| /* |
| * QEMU LSI53C895A SCSI Host Bus Adapter emulation |
| * |
| * Copyright (c) 2006 CodeSourcery. |
| * Written by Paul Brook |
| * |
| * This code is licensed under the LGPL. |
| */ |
| |
| /* ??? Need to check if the {read,write}[wl] routines work properly on |
| big-endian targets. */ |
| |
| #include <assert.h> |
| |
| #include "hw.h" |
| #include "pci.h" |
| #include "scsi.h" |
| |
| //#define DEBUG_LSI |
| //#define DEBUG_LSI_REG |
| |
| #ifdef DEBUG_LSI |
| #define DPRINTF(fmt, ...) \ |
| do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0) |
| #define BADF(fmt, ...) \ |
| do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0) |
| #else |
| #define DPRINTF(fmt, ...) do {} while(0) |
| #define BADF(fmt, ...) \ |
| do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0) |
| #endif |
| |
| #define LSI_MAX_DEVS 7 |
| |
| #define LSI_SCNTL0_TRG 0x01 |
| #define LSI_SCNTL0_AAP 0x02 |
| #define LSI_SCNTL0_EPC 0x08 |
| #define LSI_SCNTL0_WATN 0x10 |
| #define LSI_SCNTL0_START 0x20 |
| |
| #define LSI_SCNTL1_SST 0x01 |
| #define LSI_SCNTL1_IARB 0x02 |
| #define LSI_SCNTL1_AESP 0x04 |
| #define LSI_SCNTL1_RST 0x08 |
| #define LSI_SCNTL1_CON 0x10 |
| #define LSI_SCNTL1_DHP 0x20 |
| #define LSI_SCNTL1_ADB 0x40 |
| #define LSI_SCNTL1_EXC 0x80 |
| |
| #define LSI_SCNTL2_WSR 0x01 |
| #define LSI_SCNTL2_VUE0 0x02 |
| #define LSI_SCNTL2_VUE1 0x04 |
| #define LSI_SCNTL2_WSS 0x08 |
| #define LSI_SCNTL2_SLPHBEN 0x10 |
| #define LSI_SCNTL2_SLPMD 0x20 |
| #define LSI_SCNTL2_CHM 0x40 |
| #define LSI_SCNTL2_SDU 0x80 |
| |
| #define LSI_ISTAT0_DIP 0x01 |
| #define LSI_ISTAT0_SIP 0x02 |
| #define LSI_ISTAT0_INTF 0x04 |
| #define LSI_ISTAT0_CON 0x08 |
| #define LSI_ISTAT0_SEM 0x10 |
| #define LSI_ISTAT0_SIGP 0x20 |
| #define LSI_ISTAT0_SRST 0x40 |
| #define LSI_ISTAT0_ABRT 0x80 |
| |
| #define LSI_ISTAT1_SI 0x01 |
| #define LSI_ISTAT1_SRUN 0x02 |
| #define LSI_ISTAT1_FLSH 0x04 |
| |
| #define LSI_SSTAT0_SDP0 0x01 |
| #define LSI_SSTAT0_RST 0x02 |
| #define LSI_SSTAT0_WOA 0x04 |
| #define LSI_SSTAT0_LOA 0x08 |
| #define LSI_SSTAT0_AIP 0x10 |
| #define LSI_SSTAT0_OLF 0x20 |
| #define LSI_SSTAT0_ORF 0x40 |
| #define LSI_SSTAT0_ILF 0x80 |
| |
| #define LSI_SIST0_PAR 0x01 |
| #define LSI_SIST0_RST 0x02 |
| #define LSI_SIST0_UDC 0x04 |
| #define LSI_SIST0_SGE 0x08 |
| #define LSI_SIST0_RSL 0x10 |
| #define LSI_SIST0_SEL 0x20 |
| #define LSI_SIST0_CMP 0x40 |
| #define LSI_SIST0_MA 0x80 |
| |
| #define LSI_SIST1_HTH 0x01 |
| #define LSI_SIST1_GEN 0x02 |
| #define LSI_SIST1_STO 0x04 |
| #define LSI_SIST1_SBMC 0x10 |
| |
| #define LSI_SOCL_IO 0x01 |
| #define LSI_SOCL_CD 0x02 |
| #define LSI_SOCL_MSG 0x04 |
| #define LSI_SOCL_ATN 0x08 |
| #define LSI_SOCL_SEL 0x10 |
| #define LSI_SOCL_BSY 0x20 |
| #define LSI_SOCL_ACK 0x40 |
| #define LSI_SOCL_REQ 0x80 |
| |
| #define LSI_DSTAT_IID 0x01 |
| #define LSI_DSTAT_SIR 0x04 |
| #define LSI_DSTAT_SSI 0x08 |
| #define LSI_DSTAT_ABRT 0x10 |
| #define LSI_DSTAT_BF 0x20 |
| #define LSI_DSTAT_MDPE 0x40 |
| #define LSI_DSTAT_DFE 0x80 |
| |
| #define LSI_DCNTL_COM 0x01 |
| #define LSI_DCNTL_IRQD 0x02 |
| #define LSI_DCNTL_STD 0x04 |
| #define LSI_DCNTL_IRQM 0x08 |
| #define LSI_DCNTL_SSM 0x10 |
| #define LSI_DCNTL_PFEN 0x20 |
| #define LSI_DCNTL_PFF 0x40 |
| #define LSI_DCNTL_CLSE 0x80 |
| |
| #define LSI_DMODE_MAN 0x01 |
| #define LSI_DMODE_BOF 0x02 |
| #define LSI_DMODE_ERMP 0x04 |
| #define LSI_DMODE_ERL 0x08 |
| #define LSI_DMODE_DIOM 0x10 |
| #define LSI_DMODE_SIOM 0x20 |
| |
| #define LSI_CTEST2_DACK 0x01 |
| #define LSI_CTEST2_DREQ 0x02 |
| #define LSI_CTEST2_TEOP 0x04 |
| #define LSI_CTEST2_PCICIE 0x08 |
| #define LSI_CTEST2_CM 0x10 |
| #define LSI_CTEST2_CIO 0x20 |
| #define LSI_CTEST2_SIGP 0x40 |
| #define LSI_CTEST2_DDIR 0x80 |
| |
| #define LSI_CTEST5_BL2 0x04 |
| #define LSI_CTEST5_DDIR 0x08 |
| #define LSI_CTEST5_MASR 0x10 |
| #define LSI_CTEST5_DFSN 0x20 |
| #define LSI_CTEST5_BBCK 0x40 |
| #define LSI_CTEST5_ADCK 0x80 |
| |
| #define LSI_CCNTL0_DILS 0x01 |
| #define LSI_CCNTL0_DISFC 0x10 |
| #define LSI_CCNTL0_ENNDJ 0x20 |
| #define LSI_CCNTL0_PMJCTL 0x40 |
| #define LSI_CCNTL0_ENPMJ 0x80 |
| |
| #define LSI_CCNTL1_EN64DBMV 0x01 |
| #define LSI_CCNTL1_EN64TIBMV 0x02 |
| #define LSI_CCNTL1_64TIMOD 0x04 |
| #define LSI_CCNTL1_DDAC 0x08 |
| #define LSI_CCNTL1_ZMOD 0x80 |
| |
| /* Enable Response to Reselection */ |
| #define LSI_SCID_RRE 0x60 |
| |
| #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD) |
| |
| #define PHASE_DO 0 |
| #define PHASE_DI 1 |
| #define PHASE_CMD 2 |
| #define PHASE_ST 3 |
| #define PHASE_MO 6 |
| #define PHASE_MI 7 |
| #define PHASE_MASK 7 |
| |
| /* Maximum length of MSG IN data. */ |
| #define LSI_MAX_MSGIN_LEN 8 |
| |
| /* Flag set if this is a tagged command. */ |
| #define LSI_TAG_VALID (1 << 16) |
| |
| typedef struct lsi_request { |
| SCSIRequest *req; |
| uint32_t tag; |
| uint32_t dma_len; |
| uint8_t *dma_buf; |
| uint32_t pending; |
| int out; |
| QTAILQ_ENTRY(lsi_request) next; |
| } lsi_request; |
| |
| typedef struct { |
| PCIDevice dev; |
| MemoryRegion mmio_io; |
| MemoryRegion ram_io; |
| MemoryRegion io_io; |
| |
| int carry; /* ??? Should this be an a visible register somewhere? */ |
| int status; |
| /* Action to take at the end of a MSG IN phase. |
| 0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN. */ |
| int msg_action; |
| int msg_len; |
| uint8_t msg[LSI_MAX_MSGIN_LEN]; |
| /* 0 if SCRIPTS are running or stopped. |
| * 1 if a Wait Reselect instruction has been issued. |
| * 2 if processing DMA from lsi_execute_script. |
| * 3 if a DMA operation is in progress. */ |
| int waiting; |
| SCSIBus bus; |
| int current_lun; |
| /* The tag is a combination of the device ID and the SCSI tag. */ |
| uint32_t select_tag; |
| int command_complete; |
| QTAILQ_HEAD(, lsi_request) queue; |
| lsi_request *current; |
| |
| uint32_t dsa; |
| uint32_t temp; |
| uint32_t dnad; |
| uint32_t dbc; |
| uint8_t istat0; |
| uint8_t istat1; |
| uint8_t dcmd; |
| uint8_t dstat; |
| uint8_t dien; |
| uint8_t sist0; |
| uint8_t sist1; |
| uint8_t sien0; |
| uint8_t sien1; |
| uint8_t mbox0; |
| uint8_t mbox1; |
| uint8_t dfifo; |
| uint8_t ctest2; |
| uint8_t ctest3; |
| uint8_t ctest4; |
| uint8_t ctest5; |
| uint8_t ccntl0; |
| uint8_t ccntl1; |
| uint32_t dsp; |
| uint32_t dsps; |
| uint8_t dmode; |
| uint8_t dcntl; |
| uint8_t scntl0; |
