = DO_UPCAST(VhostVDPAState, nc, nc);
v = &s->vhost_vdpa;
v->shadow_vqs_enabled = v->shared->shadow_data;
s->vhost_vdpa.address_space_id = VHOST_VDPA_GUEST_PA_ASID;
if (v->shared->shadow_data) {
/* SVQ is already configured for all virtqueues */
goto out;
}
/*
* If we early return in these cases SVQ will not be enabled. The migration
* will be blocked as long as vhost-vdpa backends will not offer _F_LOG.
*/
if (!vhost_vdpa_net_valid_svq_features(v->dev->features, NULL)) {
return 0;
}
if (!s->cvq_isolated) {
return 0;
}
cvq_group = vhost_vdpa_get_vring_group(v->shared->device_fd,
v->dev->vq_index_end - 1,
&err);
if (unlikely(cvq_group < 0)) {
error_report_err(err);
return cvq_group;
}
r = vhost_vdpa_set_address_space_id(v, cvq_group, VHOST_VDPA_NET_CVQ_ASID);
if (unlikely(r < 0)) {
return r;
}
v->shadow_vqs_enabled = true;
s->vhost_vdpa.address_space_id = VHOST_VDPA_NET_CVQ_ASID;
out:
if (!s->vhost_vdpa.shadow_vqs_enabled) {
return 0;
}
/*
* If other vhost_vdpa already have an iova_tree, reuse it for simplicity,
* whether CVQ shares ASID with guest or not, because:
* - Memory listener need access to guest's memory addresses allocated in
* the IOVA tree.
* - There should be plenty of IOVA address space for both ASID not to
* worry about collisions between them. Guest's translations are still
* validated with virtio virtqueue_pop so there is no risk for the guest
* to access memory that it shouldn't.
*
* To allocate a iova tree per ASID is doable but it complicates the code
* and it is not worth it for the moment.
*/
if (!v->shared->iova_tree) {
v->shared->iova_tree = vhost_iova_tree_new(v->shared->iova_range.first,
v->shared->iova_range.last);
}
r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer,
vhost_vdpa_net_cvq_cmd_page_len(), false);
if (unlikely(r < 0)) {
return r;
}
r = vhost_vdpa_cvq_map_buf(&s->vhost_vdpa, s->status,
vhost_vdpa_net_cvq_cmd_page_len(), true);
if (unlikely(r < 0)) {
vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer);
}
return r;
}
static void vhost_vdpa_net_cvq_stop(NetClientState *nc)
{
VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
if (s->vhost_vdpa.shadow_vqs_enabled) {
vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->cvq_cmd_out_buffer);
vhost_vdpa_cvq_unmap_buf(&s->vhost_vdpa, s->status);
}
vhost_vdpa_net_client_stop(nc);
}
static ssize_t vhost_vdpa_net_cvq_add(VhostVDPAState *s,
const struct iovec *out_sg, size_t out_num,
const struct iovec *in_sg, size_t in_num)
{
VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0);
int r;
r = vhost_svq_add(svq, out_sg, out_num, in_sg, in_num, NULL);
if (unlikely(r != 0)) {
if (unlikely(r == -ENOSPC)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: No space on device queue\n",
__func__);
}
}
return r;
}
/*
* Convenience wrapper to poll SVQ for multiple control commands.
*
* Caller should hold the BQL when invoking this function, and should take
* the answer before SVQ pulls by itself when BQL is released.
*/
static ssize_t vhost_vdpa_net_svq_poll(VhostVDPAState *s, size_t cmds_in_flight)
{
VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0);
return vhost_svq_poll(svq, cmds_in_flight);
}
static void vhost_vdpa_net_load_cursor_reset(VhostVDPAState *s,
struct iovec *out_cursor,
struct iovec *in_cursor)
{
/* reset the cursor of the output buffer for the device */
out_cursor->iov_base = s->cvq_cmd_out_buffer;
out_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len();
/* reset the cursor of the in buffer for the device */
in_cursor->iov_base = s->status;
in_cursor->iov_len = vhost_vdpa_net_cvq_cmd_page_len();
}
/*
* Poll SVQ for multiple pending control commands and check the device's ack.
*
* Caller should hold the BQL when invoking this function.
*
* @s: The VhostVDPAState
* @len: The length of the pending status shadow buffer
*/
static ssize_t vhost_vdpa_net_svq_flush(VhostVDPAState *s, size_t len)
{
/* device uses a one-byte length ack for each control command */
ssize_t dev_written = vhost_vdpa_net_svq_poll(s, len);
if (unlikely(dev_written != len)) {
return -EIO;
}
/* check the device's ack */
for (int i = 0; i < len; ++i) {
if (s->status[i] != VIRTIO_NET_OK) {
return -EIO;
}
}
return 0;
}
static ssize_t vhost_vdpa_net_load_cmd(VhostVDPAState *s,
struct iovec *out_cursor,
struct iovec *in_cursor, uint8_t class,
uint8_t cmd, const struct iovec *data_sg,
size_t data_num)
{
const struct virtio_net_ctrl_hdr ctrl = {
.class = class,
.cmd = cmd,
};
size_t data_size = iov_size(data_sg, data_num), cmd_size;
struct iovec out, in;
ssize_t r;
unsigned dummy_cursor_iov_cnt;
VhostShadowVirtqueue *svq = g_ptr_array_index(s->vhost_vdpa.shadow_vqs, 0);
assert(data_size < vhost_vdpa_net_cvq_cmd_page_len() - sizeof(ctrl));
cmd_size = sizeof(ctrl) + data_size;
if (vhost_svq_available_slots(svq) < 2 ||
iov_size(out_cursor, 1) < cmd_size) {
/*
* It is time to flush all pending control commands if SVQ is full
* or control commands shadow buffers are full.
*
* We can poll here since we've had BQL from the time
* we sent the descriptor.
*/
r = vhost_vdpa_net_svq_flush(s, in_cursor->iov_base -
(void *)s->status);
if (unlikely(r < 0)) {
return r;
}
vhost_vdpa_net_load_cursor_reset(s, out_cursor, in_cursor);
}
/* pack the CVQ command header */
iov_from_buf(out_cursor, 1, 0, &ctrl, sizeof(ctrl));
/* pack the CVQ command command-specific-data */
iov_to_buf(data_sg, data_num, 0,
out_cursor->iov_base + sizeof(ctrl), data_size);
/* extract the required buffer from the cursor for output */
iov_copy(&out, 1, out_cursor, 1, 0, cmd_size);
/* extract the required buffer from the cursor for input */
iov_copy(&in, 1, in_cursor, 1, 0, sizeof(*s->status));
r = vhost_vdpa_net_cvq_add(s, &out, 1, &in, 1);
if (unlikely(r < 0)) {
return r;
}
/* iterate the cursors */
dummy_cursor_iov_cnt = 1;
iov_discard_front(&out_cursor, &dummy_cursor_iov_cnt, cmd_size);
dummy_cursor_iov_cnt = 1;
iov_discard_front(&in_cursor, &dummy_cursor_iov_cnt, sizeof(*s->status));
return 0;
}
static int vhost_vdpa_net_load_mac(VhostVDPAState *s, const VirtIONet *n,
struct iovec *out_cursor,
struct iovec *in_cursor)
{
if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_MAC_ADDR)) {
const struct iovec data = {
.iov_base = (void *)n->mac,
.iov_len = sizeof(n->mac),
};
ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
VIRTIO_NET_CTRL_MAC,
VIRTIO_NET_CTRL_MAC_ADDR_SET,
&data, 1);
if (unlikely(r < 0)) {
return r;
}
}
/*
* According to VirtIO standard, "The device MUST have an
* empty MAC filtering table on reset.".
*
* Therefore, there is no need to send this CVQ command if the
* driver also sets an empty MAC filter table, which aligns with
* the device's defaults.
*
* Note that the device's defaults can mismatch the driver's
* configuration only at live migration.
*/
if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX) ||
n->mac_table.in_use == 0) {
return 0;
}
uint32_t uni_entries = n->mac_table.first_multi,
uni_macs_size = uni_entries * ETH_ALEN,
mul_entries = n->mac_table.in_use - uni_entries,
mul_macs_size = mul_entries * ETH_ALEN;
struct virtio_net_ctrl_mac uni = {
.entries = cpu_to_le32(uni_entries),
};
struct virtio_net_ctrl_mac mul = {
.entries = cpu_to_le32(mul_entries),
};
const struct iovec data[] = {
{
.iov_base = &uni,
.iov_len = sizeof(uni),
}, {
.iov_base = n->mac_table.macs,
.iov_len = uni_macs_size,
}, {
.iov_base = &mul,
.iov_len = sizeof(mul),
}, {
.iov_base = &n->mac_table.macs[uni_macs_size],
.iov_len = mul_macs_size,
},
};
ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
VIRTIO_NET_CTRL_MAC,
VIRTIO_NET_CTRL_MAC_TABLE_SET,
data, ARRAY_SIZE(data));
if (unlikely(r < 0)) {
return r;
}
return 0;
}
static int vhost_vdpa_net_load_rss(VhostVDPAState *s, const VirtIONet *n,
struct iovec *out_cursor,
struct iovec *in_cursor, bool do_rss)
{
struct virtio_net_rss_config cfg = {};
ssize_t r;
g_autofree uint16_t *table = NULL;
/*
* According to VirtIO standard, "Initially the device has all hash
* types disabled and reports only VIRTIO_NET_HASH_REPORT_NONE.".
*
* Therefore, there is no need to send this CVQ command if the
* driver disables the all hash types, which aligns with
* the device's defaults.
*
* Note that the device's defaults can mismatch the driver's
* configuration only at live migration.
*/
if (!n->rss_data.enabled ||
n->rss_data.hash_types == VIRTIO_NET_HASH_REPORT_NONE) {
return 0;
}
table = g_malloc_n(n->rss_data.indirections_len,
sizeof(n->rss_data.indirections_table[0]));
cfg.hash_types = cpu_to_le32(n->rss_data.hash_types);
if (do_rss) {
/*
* According to VirtIO standard, "Number of entries in indirection_table
* is (indirection_table_mask + 1)".
*/
cfg.indirection_table_mask = cpu_to_le16(n->rss_data.indirections_len -
1);
cfg.unclassified_queue = cpu_to_le16(n->rss_data.default_queue);
for (int i = 0; i < n->rss_data.indirections_len; ++i) {
table[i] = cpu_to_le16(n->rss_data.indirections_table[i]);
}
cfg.max_tx_vq = cpu_to_le16(n->curr_queue_pairs);
} else {
/*
* According to VirtIO standard, "Field reserved MUST contain zeroes.