| uint8_t scntl1; |
| uint8_t scntl2; |
| uint8_t scntl3; |
| uint8_t sstat0; |
| uint8_t sstat1; |
| uint8_t scid; |
| uint8_t sxfer; |
| uint8_t socl; |
| uint8_t sdid; |
| uint8_t ssid; |
| uint8_t sfbr; |
| uint8_t stest1; |
| uint8_t stest2; |
| uint8_t stest3; |
| uint8_t sidl; |
| uint8_t stime0; |
| uint8_t respid0; |
| uint8_t respid1; |
| uint32_t mmrs; |
| uint32_t mmws; |
| uint32_t sfs; |
| uint32_t drs; |
| uint32_t sbms; |
| uint32_t dbms; |
| uint32_t dnad64; |
| uint32_t pmjad1; |
| uint32_t pmjad2; |
| uint32_t rbc; |
| uint32_t ua; |
| uint32_t ia; |
| uint32_t sbc; |
| uint32_t csbc; |
| uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */ |
| uint8_t sbr; |
| |
| /* Script ram is stored as 32-bit words in host byteorder. */ |
| uint32_t script_ram[2048]; |
| } LSIState; |
| |
| static inline int lsi_irq_on_rsl(LSIState *s) |
| { |
| return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE); |
| } |
| |
| static void lsi_soft_reset(LSIState *s) |
| { |
| lsi_request *p; |
| |
| DPRINTF("Reset\n"); |
| s->carry = 0; |
| |
| s->msg_action = 0; |
| s->msg_len = 0; |
| s->waiting = 0; |
| s->dsa = 0; |
| s->dnad = 0; |
| s->dbc = 0; |
| s->temp = 0; |
| memset(s->scratch, 0, sizeof(s->scratch)); |
| s->istat0 = 0; |
| s->istat1 = 0; |
| s->dcmd = 0x40; |
| s->dstat = LSI_DSTAT_DFE; |
| s->dien = 0; |
| s->sist0 = 0; |
| s->sist1 = 0; |
| s->sien0 = 0; |
| s->sien1 = 0; |
| s->mbox0 = 0; |
| s->mbox1 = 0; |
| s->dfifo = 0; |
| s->ctest2 = LSI_CTEST2_DACK; |
| s->ctest3 = 0; |
| s->ctest4 = 0; |
| s->ctest5 = 0; |
| s->ccntl0 = 0; |
| s->ccntl1 = 0; |
| s->dsp = 0; |
| s->dsps = 0; |
| s->dmode = 0; |
| s->dcntl = 0; |
| s->scntl0 = 0xc0; |
| s->scntl1 = 0; |
| s->scntl2 = 0; |
| s->scntl3 = 0; |
| s->sstat0 = 0; |
| s->sstat1 = 0; |
| s->scid = 7; |
| s->sxfer = 0; |
| s->socl = 0; |
| s->sdid = 0; |
| s->ssid = 0; |
| s->stest1 = 0; |
| s->stest2 = 0; |
| s->stest3 = 0; |
| s->sidl = 0; |
| s->stime0 = 0; |
| s->respid0 = 0x80; |
| s->respid1 = 0; |
| s->mmrs = 0; |
| s->mmws = 0; |
| s->sfs = 0; |
| s->drs = 0; |
| s->sbms = 0; |
| s->dbms = 0; |
| s->dnad64 = 0; |
| s->pmjad1 = 0; |
| s->pmjad2 = 0; |
| s->rbc = 0; |
| s->ua = 0; |
| s->ia = 0; |
| s->sbc = 0; |
| s->csbc = 0; |
| s->sbr = 0; |
| while (!QTAILQ_EMPTY(&s->queue)) { |
| p = QTAILQ_FIRST(&s->queue); |
| QTAILQ_REMOVE(&s->queue, p, next); |
| g_free(p); |
| } |
| if (s->current) { |
| g_free(s->current); |
| s->current = NULL; |
| } |
| } |
| |
| static int lsi_dma_40bit(LSIState *s) |
| { |
| if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT) |
| return 1; |
| return 0; |
| } |
| |
| static int lsi_dma_ti64bit(LSIState *s) |
| { |
| if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV) |
| return 1; |
| return 0; |
| } |
| |
| static int lsi_dma_64bit(LSIState *s) |
| { |
| if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV) |
| return 1; |
| return 0; |
| } |
| |
| static uint8_t lsi_reg_readb(LSIState *s, int offset); |
| static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val); |
| static void lsi_execute_script(LSIState *s); |
| static void lsi_reselect(LSIState *s, lsi_request *p); |
| |
| static inline uint32_t read_dword(LSIState *s, uint32_t addr) |
| { |
| uint32_t buf; |
| |
| /* XXX: an optimization here used to fast-path the read from scripts |
| * memory. But that bypasses any iommu. |
| */ |
| cpu_physical_memory_read(addr, (uint8_t *)&buf, 4); |
| return cpu_to_le32(buf); |
| } |
| |
| static void lsi_stop_script(LSIState *s) |
| { |
| s->istat1 &= ~LSI_ISTAT1_SRUN; |
| } |
| |
| static void lsi_update_irq(LSIState *s) |
| { |
| int level; |
| static int last_level; |
| lsi_request *p; |
| |
| /* It's unclear whether the DIP/SIP bits should be cleared when the |
| Interrupt Status Registers are cleared or when istat0 is read. |
| We currently do the formwer, which seems to work. */ |
| level = 0; |
| if (s->dstat) { |
| if (s->dstat & s->dien) |
| level = 1; |
| s->istat0 |= LSI_ISTAT0_DIP; |
| } else { |
| s->istat0 &= ~LSI_ISTAT0_DIP; |
| } |
| |
| if (s->sist0 || s->sist1) { |
| if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1)) |
| level = 1; |
| s->istat0 |= LSI_ISTAT0_SIP; |
| } else { |
| s->istat0 &= ~LSI_ISTAT0_SIP; |
| } |
| if (s->istat0 & LSI_ISTAT0_INTF) |
| level = 1; |
| |
| if (level != last_level) { |
| DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n", |
| level, s->dstat, s->sist1, s->sist0); |
| last_level = level; |
| } |
| qemu_set_irq(s->dev.irq[0], level); |
| |
| if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) { |
| DPRINTF("Handled IRQs & disconnected, looking for pending " |
| "processes\n"); |
| QTAILQ_FOREACH(p, &s->queue, next) { |
| if (p->pending) { |
| lsi_reselect(s, p); |
| break; |
| } |
| } |
| } |
| } |
| |
| /* Stop SCRIPTS execution and raise a SCSI interrupt. */ |
| static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1) |
| { |
| uint32_t mask0; |
| uint32_t mask1; |
| |
| DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n", |
| stat1, stat0, s->sist1, s->sist0); |
| s->sist0 |= stat0; |
| s->sist1 |= stat1; |
| /* Stop processor on fatal or unmasked interrupt. As a special hack |
| we don't stop processing when raising STO. Instead continue |
| execution and stop at the next insn that accesses the SCSI bus. */ |
| mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL); |
| mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH); |
| mask1 &= ~LSI_SIST1_STO; |
| if (s->sist0 & mask0 || s->sist1 & mask1) { |
| lsi_stop_script(s); |
| } |
| lsi_update_irq(s); |
| } |
| |
| /* Stop SCRIPTS execution and raise a DMA interrupt. */ |
| static void lsi_script_dma_interrupt(LSIState *s, int stat) |
| { |
| DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat); |
| s->dstat |= stat; |
| lsi_update_irq(s); |
| lsi_stop_script(s); |
| } |
| |
| static inline void lsi_set_phase(LSIState *s, int phase) |
| { |
| s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase; |
| } |
| |
| static void lsi_bad_phase(LSIState *s, int out, int new_phase) |
| { |
| /* Trigger a phase mismatch. */ |
| if (s->ccntl0 & LSI_CCNTL0_ENPMJ) { |
| if ((s->ccntl0 & LSI_CCNTL0_PMJCTL)) { |
| s->dsp = out ? s->pmjad1 : s->pmjad2; |
| } else { |
| s->dsp = (s->scntl2 & LSI_SCNTL2_WSR ? s->pmjad2 : s->pmjad1); |
| } |