* It is defined to make the structure to match the layout of
* virtio_net_rss_config structure, defined in 5.1.6.5.7.".
*
* Therefore, we need to zero the fields in
* struct virtio_net_rss_config, which corresponds to the
* `reserved` field in struct virtio_net_hash_config.
*
* Note that all other fields are zeroed at their definitions,
* except for the `indirection_table` field, where the actual data
* is stored in the `table` variable to ensure compatibility
* with RSS case. Therefore, we need to zero the `table` variable here.
*/
table[0] = 0;
}
/*
* Considering that virtio_net_handle_rss() currently does not restore
* the hash key length parsed from the CVQ command sent from the guest
* into n->rss_data and uses the maximum key length in other code, so
* we also employ the maximum key length here.
*/
cfg.hash_key_length = sizeof(n->rss_data.key);
const struct iovec data[] = {
{
.iov_base = &cfg,
.iov_len = offsetof(struct virtio_net_rss_config,
indirection_table),
}, {
.iov_base = table,
.iov_len = n->rss_data.indirections_len *
sizeof(n->rss_data.indirections_table[0]),
}, {
.iov_base = &cfg.max_tx_vq,
.iov_len = offsetof(struct virtio_net_rss_config, hash_key_data) -
offsetof(struct virtio_net_rss_config, max_tx_vq),
}, {
.iov_base = (void *)n->rss_data.key,
.iov_len = sizeof(n->rss_data.key),
}
};
r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
VIRTIO_NET_CTRL_MQ,
do_rss ? VIRTIO_NET_CTRL_MQ_RSS_CONFIG :
VIRTIO_NET_CTRL_MQ_HASH_CONFIG,
data, ARRAY_SIZE(data));
if (unlikely(r < 0)) {
return r;
}
return 0;
}
static int vhost_vdpa_net_load_mq(VhostVDPAState *s,
const VirtIONet *n,
struct iovec *out_cursor,
struct iovec *in_cursor)
{
struct virtio_net_ctrl_mq mq;
ssize_t r;
if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_MQ)) {
return 0;
}
mq.virtqueue_pairs = cpu_to_le16(n->curr_queue_pairs);
const struct iovec data = {
.iov_base = &mq,
.iov_len = sizeof(mq),
};
r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
VIRTIO_NET_CTRL_MQ,
VIRTIO_NET_CTRL_MQ_VQ_PAIRS_SET,
&data, 1);
if (unlikely(r < 0)) {
return r;
}
if (virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_RSS)) {
/* load the receive-side scaling state */
r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, true);
if (unlikely(r < 0)) {
return r;
}
} else if (virtio_vdev_has_feature(&n->parent_obj,
VIRTIO_NET_F_HASH_REPORT)) {
/* load the hash calculation state */
r = vhost_vdpa_net_load_rss(s, n, out_cursor, in_cursor, false);
if (unlikely(r < 0)) {
return r;
}
}
return 0;
}
static int vhost_vdpa_net_load_offloads(VhostVDPAState *s,
const VirtIONet *n,
struct iovec *out_cursor,
struct iovec *in_cursor)
{
uint64_t offloads;
ssize_t r;
if (!virtio_vdev_has_feature(&n->parent_obj,
VIRTIO_NET_F_CTRL_GUEST_OFFLOADS)) {
return 0;
}
if (n->curr_guest_offloads == virtio_net_supported_guest_offloads(n)) {
/*
* According to VirtIO standard, "Upon feature negotiation
* corresponding offload gets enabled to preserve
* backward compatibility.".
*
* Therefore, there is no need to send this CVQ command if the
* driver also enables all supported offloads, which aligns with
* the device's defaults.
*
* Note that the device's defaults can mismatch the driver's
* configuration only at live migration.
*/
return 0;
}
offloads = cpu_to_le64(n->curr_guest_offloads);
const struct iovec data = {
.iov_base = &offloads,
.iov_len = sizeof(offloads),
};
r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
VIRTIO_NET_CTRL_GUEST_OFFLOADS,
VIRTIO_NET_CTRL_GUEST_OFFLOADS_SET,
&data, 1);
if (unlikely(r < 0)) {
return r;
}
return 0;
}
static int vhost_vdpa_net_load_rx_mode(VhostVDPAState *s,
struct iovec *out_cursor,
struct iovec *in_cursor,
uint8_t cmd,
uint8_t on)
{
const struct iovec data = {
.iov_base = &on,
.iov_len = sizeof(on),
};
ssize_t r;
r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
VIRTIO_NET_CTRL_RX, cmd, &data, 1);
if (unlikely(r < 0)) {
return r;
}
return 0;
}
static int vhost_vdpa_net_load_rx(VhostVDPAState *s,
const VirtIONet *n,
struct iovec *out_cursor,
struct iovec *in_cursor)
{
ssize_t r;
if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX)) {
return 0;
}
/*
* According to virtio_net_reset(), device turns promiscuous mode
* on by default.
*
* Additionally, according to VirtIO standard, "Since there are
* no guarantees, it can use a hash filter or silently switch to
* allmulti or promiscuous mode if it is given too many addresses.".
* QEMU marks `n->mac_table.uni_overflow` if guest sets too many
* non-multicast MAC addresses, indicating that promiscuous mode
* should be enabled.