| DPRINTF("Data phase mismatch jump to %08x\n", s->dsp); |
| } else { |
| DPRINTF("Phase mismatch interrupt\n"); |
| lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0); |
| lsi_stop_script(s); |
| } |
| lsi_set_phase(s, new_phase); |
| } |
| |
| |
| /* Resume SCRIPTS execution after a DMA operation. */ |
| static void lsi_resume_script(LSIState *s) |
| { |
| if (s->waiting != 2) { |
| s->waiting = 0; |
| lsi_execute_script(s); |
| } else { |
| s->waiting = 0; |
| } |
| } |
| |
| static void lsi_disconnect(LSIState *s) |
| { |
| s->scntl1 &= ~LSI_SCNTL1_CON; |
| s->sstat1 &= ~PHASE_MASK; |
| } |
| |
| static void lsi_bad_selection(LSIState *s, uint32_t id) |
| { |
| DPRINTF("Selected absent target %d\n", id); |
| lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO); |
| lsi_disconnect(s); |
| } |
| |
| /* Initiate a SCSI layer data transfer. */ |
| static void lsi_do_dma(LSIState *s, int out) |
| { |
| uint32_t count; |
| target_phys_addr_t addr; |
| SCSIDevice *dev; |
| |
| assert(s->current); |
| if (!s->current->dma_len) { |
| /* Wait until data is available. */ |
| DPRINTF("DMA no data available\n"); |
| return; |
| } |
| |
| dev = s->current->req->dev; |
| assert(dev); |
| |
| count = s->dbc; |
| if (count > s->current->dma_len) |
| count = s->current->dma_len; |
| |
| addr = s->dnad; |
| /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */ |
| if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s)) |
| addr |= ((uint64_t)s->dnad64 << 32); |
| else if (s->dbms) |
| addr |= ((uint64_t)s->dbms << 32); |
| else if (s->sbms) |
| addr |= ((uint64_t)s->sbms << 32); |
| |
| DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count); |
| s->csbc += count; |
| s->dnad += count; |
| s->dbc -= count; |
| if (s->current->dma_buf == NULL) { |
| s->current->dma_buf = scsi_req_get_buf(s->current->req); |
| } |
| /* ??? Set SFBR to first data byte. */ |
| if (out) { |
| cpu_physical_memory_read(addr, s->current->dma_buf, count); |
| } else { |
| cpu_physical_memory_write(addr, s->current->dma_buf, count); |
| } |
| s->current->dma_len -= count; |
| if (s->current->dma_len == 0) { |
| s->current->dma_buf = NULL; |
| scsi_req_continue(s->current->req); |
| } else { |
| s->current->dma_buf += count; |
| lsi_resume_script(s); |
| } |
| } |
| |
| |
| /* Add a command to the queue. */ |
| static void lsi_queue_command(LSIState *s) |
| { |
| lsi_request *p = s->current; |
| |
| DPRINTF("Queueing tag=0x%x\n", p->tag); |
| assert(s->current != NULL); |
| assert(s->current->dma_len == 0); |
| QTAILQ_INSERT_TAIL(&s->queue, s->current, next); |
| s->current = NULL; |
| |
| p->pending = 0; |
| p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO; |
| } |
| |
| /* Queue a byte for a MSG IN phase. */ |
| static void lsi_add_msg_byte(LSIState *s, uint8_t data) |
| { |
| if (s->msg_len >= LSI_MAX_MSGIN_LEN) { |
| BADF("MSG IN data too long\n"); |
| } else { |
| DPRINTF("MSG IN 0x%02x\n", data); |
| s->msg[s->msg_len++] = data; |
| } |
| } |
| |
| /* Perform reselection to continue a command. */ |
| static void lsi_reselect(LSIState *s, lsi_request *p) |
| { |
| int id; |
| |
| assert(s->current == NULL); |
| QTAILQ_REMOVE(&s->queue, p, next); |
| s->current = p; |
| |
| id = (p->tag >> 8) & 0xf; |
| s->ssid = id | 0x80; |
| /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */ |
| if (!(s->dcntl & LSI_DCNTL_COM)) { |
| s->sfbr = 1 << (id & 0x7); |
| } |
| DPRINTF("Reselected target %d\n", id); |
| s->scntl1 |= LSI_SCNTL1_CON; |
| lsi_set_phase(s, PHASE_MI); |
| s->msg_action = p->out ? 2 : 3; |
| s->current->dma_len = p->pending; |
| lsi_add_msg_byte(s, 0x80); |
| if (s->current->tag & LSI_TAG_VALID) { |
| lsi_add_msg_byte(s, 0x20); |
| lsi_add_msg_byte(s, p->tag & 0xff); |
| } |
| |
| if (lsi_irq_on_rsl(s)) { |
| lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0); |
| } |
| } |
| |
| static lsi_request *lsi_find_by_tag(LSIState *s, uint32_t tag) |
| { |
| lsi_request *p; |
| |
| QTAILQ_FOREACH(p, &s->queue, next) { |
| if (p->tag == tag) { |
| return p; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static void lsi_request_cancelled(SCSIRequest *req) |
| { |
| LSIState *s = DO_UPCAST(LSIState, dev.qdev, req->bus->qbus.parent); |
| lsi_request *p = req->hba_private; |
| |
| if (s->current && req == s->current->req) { |
| scsi_req_unref(req); |
| g_free(s->current); |
| s->current = NULL; |
| return; |
| } |
| |
| if (p) { |
| QTAILQ_REMOVE(&s->queue, p, next); |
| scsi_req_unref(req); |
| g_free(p); |
| } |
| } |
| |
| /* Record that data is available for a queued command. Returns zero if |
| the device was reselected, nonzero if the IO is deferred. */ |
| static int lsi_queue_req(LSIState *s, SCSIRequest *req, uint32_t len) |
| { |
| lsi_request *p = req->hba_private; |
| |
| if (p->pending) { |
| BADF("Multiple IO pending for request %p\n", p); |
| } |
| p->pending = len; |
| /* Reselect if waiting for it, or if reselection triggers an IRQ |
| and the bus is free. |
| Since no interrupt stacking is implemented in the emulation, it |
| is also required that there are no pending interrupts waiting |
| for service from the device driver. */ |
| if (s->waiting == 1 || |
| (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) && |
| !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) { |
| /* Reselect device. */ |
| lsi_reselect(s, p); |
| return 0; |
| } else { |
| DPRINTF("Queueing IO tag=0x%x\n", p->tag); |
| p->pending = len; |
| return 1; |
| } |
| } |
| |
| /* Callback to indicate that the SCSI layer has completed a command. */ |
| static void lsi_command_complete(SCSIRequest *req, uint32_t status) |
| { |
| LSIState *s = DO_UPCAST(LSIState, dev.qdev, req->bus->qbus.parent); |
| int out; |
| |
| out = (s->sstat1 & PHASE_MASK) == PHASE_DO; |
| DPRINTF("Command complete status=%d\n", (int)status); |
| s->status = status; |
| s->command_complete = 2; |
| if (s->waiting && s->dbc != 0) { |
| /* Raise phase mismatch for short transfers. */ |
| lsi_bad_phase(s, out, PHASE_ST); |
| } else { |
| lsi_set_phase(s, PHASE_ST); |
| } |
| |
| if (s->current && req == s->current->req) { |
| scsi_req_unref(s->current->req); |
| g_free(s->current); |
| s->current = NULL; |
| } |
| lsi_resume_script(s); |
| } |
| |
| /* Callback to indicate that the SCSI layer has completed a transfer. */ |