*
* Therefore, QEMU should only send this CVQ command if the
* `n->mac_table.uni_overflow` is not marked and `n->promisc` is off,
* which sets promiscuous mode on, different from the device's defaults.
*
* Note that the device's defaults can mismatch the driver's
* configuration only at live migration.
*/
if (!n->mac_table.uni_overflow && !n->promisc) {
r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
VIRTIO_NET_CTRL_RX_PROMISC, 0);
if (unlikely(r < 0)) {
return r;
}
}
/*
* According to virtio_net_reset(), device turns all-multicast mode
* off by default.
*
* According to VirtIO standard, "Since there are no guarantees,
* it can use a hash filter or silently switch to allmulti or
* promiscuous mode if it is given too many addresses.". QEMU marks
* `n->mac_table.multi_overflow` if guest sets too many
* non-multicast MAC addresses.
*
* Therefore, QEMU should only send this CVQ command if the
* `n->mac_table.multi_overflow` is marked or `n->allmulti` is on,
* which sets all-multicast mode on, different from the device's defaults.
*
* Note that the device's defaults can mismatch the driver's
* configuration only at live migration.
*/
if (n->mac_table.multi_overflow || n->allmulti) {
r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
VIRTIO_NET_CTRL_RX_ALLMULTI, 1);
if (unlikely(r < 0)) {
return r;
}
}
if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_RX_EXTRA)) {
return 0;
}
/*
* According to virtio_net_reset(), device turns all-unicast mode
* off by default.
*
* Therefore, QEMU should only send this CVQ command if the driver
* sets all-unicast mode on, different from the device's defaults.
*
* Note that the device's defaults can mismatch the driver's
* configuration only at live migration.
*/
if (n->alluni) {
r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
VIRTIO_NET_CTRL_RX_ALLUNI, 1);
if (r < 0) {
return r;
}
}
/*
* According to virtio_net_reset(), device turns non-multicast mode
* off by default.
*
* Therefore, QEMU should only send this CVQ command if the driver
* sets non-multicast mode on, different from the device's defaults.
*
* Note that the device's defaults can mismatch the driver's
* configuration only at live migration.
*/
if (n->nomulti) {
r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
VIRTIO_NET_CTRL_RX_NOMULTI, 1);
if (r < 0) {
return r;
}
}
/*
* According to virtio_net_reset(), device turns non-unicast mode
* off by default.
*
* Therefore, QEMU should only send this CVQ command if the driver
* sets non-unicast mode on, different from the device's defaults.
*
* Note that the device's defaults can mismatch the driver's
* configuration only at live migration.
*/
if (n->nouni) {
r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
VIRTIO_NET_CTRL_RX_NOUNI, 1);
if (r < 0) {
return r;
}
}
/*
* According to virtio_net_reset(), device turns non-broadcast mode
* off by default.
*
* Therefore, QEMU should only send this CVQ command if the driver
* sets non-broadcast mode on, different from the device's defaults.
*
* Note that the device's defaults can mismatch the driver's
* configuration only at live migration.
*/
if (n->nobcast) {
r = vhost_vdpa_net_load_rx_mode(s, out_cursor, in_cursor,
VIRTIO_NET_CTRL_RX_NOBCAST, 1);
if (r < 0) {
return r;
}
}
return 0;
}
static int vhost_vdpa_net_load_single_vlan(VhostVDPAState *s,
const VirtIONet *n,
struct iovec *out_cursor,
struct iovec *in_cursor,
uint16_t vid)
{
const struct iovec data = {
.iov_base = &vid,
.iov_len = sizeof(vid),
};
ssize_t r = vhost_vdpa_net_load_cmd(s, out_cursor, in_cursor,
VIRTIO_NET_CTRL_VLAN,
VIRTIO_NET_CTRL_VLAN_ADD,
&data, 1);
if (unlikely(r < 0)) {
return r;
}
return 0;
}
static int vhost_vdpa_net_load_vlan(VhostVDPAState *s,
const VirtIONet *n,
struct iovec *out_cursor,
struct iovec *in_cursor)
{
int r;
if (!virtio_vdev_has_feature(&n->parent_obj, VIRTIO_NET_F_CTRL_VLAN)) {
return 0;
}
for (int i = 0; i < MAX_VLAN >> 5; i++) {
for (int j = 0; n->vlans[i] && j <= 0x1f; j++) {
if (n->vlans[i] & (1U << j)) {
r = vhost_vdpa_net_load_single_vlan(s, n, out_cursor,
in_cursor, (i << 5) + j);
if (unlikely(r != 0)) {
return r;
}
}
}
}
return 0;
}
static int vhost_vdpa_net_cvq_load(NetClientState *nc)
{
VhostVDPAState *s = DO_UPCAST(VhostVDPAState, nc, nc);
struct vhost_vdpa *v = &s->vhost_vdpa;
const VirtIONet *n;
int r;
struct iovec out_cursor, in_cursor;
assert(nc->info->type == NET_CLIENT_DRIVER_VHOST_VDPA);
vhost_vdpa_set_vring_ready(v, v->dev->vq_index);
if (v->shadow_vqs_enabled) {
n = VIRTIO_NET(v->dev->vdev);
vhost_vdpa_net_load_cursor_reset(s, &out_cursor, &in_cursor);
r = vhost_vdpa_net_load_mac(s, n, &out_cursor, &in_cursor);
if (unlikely(r < 0)) {
return r;
}
r = vhost_vdpa_net_load_mq(s, n, &out_cursor, &in_cursor);
if (unlikely(r)) {
return r;
}
r = vhost_vdpa_net_load_offloads(s, n, &out_cursor, &in_cursor);
if (unlikely(r)) {
return r;
}
r = vhost_vdpa_net_load_rx(s, n, &out_cursor, &in_cursor);
if (unlikely(r)) {
return r;
}
r = vhost_vdpa_net_load_vlan(s, n, &out_cursor, &in_cursor);
if (unlikely(r)) {
return r;
}
/*
* We need to poll and check all pending device's used buffers.
*
* We can poll here since we've had BQL from the time
* we sent the descriptor.
*/
r = vhost_vdpa_net_svq_flush(s, in_cursor.iov_base - (void *)s->status);
if (unlikely(r)) {
return r;
}
}
for (int i = 0; i < v->dev->vq_index; ++i) {
vhost_vdpa_set_vring_ready(v, i);
}
return 0;
}
static NetClientInfo net_vhost_vdpa_cvq_info = {
.type = NET_CLIENT_DRIVER_VHOST_VDPA,
.size = sizeof(VhostVDPAState),
.receive = vhost_vdpa_receive,
.start = vhost_vdpa_net_cvq_start,
.load = vhost_vdpa_net_cvq_load,
.stop = vhost_vdpa_net_cvq_stop,
.cleanup = vhost_vdpa_cleanup,
.has_vnet_hdr = vhost_vdpa_has_vnet_hdr,
.has_ufo = vhost_vdpa_has_ufo,
.check_peer_type = vhost_vdpa_check_peer_type,
.set_steering_ebpf = vhost_vdpa_set_steering_ebpf,
};
/*
* Forward the excessive VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command to
* vdpa device.
*
* Considering that QEMU cannot send the entire filter table to the
* vdpa device, it should send the VIRTIO_NET_CTRL_RX_PROMISC CVQ
* command to enable promiscuous mode to receive all packets,
* according to VirtIO standard, "Since there are no guarantees,
* it can use a hash filter or silently switch to allmulti or
* promiscuous mode if it is given too many addresses.".
*
* Since QEMU ignores MAC addresses beyond `MAC_TABLE_ENTRIES` and
* marks `n->mac_table.x_overflow` accordingly, it should have
* the same effect on the device model to receive
* (`MAC_TABLE_ENTRIES` + 1) or more non-multicast MAC addresses.
* The same applies to multicast MAC addresses.
*
* Therefore, QEMU can provide the device model with a fake
* VIRTIO_NET_CTRL_MAC_TABLE_SET command with (`MAC_TABLE_ENTRIES` + 1)
* non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1) multicast
* MAC addresses. This ensures that the device model marks
* `n->mac_table.uni_overflow` and `n->mac_table.multi_overflow`,
* allowing all packets to be received, which aligns with the
* state of the vdpa device.
*/
static int vhost_vdpa_net_excessive_mac_filter_cvq_add(VhostVDPAState *s,
VirtQueueElement *elem,
struct iovec *out,
const struct iovec *in)
{
struct virtio_net_ctrl_mac mac_data, *mac_ptr;
struct virtio_net_ctrl_hdr *hdr_ptr;
uint32_t cursor;
ssize_t r;
uint8_t on = 1;
/* parse the non-multicast MAC address entries from CVQ command */
cursor = sizeof(*hdr_ptr);
r = iov_to_buf(elem->out_sg, elem->out_num, cursor,
&mac_data, sizeof(mac_data));
if (unlikely(r != sizeof(mac_data))) {
/*
* If the CVQ command is invalid, we should simulate the vdpa device
* to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
*/
*s->status = VIRTIO_NET_ERR;
return sizeof(*s->status);
}
cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN;
/* parse the multicast MAC address entries from CVQ command */
r = iov_to_buf(elem->out_sg, elem->out_num, cursor,
&mac_data, sizeof(mac_data));
if (r != sizeof(mac_data)) {
/*
* If the CVQ command is invalid, we should simulate the vdpa device
* to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
*/
*s->status = VIRTIO_NET_ERR;
return sizeof(*s->status);
}
cursor += sizeof(mac_data) + le32_to_cpu(mac_data.entries) * ETH_ALEN;
/* validate the CVQ command */
if (iov_size(elem->out_sg, elem->out_num) != cursor) {
/*
* If the CVQ command is invalid, we should simulate the vdpa device
* to reject the VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
*/
*s->status = VIRTIO_NET_ERR;
return sizeof(*s->status);
}
/*
* According to VirtIO standard, "Since there are no guarantees,
* it can use a hash filter or silently switch to allmulti or
* promiscuous mode if it is given too many addresses.".
*
* Therefore, considering that QEMU is unable to send the entire
* filter table to the vdpa device, it should send the
* VIRTIO_NET_CTRL_RX_PROMISC CVQ command to enable promiscuous mode
*/
hdr_ptr = out->iov_base;
out->iov_len = sizeof(*hdr_ptr) + sizeof(on);
hdr_ptr->class = VIRTIO_NET_CTRL_RX;
hdr_ptr->cmd = VIRTIO_NET_CTRL_RX_PROMISC;
iov_from_buf(out, 1, sizeof(*hdr_ptr), &on, sizeof(on));
r = vhost_vdpa_net_cvq_add(s, out, 1, in, 1);
if (unlikely(r < 0)) {
return r;
}
/*
* We can poll here since we've had BQL from the time
* we sent the descriptor.