| static void lsi_transfer_data(SCSIRequest *req, uint32_t len) |
| { |
| LSIState *s = DO_UPCAST(LSIState, dev.qdev, req->bus->qbus.parent); |
| int out; |
| |
| if (s->waiting == 1 || !s->current || req->hba_private != s->current || |
| (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) { |
| if (lsi_queue_req(s, req, len)) { |
| return; |
| } |
| } |
| |
| out = (s->sstat1 & PHASE_MASK) == PHASE_DO; |
| |
| /* host adapter (re)connected */ |
| DPRINTF("Data ready tag=0x%x len=%d\n", req->tag, len); |
| s->current->dma_len = len; |
| s->command_complete = 1; |
| if (s->waiting) { |
| if (s->waiting == 1 || s->dbc == 0) { |
| lsi_resume_script(s); |
| } else { |
| lsi_do_dma(s, out); |
| } |
| } |
| } |
| |
| static void lsi_do_command(LSIState *s) |
| { |
| SCSIDevice *dev; |
| uint8_t buf[16]; |
| uint32_t id; |
| int n; |
| |
| DPRINTF("Send command len=%d\n", s->dbc); |
| if (s->dbc > 16) |
| s->dbc = 16; |
| cpu_physical_memory_read(s->dnad, buf, s->dbc); |
| s->sfbr = buf[0]; |
| s->command_complete = 0; |
| |
| id = (s->select_tag >> 8) & 0xf; |
| dev = scsi_device_find(&s->bus, 0, id, s->current_lun); |
| if (!dev) { |
| lsi_bad_selection(s, id); |
| return; |
| } |
| |
| assert(s->current == NULL); |
| s->current = g_malloc0(sizeof(lsi_request)); |
| s->current->tag = s->select_tag; |
| s->current->req = scsi_req_new(dev, s->current->tag, s->current_lun, buf, |
| s->current); |
| |
| n = scsi_req_enqueue(s->current->req); |
| if (n) { |
| if (n > 0) { |
| lsi_set_phase(s, PHASE_DI); |
| } else if (n < 0) { |
| lsi_set_phase(s, PHASE_DO); |
| } |
| scsi_req_continue(s->current->req); |
| } |
| if (!s->command_complete) { |
| if (n) { |
| /* Command did not complete immediately so disconnect. */ |
| lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */ |
| lsi_add_msg_byte(s, 4); /* DISCONNECT */ |
| /* wait data */ |
| lsi_set_phase(s, PHASE_MI); |
| s->msg_action = 1; |
| lsi_queue_command(s); |
| } else { |
| /* wait command complete */ |
| lsi_set_phase(s, PHASE_DI); |
| } |
| } |
| } |
| |
| static void lsi_do_status(LSIState *s) |
| { |
| uint8_t status; |
| DPRINTF("Get status len=%d status=%d\n", s->dbc, s->status); |
| if (s->dbc != 1) |
| BADF("Bad Status move\n"); |
| s->dbc = 1; |
| status = s->status; |
| s->sfbr = status; |
| cpu_physical_memory_write(s->dnad, &status, 1); |
| lsi_set_phase(s, PHASE_MI); |
| s->msg_action = 1; |
| lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */ |
| } |
| |
| static void lsi_do_msgin(LSIState *s) |
| { |
| int len; |
| DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len); |
| s->sfbr = s->msg[0]; |
| len = s->msg_len; |
| if (len > s->dbc) |
| len = s->dbc; |
| cpu_physical_memory_write(s->dnad, s->msg, len); |
| /* Linux drivers rely on the last byte being in the SIDL. */ |
| s->sidl = s->msg[len - 1]; |
| s->msg_len -= len; |
| if (s->msg_len) { |
| memmove(s->msg, s->msg + len, s->msg_len); |
| } else { |
| /* ??? Check if ATN (not yet implemented) is asserted and maybe |
| switch to PHASE_MO. */ |
| switch (s->msg_action) { |
| case 0: |
| lsi_set_phase(s, PHASE_CMD); |
| break; |
| case 1: |
| lsi_disconnect(s); |
| break; |
| case 2: |
| lsi_set_phase(s, PHASE_DO); |
| break; |
| case 3: |
| lsi_set_phase(s, PHASE_DI); |
| break; |
| default: |
| abort(); |
| } |
| } |
| } |
| |
| /* Read the next byte during a MSGOUT phase. */ |
| static uint8_t lsi_get_msgbyte(LSIState *s) |
| { |
| uint8_t data; |
| cpu_physical_memory_read(s->dnad, &data, 1); |
| s->dnad++; |
| s->dbc--; |
| return data; |
| } |
| |
| /* Skip the next n bytes during a MSGOUT phase. */ |
| static void lsi_skip_msgbytes(LSIState *s, unsigned int n) |
| { |
| s->dnad += n; |
| s->dbc -= n; |
| } |
| |
| static void lsi_do_msgout(LSIState *s) |
| { |
| uint8_t msg; |
| int len; |
| uint32_t current_tag; |
| lsi_request *current_req, *p, *p_next; |
| |
| if (s->current) { |
| current_tag = s->current->tag; |
| current_req = s->current; |
| } else { |
| current_tag = s->select_tag; |
| current_req = lsi_find_by_tag(s, current_tag); |
| } |
| |
| DPRINTF("MSG out len=%d\n", s->dbc); |
| while (s->dbc) { |
| msg = lsi_get_msgbyte(s); |
| s->sfbr = msg; |
| |
| switch (msg) { |
| case 0x04: |
| DPRINTF("MSG: Disconnect\n"); |
| lsi_disconnect(s); |
| break; |
| case 0x08: |
| DPRINTF("MSG: No Operation\n"); |
| lsi_set_phase(s, PHASE_CMD); |
| break; |
| case 0x01: |
| len = lsi_get_msgbyte(s); |
| msg = lsi_get_msgbyte(s); |
| (void)len; /* avoid a warning about unused variable*/ |
| DPRINTF("Extended message 0x%x (len %d)\n", msg, len); |
| switch (msg) { |
| case 1: |
| DPRINTF("SDTR (ignored)\n"); |
| lsi_skip_msgbytes(s, 2); |
| break; |
| case 3: |
| DPRINTF("WDTR (ignored)\n"); |
| lsi_skip_msgbytes(s, 1); |
| break; |
| default: |
| goto bad; |
| } |
| break; |
| case 0x20: /* SIMPLE queue */ |
| s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID; |
| DPRINTF("SIMPLE queue tag=0x%x\n", s->select_tag & 0xff); |
| break; |
| case 0x21: /* HEAD of queue */ |
| BADF("HEAD queue not implemented\n"); |
| s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID; |
| break; |
| case 0x22: /* ORDERED queue */ |
| BADF("ORDERED queue not implemented\n"); |
| s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID; |
| break; |
| case 0x0d: |
| /* The ABORT TAG message clears the current I/O process only. */ |
| DPRINTF("MSG: ABORT TAG tag=0x%x\n", current_tag); |
| if (current_req) { |
| scsi_req_cancel(current_req->req); |
| } |
| lsi_disconnect(s); |
| break; |
| case 0x06: |
| case 0x0e: |
| case 0x0c: |
| /* The ABORT message clears all I/O processes for the selecting |
| initiator on the specified logical unit of the target. */ |
| if (msg == 0x06) { |
| DPRINTF("MSG: ABORT tag=0x%x\n", current_tag); |
| } |
| /* The CLEAR QUEUE message clears all I/O processes for all |
| initiators on the specified logical unit of the target. */ |
| if (msg == 0x0e) { |
| DPRINTF("MSG: CLEAR QUEUE tag=0x%x\n", current_tag); |
| } |
| /* The BUS DEVICE RESET message clears all I/O processes for all |
| initiators on all logical units of the target. */ |
| if (msg == 0x0c) { |
| DPRINTF("MSG: BUS DEVICE RESET tag=0x%x\n", current_tag); |
| } |
| |
| /* clear the current I/O process */ |
| if (s->current) { |
| scsi_req_cancel(s->current->req); |
| } |
| |