*/
r = vhost_vdpa_net_svq_poll(s, 1);
if (unlikely(r < sizeof(*s->status))) {
return r;
}
if (*s->status != VIRTIO_NET_OK) {
return sizeof(*s->status);
}
/*
* QEMU should also send a fake VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ
* command to the device model, including (`MAC_TABLE_ENTRIES` + 1)
* non-multicast MAC addresses and (`MAC_TABLE_ENTRIES` + 1)
* multicast MAC addresses.
*
* By doing so, the device model can mark `n->mac_table.uni_overflow`
* and `n->mac_table.multi_overflow`, enabling all packets to be
* received, which aligns with the state of the vdpa device.
*/
cursor = 0;
uint32_t fake_uni_entries = MAC_TABLE_ENTRIES + 1,
fake_mul_entries = MAC_TABLE_ENTRIES + 1,
fake_cvq_size = sizeof(struct virtio_net_ctrl_hdr) +
sizeof(mac_data) + fake_uni_entries * ETH_ALEN +
sizeof(mac_data) + fake_mul_entries * ETH_ALEN;
assert(fake_cvq_size < vhost_vdpa_net_cvq_cmd_page_len());
out->iov_len = fake_cvq_size;
/* pack the header for fake CVQ command */
hdr_ptr = out->iov_base + cursor;
hdr_ptr->class = VIRTIO_NET_CTRL_MAC;
hdr_ptr->cmd = VIRTIO_NET_CTRL_MAC_TABLE_SET;
cursor += sizeof(*hdr_ptr);
/*
* Pack the non-multicast MAC addresses part for fake CVQ command.
*
* According to virtio_net_handle_mac(), QEMU doesn't verify the MAC
* addresses provided in CVQ command. Therefore, only the entries
* field need to be prepared in the CVQ command.
*/
mac_ptr = out->iov_base + cursor;
mac_ptr->entries = cpu_to_le32(fake_uni_entries);
cursor += sizeof(*mac_ptr) + fake_uni_entries * ETH_ALEN;
/*
* Pack the multicast MAC addresses part for fake CVQ command.
*
* According to virtio_net_handle_mac(), QEMU doesn't verify the MAC
* addresses provided in CVQ command. Therefore, only the entries
* field need to be prepared in the CVQ command.
*/
mac_ptr = out->iov_base + cursor;
mac_ptr->entries = cpu_to_le32(fake_mul_entries);
/*
* Simulating QEMU poll a vdpa device used buffer
* for VIRTIO_NET_CTRL_MAC_TABLE_SET CVQ command
*/
return sizeof(*s->status);
}
/**
* Validate and copy control virtqueue commands.
*
* Following QEMU guidelines, we offer a copy of the buffers to the device to
* prevent TOCTOU bugs.
*/
static int vhost_vdpa_net_handle_ctrl_avail(VhostShadowVirtqueue *svq,
VirtQueueElement *elem,
void *opaque)
{
VhostVDPAState *s = opaque;
size_t in_len;
const struct virtio_net_ctrl_hdr *ctrl;
virtio_net_ctrl_ack status = VIRTIO_NET_ERR;
/* Out buffer sent to both the vdpa device and the device model */
struct iovec out = {
.iov_base = s->cvq_cmd_out_buffer,
};
/* in buffer used for device model */
const struct iovec model_in = {
.iov_base = &status,
.iov_len = sizeof(status),
};
/* in buffer used for vdpa device */
const struct iovec vdpa_in = {
.iov_base = s->status,
.iov_len = sizeof(*s->status),
};
ssize_t dev_written = -EINVAL;
out.iov_len = iov_to_buf(elem->out_sg, elem->out_num, 0,
s->cvq_cmd_out_buffer,
vhost_vdpa_net_cvq_cmd_page_len());
ctrl = s->cvq_cmd_out_buffer;
if (ctrl->class == VIRTIO_NET_CTRL_ANNOUNCE) {
/*
* Guest announce capability is emulated by qemu, so don't forward to
* the device.
*/
dev_written = sizeof(status);
*s->status = VIRTIO_NET_OK;
} else if (unlikely(ctrl->class == VIRTIO_NET_CTRL_MAC &&
ctrl->cmd == VIRTIO_NET_CTRL_MAC_TABLE_SET &&
iov_size(elem->out_sg, elem->out_num) > out.iov_len)) {
/*
* Due to the size limitation of the out buffer sent to the vdpa device,
* which is determined by vhost_vdpa_net_cvq_cmd_page_len(), excessive
* MAC addresses set by the driver for the filter table can cause
* truncation of the CVQ command in QEMU. As a result, the vdpa device
* rejects the flawed CVQ command.
*
* Therefore, QEMU must handle this situation instead of sending
* the CVQ command directly.
*/
dev_written = vhost_vdpa_net_excessive_mac_filter_cvq_add(s, elem,
&out, &vdpa_in);
if (unlikely(dev_written < 0)) {
goto out;
}
} else {
ssize_t r;
r = vhost_vdpa_net_cvq_add(s, &out, 1, &vdpa_in, 1);
if (unlikely(r < 0)) {
dev_written = r;
goto out;
}
/*
* We can poll here since we've had BQL from the time
* we sent the descriptor.
*/
dev_written = vhost_vdpa_net_svq_poll(s, 1);
}
if (unlikely(dev_written < sizeof(status))) {
error_report("Insufficient written data (%zu)", dev_written);
goto out;
}
if (*s->status != VIRTIO_NET_OK) {
goto out;
}
status = VIRTIO_NET_ERR;
virtio_net_handle_ctrl_iov(svq->vdev, &model_in, 1, &out, 1);
if (status != VIRTIO_NET_OK) {
error_report("Bad CVQ processing in model");
}
out:
in_len = iov_from_buf(elem->in_sg, elem->in_num, 0, &status,
sizeof(status));
if (unlikely(in_len < sizeof(status))) {
error_report("Bad device CVQ written length");
}
vhost_svq_push_elem(svq, elem, MIN(in_len, sizeof(status)));
/*
* `elem` belongs to vhost_vdpa_net_handle_ctrl_avail() only when
* the function successfully forwards the CVQ command, indicated
* by a non-negative value of `dev_written`. Otherwise, it still
* belongs to SVQ.
* This function should only free the `elem` when it owns.
*/
if (dev_written >= 0) {
g_free(elem);
}
return dev_written < 0 ? dev_written : 0;
}
static const VhostShadowVirtqueueOps vhost_vdpa_net_svq_ops = {
.avail_handler = vhost_vdpa_net_handle_ctrl_avail,
};
/**
* Probe if CVQ is isolated
*
* @device_fd The vdpa device fd
* @features Features offered by the device.
* @cvq_index The control vq pair index
*
* Returns <0 in case of failure, 0 if false and 1 if true.
*/
static int vhost_vdpa_probe_cvq_isolation(int device_fd, uint64_t features,
int cvq_index, Error **errp)
{
uint64_t backend_features;
int64_t cvq_group;
uint8_t status = VIRTIO_CONFIG_S_ACKNOWLEDGE |
VIRTIO_CONFIG_S_DRIVER;
int r;
ERRP_GUARD();
r = ioctl(device_fd, VHOST_GET_BACKEND_FEATURES, &backend_features);
if (unlikely(r < 0)) {
error_setg_errno(errp, errno, "Cannot get vdpa backend_features");
return r;
}
if (!(backend_features & BIT_ULL(VHOST_BACKEND_F_IOTLB_ASID))) {
return 0;
}
r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status);
if (unlikely(r)) {
error_setg_errno(errp, -r, "Cannot set device status");
goto out;
}
r = ioctl(device_fd, VHOST_SET_FEATURES, &features);
if (unlikely(r)) {
error_setg_errno(errp, -r, "Cannot set features");
goto out;
}
status |= VIRTIO_CONFIG_S_FEATURES_OK;
r = ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status);
if (unlikely(r)) {
error_setg_errno(errp, -r, "Cannot set device status");
goto out;
}
cvq_group = vhost_vdpa_get_vring_group(device_fd, cvq_index, errp);
if (unlikely(cvq_group < 0)) {
if (cvq_group != -ENOTSUP) {
r = cvq_group;
goto out;
}
/*
* The kernel report VHOST_BACKEND_F_IOTLB_ASID if the vdpa frontend
* support ASID even if the parent driver does not. The CVQ cannot be
* isolated in this case.
*/
error_free(*errp);
*errp = NULL;
r = 0;
goto out;
}
for (int i = 0; i < cvq_index; ++i) {
int64_t group = vhost_vdpa_get_vring_group(device_fd, i, errp);
if (unlikely(group < 0)) {
r = group;
goto out;
}
if (group == (int64_t)cvq_group) {
r = 0;
goto out;
}
}
r = 1;
out:
status = 0;
ioctl(device_fd, VHOST_VDPA_SET_STATUS, &status);
return r;
}
static NetClientState *net_vhost_vdpa_init(NetClientState *peer,
const char *device,
const char *name,
int vdpa_device_fd,
int queue_pair_index,
int nvqs,
bool is_datapath,
bool svq,
struct vhost_vdpa_iova_range iova_range,
uint64_t features,
VhostVDPAShared *shared,
Error **errp)
{
NetClientState *nc = NULL;
VhostVDPAState *s;
int ret = 0;
assert(name);
int cvq_isolated = 0;
if (is_datapath) {
nc = qemu_new_net_client(&net_vhost_vdpa_info, peer, device,
name);
} else {
cvq_isolated = vhost_vdpa_probe_cvq_isolation(vdpa_device_fd, features,
queue_pair_index * 2,
errp);
if (unlikely(cvq_isolated < 0)) {
return NULL;
}
nc = qemu_new_net_control_client(&net_vhost_vdpa_cvq_info, peer,
device, name);
}
qemu_set_info_str(nc, TYPE_VHOST_VDPA);
s = DO_UPCAST(VhostVDPAState, nc, nc);
s->vhost_vdpa.index = queue_pair_index;
s->always_svq = svq;
s->migration_state.notify = NULL;
s->vhost_vdpa.shadow_vqs_enabled = svq;
if (queue_pair_index == 0) {
vhost_vdpa_net_valid_svq_features(features,
&s->vhost_vdpa.migration_blocker);
s->vhost_vdpa.shared = g_new0(VhostVDPAShared, 1);