| /* As the current implemented devices scsi_disk and scsi_generic |
| only support one LUN, we don't need to keep track of LUNs. |
| Clearing I/O processes for other initiators could be possible |
| for scsi_generic by sending a SG_SCSI_RESET to the /dev/sgX |
| device, but this is currently not implemented (and seems not |
| to be really necessary). So let's simply clear all queued |
| commands for the current device: */ |
| QTAILQ_FOREACH_SAFE(p, &s->queue, next, p_next) { |
| if ((p->tag & 0x0000ff00) == (current_tag & 0x0000ff00)) { |
| scsi_req_cancel(p->req); |
| } |
| } |
| |
| lsi_disconnect(s); |
| break; |
| default: |
| if ((msg & 0x80) == 0) { |
| goto bad; |
| } |
| s->current_lun = msg & 7; |
| DPRINTF("Select LUN %d\n", s->current_lun); |
| lsi_set_phase(s, PHASE_CMD); |
| break; |
| } |
| } |
| return; |
| bad: |
| BADF("Unimplemented message 0x%02x\n", msg); |
| lsi_set_phase(s, PHASE_MI); |
| lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */ |
| s->msg_action = 0; |
| } |
| |
| /* Sign extend a 24-bit value. */ |
| static inline int32_t sxt24(int32_t n) |
| { |
| return (n << 8) >> 8; |
| } |
| |
| #define LSI_BUF_SIZE 4096 |
| static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count) |
| { |
| int n; |
| uint8_t buf[LSI_BUF_SIZE]; |
| |
| DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count); |
| while (count) { |
| n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count; |
| cpu_physical_memory_read(src, buf, n); |
| cpu_physical_memory_write(dest, buf, n); |
| src += n; |
| dest += n; |
| count -= n; |
| } |
| } |
| |
| static void lsi_wait_reselect(LSIState *s) |
| { |
| lsi_request *p; |
| |
| DPRINTF("Wait Reselect\n"); |
| |
| QTAILQ_FOREACH(p, &s->queue, next) { |
| if (p->pending) { |
| lsi_reselect(s, p); |
| break; |
| } |
| } |
| if (s->current == NULL) { |
| s->waiting = 1; |
| } |
| } |
| |
| static void lsi_execute_script(LSIState *s) |
| { |
| uint32_t insn; |
| uint32_t addr, addr_high; |
| int opcode; |
| int insn_processed = 0; |
| |
| s->istat1 |= LSI_ISTAT1_SRUN; |
| again: |
| insn_processed++; |
| insn = read_dword(s, s->dsp); |
| if (!insn) { |
| /* If we receive an empty opcode increment the DSP by 4 bytes |
| instead of 8 and execute the next opcode at that location */ |
| s->dsp += 4; |
| goto again; |
| } |
| addr = read_dword(s, s->dsp + 4); |
| addr_high = 0; |
| DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr); |
| s->dsps = addr; |
| s->dcmd = insn >> 24; |
| s->dsp += 8; |
| switch (insn >> 30) { |
| case 0: /* Block move. */ |
| if (s->sist1 & LSI_SIST1_STO) { |
| DPRINTF("Delayed select timeout\n"); |
| lsi_stop_script(s); |
| break; |
| } |
| s->dbc = insn & 0xffffff; |
| s->rbc = s->dbc; |
| /* ??? Set ESA. */ |
| s->ia = s->dsp - 8; |
| if (insn & (1 << 29)) { |
| /* Indirect addressing. */ |
| addr = read_dword(s, addr); |
| } else if (insn & (1 << 28)) { |
| uint32_t buf[2]; |
| int32_t offset; |
| /* Table indirect addressing. */ |
| |
| /* 32-bit Table indirect */ |
| offset = sxt24(addr); |
| cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8); |
| /* byte count is stored in bits 0:23 only */ |
| s->dbc = cpu_to_le32(buf[0]) & 0xffffff; |
| s->rbc = s->dbc; |
| addr = cpu_to_le32(buf[1]); |
| |
| /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of |
| * table, bits [31:24] */ |
| if (lsi_dma_40bit(s)) |
| addr_high = cpu_to_le32(buf[0]) >> 24; |
| else if (lsi_dma_ti64bit(s)) { |
| int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f; |
| switch (selector) { |
| case 0 ... 0x0f: |
| /* offset index into scratch registers since |
| * TI64 mode can use registers C to R */ |
| addr_high = s->scratch[2 + selector]; |
| break; |
| case 0x10: |
| addr_high = s->mmrs; |
| break; |
| case 0x11: |
| addr_high = s->mmws; |
| break; |
| case 0x12: |
| addr_high = s->sfs; |
| break; |
| case 0x13: |
| addr_high = s->drs; |
| break; |
| case 0x14: |
| addr_high = s->sbms; |
| break; |
| case 0x15: |
| addr_high = s->dbms; |
| break; |
| default: |
| BADF("Illegal selector specified (0x%x > 0x15)" |
| " for 64-bit DMA block move", selector); |
| break; |
| } |
| } |
| } else if (lsi_dma_64bit(s)) { |
| /* fetch a 3rd dword if 64-bit direct move is enabled and |
| only if we're not doing table indirect or indirect addressing */ |
| s->dbms = read_dword(s, s->dsp); |
| s->dsp += 4; |
| s->ia = s->dsp - 12; |
| } |
| if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) { |
| DPRINTF("Wrong phase got %d expected %d\n", |
| s->sstat1 & PHASE_MASK, (insn >> 24) & 7); |
| lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0); |
| break; |
| } |
| s->dnad = addr; |
| s->dnad64 = addr_high; |
| switch (s->sstat1 & 0x7) { |
| case PHASE_DO: |
| s->waiting = 2; |
| lsi_do_dma(s, 1); |
| if (s->waiting) |
| s->waiting = 3; |
| break; |
| case PHASE_DI: |
| s->waiting = 2; |
| lsi_do_dma(s, 0); |
| if (s->waiting) |
| s->waiting = 3; |
| break; |
| case PHASE_CMD: |
| lsi_do_command(s); |
| break; |
| case PHASE_ST: |
| lsi_do_status(s); |
| break; |
| case PHASE_MO: |
| lsi_do_msgout(s); |
| break; |
| case PHASE_MI: |
| lsi_do_msgin(s); |
| break; |
| default: |
| BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK); |
| exit(1); |
| } |
| s->dfifo = s->dbc & 0xff; |
| s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3); |
| s->sbc = s->dbc; |
| s->rbc -= s->dbc; |
| s->ua = addr + s->dbc; |
| break; |
| |
| case 1: /* IO or Read/Write instruction. */ |
| opcode = (insn >> 27) & 7; |
| if (opcode < 5) { |
| uint32_t id; |
| |
| if (insn & (1 << 25)) { |
| id = read_dword(s, s->dsa + sxt24(insn)); |
| } else { |
| id = insn; |
| } |
| id = (id >> 16) & 0xf; |
| if (insn & (1 << 26)) { |
| addr = s->dsp + sxt24(addr); |
| } |
| s->dnad = addr; |
| switch (opcode) { |
| case 0: /* Select */ |
| s->sdid = id; |
| if (s->scntl1 & LSI_SCNTL1_CON) { |
| DPRINTF("Already reselected, jumping to alternative address\n"); |
| s->dsp = s->dnad; |
| break; |
| } |
| s->sstat0 |= LSI_SSTAT0_WOA; |
| s->scntl1 &= ~LSI_SCNTL1_IARB; |
| if (!scsi_device_find(&s->bus, 0, id, 0)) { |
| lsi_bad_selection(s, id); |
| break; |
| } |
| DPRINTF("Selected target %d%s\n", |
| id, insn & (1 << 3) ? " ATN" : ""); |
| /* ??? Linux drivers compain when this is set. Maybe |
| it only applies in low-level mode (unimplemented). |
| lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */ |
| s->select_tag = id << 8; |
| s->scntl1 |= LSI_SCNTL1_CON; |
| if (insn & (1 << 3)) { |
| s->socl |= LSI_SOCL_ATN; |
| } |
| lsi_set_phase(s, PHASE_MO); |
| break; |
| case 1: /* Disconnect */ |
| DPRINTF("Wait Disconnect\n"); |
| s->scntl1 &= ~LSI_SCNTL1_CON; |
| break; |
| case 2: /* Wait Reselect */ |
| if (!lsi_irq_on_rsl(s)) { |
| lsi_wait_reselect(s); |
| } |
| break; |
| case 3: /* Set */ |
| DPRINTF("Set%s%s%s%s\n", |
| insn & (1 << 3) ? " ATN" : "", |
| insn & (1 << 6) ? " ACK" : "", |
| insn & (1 << 9) ? " TM" : "", |
| insn & (1 << 10) ? " CC" : ""); |
| if (insn & (1 << 3)) { |
| s->socl |= LSI_SOCL_ATN; |
| lsi_set_phase(s, PHASE_MO); |
| } |
| if (insn & (1 << 9)) { |
| BADF("Target mode not implemented\n"); |
| exit(1); |
| } |
| if (insn & (1 << 10)) |
| s->carry = 1; |
| break; |
| case 4: /* Clear */ |
| DPRINTF("Clear%s%s%s%s\n", |
| insn & (1 << 3) ? " ATN" : "", |
| insn & (1 << 6) ? " ACK" : "", |
| insn & (1 << 9) ? " TM" : "", |
| insn & (1 << 10) ? " CC" : ""); |
| if (insn & (1 << 3)) { |
| s->socl &= ~LSI_SOCL_ATN; |
| } |
| if (insn & (1 << 10)) |
| s->carry = 0; |
| break; |
| } |
| } else { |
| uint8_t op0; |
| uint8_t op1; |
| uint8_t data8; |
| int reg; |
| int operator; |
| #ifdef DEBUG_LSI |
| static const char *opcode_names[3] = |
| {"Write", "Read", "Read-Modify-Write"}; |
| static const char *operator_names[8] = |
| {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"}; |
| #endif |
| |
| reg = ((insn >> 16) & 0x7f) | (insn & 0x80); |
| data8 = (insn >> 8) & 0xff; |
| opcode = (insn >> 27) & 7; |
| operator = (insn >> 24) & 7; |
| DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n", |
| opcode_names[opcode - 5], reg, |
| operator_names[operator], data8, s->sfbr, |
| (insn & (1 << 23)) ? " SFBR" : ""); |
| op0 = op1 = 0; |
| switch (opcode) { |
| case 5: /* From SFBR */ |
| op0 = s->sfbr; |
| op1 = data8; |
| break; |
| case 6: /* To SFBR */ |
| if (operator) |
| op0 = lsi_reg_readb(s, reg); |
| op1 = data8; |
| break; |
| case 7: /* Read-modify-write */ |
| if (operator) |
| op0 = lsi_reg_readb(s, reg); |
| if (insn & (1 << 23)) { |
| op1 = s->sfbr; |
| } else { |
| op1 = data8; |
| } |
| break; |
| } |
| |
| switch (operator) { |
| case 0: /* move */ |
| op0 = op1; |
| break; |
| case 1: /* Shift left */ |
| op1 = op0 >> 7; |
| op0 = (op0 << 1) | s->carry; |
| s->carry = op1; |
| break; |
| case 2: /* OR */ |
| op0 |= op1; |
| break; |
| case 3: /* XOR */ |
| op0 ^= op1; |
| break; |
| case 4: /* AND */ |
| op0 &= op1; |
| break; |
| case 5: /* SHR */ |
| op1 = op0 & 1; |
| op0 = (op0 >> 1) | (s->carry << 7); |
| s->carry = op1; |
| break; |
| case 6: /* ADD */ |
| op0 += op1; |
| s->carry = op0 < op1; |
| break; |
| case 7: /* ADC */ |
| op0 += op1 + s->carry; |
| if (s->carry) |
| s->carry = op0 <= op1; |
| else |
| s->carry = op0 < op1; |
| break; |
| } |
| |
| switch (opcode) { |
| case 5: /* From SFBR */ |
| case 7: /* Read-modify-write */ |
| lsi_reg_writeb(s, reg, op0); |
| break; |
| case 6: /* To SFBR */ |
| s->sfbr = op0; |
| break; |
| } |
| } |
| break; |
| |
| case 2: /* Transfer Control. */ |
| { |
| int cond; |
| int jmp; |
| |
| if ((insn & 0x002e0000) == 0) { |
| DPRINTF("NOP\n"); |
| break; |
| } |
| if (s->sist1 & LSI_SIST1_STO) { |
| DPRINTF("Delayed select timeout\n"); |
| lsi_stop_script(s); |
| break; |
| } |
| cond = jmp = (insn & (1 << 19)) != 0; |
| if (cond == jmp && (insn & (1 << 21))) { |
| DPRINTF("Compare carry %d\n", s->carry == jmp); |
| cond = s->carry != 0; |
| } |
| if (cond == jmp && (insn & (1 << 17))) { |
| DPRINTF("Compare phase %d %c= %d\n", |
| (s->sstat1 & PHASE_MASK), |
| jmp ? '=' : '!', |
| ((insn >> 24) & 7)); |
| cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7); |
| } |
| if (cond == jmp && (insn & (1 << 18))) { |
| uint8_t mask; |
| |
| mask = (~insn >> 8) & 0xff; |
| DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n", |
| s->sfbr, mask, jmp ? '=' : '!', insn & mask); |
| cond = (s->sfbr & mask) == (insn & mask); |
| } |
| if (cond == jmp) { |
| if (insn & (1 << 23)) { |
| /* Relative address. */ |
| addr = s->dsp + sxt24(addr); |
| } |
| switch ((insn >> 27) & 7) { |
| case 0: /* Jump */ |
| DPRINTF("Jump to 0x%08x\n", addr); |
| s->dsp = addr; |
| break; |
| case 1: /* Call */ |
| DPRINTF("Call 0x%08x\n", addr); |
| s->temp = s->dsp; |
| s->dsp = addr; |
| break; |
| case 2: /* Return */ |
| DPRINTF("Return to 0x%08x\n", s->temp); |
| s->dsp = s->temp; |
| break; |
| case 3: /* Interrupt */ |
| DPRINTF("Interrupt 0x%08x\n", s->dsps); |
| if ((insn & (1 << 20)) != 0) { |
| s->istat0 |= LSI_ISTAT0_INTF; |
| lsi_update_irq(s); |
| } else { |
| lsi_script_dma_interrupt(s, LSI_DSTAT_SIR); |
| } |
| break; |
| default: |
| DPRINTF("Illegal transfer control\n"); |
| lsi_script_dma_interrupt(s, LSI_DSTAT_IID); |
| break; |
| } |
| } else { |
| DPRINTF("Control condition failed\n"); |
| } |
| } |
| break; |
| |
| case 3: |
| if ((insn & (1 << 29)) == 0) { |
| /* Memory move. */ |
| uint32_t dest; |
| /* ??? The docs imply the destination address is loaded into |
| the TEMP register. However the Linux drivers rely on |
| the value being presrved. */ |
| dest = read_dword(s, s->dsp); |
| s->dsp += 4; |
| lsi_memcpy(s, dest, addr, insn & 0xffffff); |
| } else { |
| uint8_t data[7]; |
| int reg; |
| int n; |
| int i; |
| |
| if (insn & (1 << 28)) { |
| addr = s->dsa + sxt24(addr); |
| } |
| n = (insn & 7); |
| reg = (insn >> 16) & 0xff; |
| if (insn & (1 << 24)) { |
| cpu_physical_memory_read(addr, data, n); |
| DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n, |
| addr, *(int *)data); |
| for (i = 0; i < n; i++) { |
| lsi_reg_writeb(s, reg + i, data[i]); |
| } |
| } else { |
| DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr); |
| for (i = 0; i < n; i++) { |
| data[i] = lsi_reg_readb(s, reg + i); |
| } |
| cpu_physical_memory_write(addr, data, n); |
| } |
| } |
| } |
| if (insn_processed > 10000 && !s->waiting) { |
| /* Some windows drivers make the device spin waiting for a memory |
| location to change. If we have been executed a lot of code then |
| assume this is the case and force an unexpected device disconnect. |
| This is apparently sufficient to beat the drivers into submission. |
| */ |
| if (!(s->sien0 & LSI_SIST0_UDC)) |