s->vhost_vdpa.shared->device_fd = vdpa_device_fd;
s->vhost_vdpa.shared->iova_range = iova_range;
s->vhost_vdpa.shared->shadow_data = svq;
} else if (!is_datapath) {
s->cvq_cmd_out_buffer = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(),
PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS, -1, 0);
s->status = mmap(NULL, vhost_vdpa_net_cvq_cmd_page_len(),
PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS,
-1, 0);
s->vhost_vdpa.shadow_vq_ops = &vhost_vdpa_net_svq_ops;
s->vhost_vdpa.shadow_vq_ops_opaque = s;
s->cvq_isolated = cvq_isolated;
}
if (queue_pair_index != 0) {
s->vhost_vdpa.shared = shared;
}
ret = vhost_vdpa_add(nc, (void *)&s->vhost_vdpa, queue_pair_index, nvqs);
if (ret) {
qemu_del_net_client(nc);
return NULL;
}
return nc;
}
static int vhost_vdpa_get_features(int fd, uint64_t *features, Error **errp)
{
int ret = ioctl(fd, VHOST_GET_FEATURES, features);
if (unlikely(ret < 0)) {
error_setg_errno(errp, errno,
"Fail to query features from vhost-vDPA device");
}
return ret;
}
static int vhost_vdpa_get_max_queue_pairs(int fd, uint64_t features,
int *has_cvq, Error **errp)
{
unsigned long config_size = offsetof(struct vhost_vdpa_config, buf);
g_autofree struct vhost_vdpa_config *config = NULL;
__virtio16 *max_queue_pairs;
int ret;
if (features & (1 << VIRTIO_NET_F_CTRL_VQ)) {
*has_cvq = 1;
} else {
*has_cvq = 0;
}
if (features & (1 << VIRTIO_NET_F_MQ)) {
config = g_malloc0(config_size + sizeof(*max_queue_pairs));
config->off = offsetof(struct virtio_net_config, max_virtqueue_pairs);
config->len = sizeof(*max_queue_pairs);
ret = ioctl(fd, VHOST_VDPA_GET_CONFIG, config);
if (ret) {
error_setg(errp, "Fail to get config from vhost-vDPA device");
return -ret;
}
max_queue_pairs = (__virtio16 *)&config->buf;
return lduw_le_p(max_queue_pairs);
}
return 1;
}
int net_init_vhost_vdpa(const Netdev *netdev, const char *name,
NetClientState *peer, Error **errp)
{
const NetdevVhostVDPAOptions *opts;
uint64_t features;
int vdpa_device_fd;
g_autofree NetClientState **ncs = NULL;
struct vhost_vdpa_iova_range iova_range;
NetClientState *nc;
int queue_pairs, r, i = 0, has_cvq = 0;
assert(netdev->type == NET_CLIENT_DRIVER_VHOST_VDPA);
opts = &netdev->u.vhost_vdpa;
if (!opts->vhostdev && !opts->vhostfd) {
error_setg(errp,
"vhost-vdpa: neither vhostdev= nor vhostfd= was specified");
return -1;
}
if (opts->vhostdev && opts->vhostfd) {
error_setg(errp,
"vhost-vdpa: vhostdev= and vhostfd= are mutually exclusive");
return -1;
}
if (opts->vhostdev) {
vdpa_device_fd = qemu_open(opts->vhostdev, O_RDWR, errp);
if (vdpa_device_fd == -1) {
return -errno;
}
} else {
/* has_vhostfd */
vdpa_device_fd = monitor_fd_param(monitor_cur(), opts->vhostfd, errp);
if (vdpa_device_fd == -1) {
error_prepend(errp, "vhost-vdpa: unable to parse vhostfd: ");
return -1;
}
}
r = vhost_vdpa_get_features(vdpa_device_fd, &features, errp);
if (unlikely(r < 0)) {
goto err;
}
queue_pairs = vhost_vdpa_get_max_queue_pairs(vdpa_device_fd, features,
&has_cvq, errp);
if (queue_pairs < 0) {
qemu_close(vdpa_device_fd);
return queue_pairs;
}
r = vhost_vdpa_get_iova_range(vdpa_device_fd, &iova_range);
if (unlikely(r < 0)) {
error_setg(errp, "vhost-vdpa: get iova range failed: %s",
strerror(-r));
goto err;
}
if (opts->x_svq && !vhost_vdpa_net_valid_svq_features(features, errp)) {
goto err;
}
ncs = g_malloc0(sizeof(*ncs) * queue_pairs);
for (i = 0; i < queue_pairs; i++) {
VhostVDPAShared *shared = NULL;
if (i) {
shared = DO_UPCAST(VhostVDPAState, nc, ncs[0])->vhost_vdpa.shared;
}
ncs[i] = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name,
vdpa_device_fd, i, 2, true, opts->x_svq,
iova_range, features, shared, errp);
if (!ncs[i])
goto err;
}
if (has_cvq) {
VhostVDPAState *s0 = DO_UPCAST(VhostVDPAState, nc, ncs[0]);
VhostVDPAShared *shared = s0->vhost_vdpa.shared;
nc = net_vhost_vdpa_init(peer, TYPE_VHOST_VDPA, name,
vdpa_device_fd, i, 1, false,
opts->x_svq, iova_range, features, shared,
errp);
if (!nc)
goto err;
}
return 0;
err:
if (i) {
for (i--; i >= 0; i--) {
qemu_del_net_client(ncs[i]);
}
}
qemu_close(vdpa_device_fd);
return -1;
}