| fprintf(stderr, "inf. loop with UDC masked\n"); |
| lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0); |
| lsi_disconnect(s); |
| } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) { |
| if (s->dcntl & LSI_DCNTL_SSM) { |
| lsi_script_dma_interrupt(s, LSI_DSTAT_SSI); |
| } else { |
| goto again; |
| } |
| } |
| DPRINTF("SCRIPTS execution stopped\n"); |
| } |
| |
| static uint8_t lsi_reg_readb(LSIState *s, int offset) |
| { |
| uint8_t tmp; |
| #define CASE_GET_REG24(name, addr) \ |
| case addr: return s->name & 0xff; \ |
| case addr + 1: return (s->name >> 8) & 0xff; \ |
| case addr + 2: return (s->name >> 16) & 0xff; |
| |
| #define CASE_GET_REG32(name, addr) \ |
| case addr: return s->name & 0xff; \ |
| case addr + 1: return (s->name >> 8) & 0xff; \ |
| case addr + 2: return (s->name >> 16) & 0xff; \ |
| case addr + 3: return (s->name >> 24) & 0xff; |
| |
| #ifdef DEBUG_LSI_REG |
| DPRINTF("Read reg %x\n", offset); |
| #endif |
| switch (offset) { |
| case 0x00: /* SCNTL0 */ |
| return s->scntl0; |
| case 0x01: /* SCNTL1 */ |
| return s->scntl1; |
| case 0x02: /* SCNTL2 */ |
| return s->scntl2; |
| case 0x03: /* SCNTL3 */ |
| return s->scntl3; |
| case 0x04: /* SCID */ |
| return s->scid; |
| case 0x05: /* SXFER */ |
| return s->sxfer; |
| case 0x06: /* SDID */ |
| return s->sdid; |
| case 0x07: /* GPREG0 */ |
| return 0x7f; |
| case 0x08: /* Revision ID */ |
| return 0x00; |
| case 0xa: /* SSID */ |
| return s->ssid; |
| case 0xb: /* SBCL */ |
| /* ??? This is not correct. However it's (hopefully) only |
| used for diagnostics, so should be ok. */ |
| return 0; |
| case 0xc: /* DSTAT */ |
| tmp = s->dstat | 0x80; |
| if ((s->istat0 & LSI_ISTAT0_INTF) == 0) |
| s->dstat = 0; |
| lsi_update_irq(s); |
| return tmp; |
| case 0x0d: /* SSTAT0 */ |
| return s->sstat0; |
| case 0x0e: /* SSTAT1 */ |
| return s->sstat1; |
| case 0x0f: /* SSTAT2 */ |
| return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2; |
| CASE_GET_REG32(dsa, 0x10) |
| case 0x14: /* ISTAT0 */ |
| return s->istat0; |
| case 0x15: /* ISTAT1 */ |
| return s->istat1; |
| case 0x16: /* MBOX0 */ |
| return s->mbox0; |
| case 0x17: /* MBOX1 */ |
| return s->mbox1; |
| case 0x18: /* CTEST0 */ |
| return 0xff; |
| case 0x19: /* CTEST1 */ |
| return 0; |
| case 0x1a: /* CTEST2 */ |
| tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM; |
| if (s->istat0 & LSI_ISTAT0_SIGP) { |
| s->istat0 &= ~LSI_ISTAT0_SIGP; |
| tmp |= LSI_CTEST2_SIGP; |
| } |
| return tmp; |
| case 0x1b: /* CTEST3 */ |
| return s->ctest3; |
| CASE_GET_REG32(temp, 0x1c) |
| case 0x20: /* DFIFO */ |
| return 0; |
| case 0x21: /* CTEST4 */ |
| return s->ctest4; |
| case 0x22: /* CTEST5 */ |
| return s->ctest5; |
| case 0x23: /* CTEST6 */ |
| return 0; |
| CASE_GET_REG24(dbc, 0x24) |
| case 0x27: /* DCMD */ |
| return s->dcmd; |
| CASE_GET_REG32(dnad, 0x28) |
| CASE_GET_REG32(dsp, 0x2c) |
| CASE_GET_REG32(dsps, 0x30) |
| CASE_GET_REG32(scratch[0], 0x34) |
| case 0x38: /* DMODE */ |
| return s->dmode; |
| case 0x39: /* DIEN */ |
| return s->dien; |
| case 0x3a: /* SBR */ |
| return s->sbr; |
| case 0x3b: /* DCNTL */ |
| return s->dcntl; |
| case 0x40: /* SIEN0 */ |
| return s->sien0; |
| case 0x41: /* SIEN1 */ |
| return s->sien1; |
| case 0x42: /* SIST0 */ |
| tmp = s->sist0; |
| s->sist0 = 0; |
| lsi_update_irq(s); |
| return tmp; |
| case 0x43: /* SIST1 */ |
| tmp = s->sist1; |
| s->sist1 = 0; |
| lsi_update_irq(s); |
| return tmp; |
| case 0x46: /* MACNTL */ |
| return 0x0f; |
| case 0x47: /* GPCNTL0 */ |
| return 0x0f; |
| case 0x48: /* STIME0 */ |
| return s->stime0; |
| case 0x4a: /* RESPID0 */ |
| return s->respid0; |
| case 0x4b: /* RESPID1 */ |
| return s->respid1; |
| case 0x4d: /* STEST1 */ |
| return s->stest1; |
| case 0x4e: /* STEST2 */ |
| return s->stest2; |
| case 0x4f: /* STEST3 */ |
| return s->stest3; |
| case 0x50: /* SIDL */ |
| /* This is needed by the linux drivers. We currently only update it |
| during the MSG IN phase. */ |
| return s->sidl; |
| case 0x52: /* STEST4 */ |
| return 0xe0; |
| case 0x56: /* CCNTL0 */ |
| return s->ccntl0; |
| case 0x57: /* CCNTL1 */ |
| return s->ccntl1; |
| case 0x58: /* SBDL */ |
| /* Some drivers peek at the data bus during the MSG IN phase. */ |
| if ((s->sstat1 & PHASE_MASK) == PHASE_MI) |
| return s->msg[0]; |
| return 0; |
| case 0x59: /* SBDL high */ |
| return 0; |
| CASE_GET_REG32(mmrs, 0xa0) |
| CASE_GET_REG32(mmws, 0xa4) |
| CASE_GET_REG32(sfs, 0xa8) |
| CASE_GET_REG32(drs, 0xac) |
| CASE_GET_REG32(sbms, 0xb0) |
| CASE_GET_REG32(dbms, 0xb4) |
| CASE_GET_REG32(dnad64, 0xb8) |
| CASE_GET_REG32(pmjad1, 0xc0) |
| CASE_GET_REG32(pmjad2, 0xc4) |
| CASE_GET_REG32(rbc, 0xc8) |
| CASE_GET_REG32(ua, 0xcc) |
| CASE_GET_REG32(ia, 0xd4) |
| CASE_GET_REG32(sbc, 0xd8) |
| CASE_GET_REG32(csbc, 0xdc) |
| } |
| if (offset >= 0x5c && offset < 0xa0) { |
| int n; |
| int shift; |
| n = (offset - 0x58) >> 2; |
| shift = (offset & 3) * 8; |
| return (s->scratch[n] >> shift) & 0xff; |
| } |
| BADF("readb 0x%x\n", offset); |
| exit(1); |
| #undef CASE_GET_REG24 |
| #undef CASE_GET_REG32 |
| } |
| |
| static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val) |
| { |
| #define CASE_SET_REG24(name, addr) \ |
| case addr : s->name &= 0xffffff00; s->name |= val; break; \ |
| case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \ |
| case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; |
| |
| #define CASE_SET_REG32(name, addr) \ |
| case addr : s->name &= 0xffffff00; s->name |= val; break; \ |
| case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \ |
| case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \ |
| case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break; |
| |
| #ifdef DEBUG_LSI_REG |
| DPRINTF("Write reg %x = %02x\n", offset, val); |
| #endif |
| switch (offset) { |
| case 0x00: /* SCNTL0 */ |
| s->scntl0 = val; |
| if (val & LSI_SCNTL0_START) { |
| BADF("Start sequence not implemented\n"); |
| } |
| break; |
| case 0x01: /* SCNTL1 */ |
| s->scntl1 = val & ~LSI_SCNTL1_SST; |
| if (val & LSI_SCNTL1_IARB) { |
| BADF("Immediate Arbritration not implemented\n"); |
| } |
| if (val & LSI_SCNTL1_RST) { |
| if (!(s->sstat0 & LSI_SSTAT0_RST)) { |
| DeviceState *dev; |
| |
| QTAILQ_FOREACH(dev, &s->bus.qbus.children, sibling) { |
| dev->info->reset(dev); |
| } |
| s->sstat0 |= LSI_SSTAT0_RST; |
| lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0); |
| } |
| } else { |
| s->sstat0 &= ~LSI_SSTAT0_RST; |
| } |
| break; |
| case 0x02: /* SCNTL2 */ |
| val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS); |
| s->scntl2 = val; |
| break; |
| case 0x03: /* SCNTL3 */ |
| s->scntl3 = val; |
| break; |
| case 0x04: /* SCID */ |
| s->scid = val; |
| break; |
| case 0x05: /* SXFER */ |
| s->sxfer = val; |
| break; |
| case 0x06: /* SDID */ |
| if ((val & 0xf) != (s->ssid & 0xf)) |
| BADF("Destination ID does not match SSID\n"); |
| s->sdid = val & 0xf; |
| break; |
| case 0x07: /* GPREG0 */ |
| break; |
| case 0x08: /* SFBR */ |
| /* The CPU is not allowed to write to this register. However the |
| SCRIPTS register move instructions are. */ |
| s->sfbr = val; |
| break; |
| case 0x0a: case 0x0b: |
| /* Openserver writes to these readonly registers on startup */ |
| return; |
| case 0x0c: case 0x0d: case 0x0e: case 0x0f: |
| /* Linux writes to these readonly registers on startup. */ |
| return; |
| CASE_SET_REG32(dsa, 0x10) |
| case 0x14: /* ISTAT0 */ |
| s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0); |
| if (val & LSI_ISTAT0_ABRT) { |
| lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT); |
| } |
| if (val & LSI_ISTAT0_INTF) { |
| s->istat0 &= ~LSI_ISTAT0_INTF; |
| lsi_update_irq(s); |
| } |
| if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) { |
| DPRINTF("Woken by SIGP\n"); |
| s->waiting = 0; |
| s->dsp = s->dnad; |
| lsi_execute_script(s); |
| } |
| if (val & LSI_ISTAT0_SRST) { |
| lsi_soft_reset(s); |
| } |
| break; |
| case 0x16: /* MBOX0 */ |
| s->mbox0 = val; |
| break; |
| case 0x17: /* MBOX1 */ |
| s->mbox1 = val; |
| break; |
| case 0x1a: /* CTEST2 */ |
| s->ctest2 = val & LSI_CTEST2_PCICIE; |
| break; |
| case 0x1b: /* CTEST3 */ |
| s->ctest3 = val & 0x0f; |
| break; |
| CASE_SET_REG32(temp, 0x1c) |
| case 0x21: /* CTEST4 */ |
| if (val & 7) { |
| BADF("Unimplemented CTEST4-FBL 0x%x\n", val); |
| } |
| s->ctest4 = val; |
| break; |
| case 0x22: /* CTEST5 */ |
| if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) { |
| BADF("CTEST5 DMA increment not implemented\n"); |
| } |
| s->ctest5 = val; |
| break; |
| CASE_SET_REG24(dbc, 0x24) |
| CASE_SET_REG32(dnad, 0x28) |
| case 0x2c: /* DSP[0:7] */ |
| s->dsp &= 0xffffff00; |
| s->dsp |= val; |
| break; |
| case 0x2d: /* DSP[8:15] */ |
| s->dsp &= 0xffff00ff; |
| s->dsp |= val << 8; |
| break; |
| case 0x2e: /* DSP[16:23] */ |
| s->dsp &= 0xff00ffff; |
| s->dsp |= val << 16; |
| break; |
| case 0x2f: /* DSP[24:31] */ |
| s->dsp &= 0x00ffffff; |
| s->dsp |= val << 24; |
| if ((s->dmode & LSI_DMODE_MAN) == 0 |
| && (s->istat1 & LSI_ISTAT1_SRUN) == 0) |
| lsi_execute_script(s); |
| break; |
| CASE_SET_REG32(dsps, 0x30) |
| CASE_SET_REG32(scratch[0], 0x34) |
| case 0x38: /* DMODE */ |
| if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) { |
| BADF("IO mappings not implemented\n"); |
| } |
| s->dmode = val; |
| break; |
| case 0x39: /* DIEN */ |
| s->dien = val; |
| lsi_update_irq(s); |
| break; |
| case 0x3a: /* SBR */ |
| s->sbr = val; |
| break; |
| case 0x3b: /* DCNTL */ |
| s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD); |
| if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0) |
| lsi_execute_script(s); |
| break; |
| case 0x40: /* SIEN0 */ |
| s->sien0 = val; |
| lsi_update_irq(s); |
| break; |
| case 0x41: /* SIEN1 */ |
| s->sien1 = val; |
| lsi_update_irq(s); |
| break; |
| case 0x47: /* GPCNTL0 */ |
| break; |
| case 0x48: /* STIME0 */ |
| s->stime0 = val; |
| break; |
| case 0x49: /* STIME1 */ |
| if (val & 0xf) { |
| DPRINTF("General purpose timer not implemented\n"); |
| /* ??? Raising the interrupt immediately seems to be sufficient |
| to keep the FreeBSD driver happy. */ |
| lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN); |
| } |
| break; |
| case 0x4a: /* RESPID0 */ |
| s->respid0 = val; |
| break; |
| case 0x4b: /* RESPID1 */ |
| s->respid1 = val; |
| break; |
| case 0x4d: /* STEST1 */ |
| s->stest1 = val; |
| break; |
| case 0x4e: /* STEST2 */ |
| if (val & 1) { |
| BADF("Low level mode not implemented\n"); |
| } |
| s->stest2 = val; |
| break; |
| case 0x4f: /* STEST3 */ |
| if (val & 0x41) { |
| BADF("SCSI FIFO test mode not implemented\n"); |
| } |
| s->stest3 = val; |
| break; |
| case 0x56: /* CCNTL0 */ |
| s->ccntl0 = val; |
| break; |
| case 0x57: /* CCNTL1 */ |
| s->ccntl1 = val; |
| break; |
| CASE_SET_REG32(mmrs, 0xa0) |
| CASE_SET_REG32(mmws, 0xa4) |
| CASE_SET_REG32(sfs, 0xa8) |
| CASE_SET_REG32(drs, 0xac) |
| CASE_SET_REG32(sbms, 0xb0) |
| CASE_SET_REG32(dbms, 0xb4) |
| CASE_SET_REG32(dnad64, 0xb8) |
| CASE_SET_REG32(pmjad1, 0xc0) |
| CASE_SET_REG32(pmjad2, 0xc4) |
| CASE_SET_REG32(rbc, 0xc8) |
| CASE_SET_REG32(ua, 0xcc) |
| CASE_SET_REG32(ia, 0xd4) |
| CASE_SET_REG32(sbc, 0xd8) |
| CASE_SET_REG32(csbc, 0xdc) |
| default: |
| if (offset >= 0x5c && offset < 0xa0) { |
| int n; |
| int shift; |
| n = (offset - 0x58) >> 2; |
| shift = (offset & 3) * 8; |
| s->scratch[n] &= ~(0xff << shift); |
| s->scratch[n] |= (val & 0xff) << shift; |
| } else { |
| BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val); |
| } |
| } |
| #undef CASE_SET_REG24 |
| #undef CASE_SET_REG32 |
| } |
| |
| static void lsi_mmio_write(void *opaque, target_phys_addr_t addr, |
| uint64_t val, unsigned size) |
| { |
| LSIState *s = opaque; |
| |
| lsi_reg_writeb(s, addr & 0xff, val); |
| } |
| |
| static uint64_t lsi_mmio_read(void *opaque, target_phys_addr_t addr, |
| unsigned size) |
| { |
| LSIState *s = opaque; |
| |
| return lsi_reg_readb(s, addr & 0xff); |
| } |
| |
| static const MemoryRegionOps lsi_mmio_ops = { |
| .read = lsi_mmio_read, |
| .write = lsi_mmio_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 1, |
| }, |
| }; |
| |
| static void lsi_ram_write(void *opaque, target_phys_addr_t addr, |
| uint64_t val, unsigned size) |
| { |
| LSIState *s = opaque; |
| uint32_t newval; |
| uint32_t mask; |
| int shift; |
| |
| newval = s->script_ram[addr >> 2]; |
| shift = (addr & 3) * 8; |
| mask = ((uint64_t)1 << (size * 8)) - 1; |
| newval &= ~(mask << shift); |
| newval |= val << shift; |
| s->script_ram[addr >> 2] = newval; |
| } |
| |
| static uint64_t lsi_ram_read(void *opaque, target_phys_addr_t addr, |
| unsigned size) |
| { |
| LSIState *s = opaque; |
| uint32_t val; |
| uint32_t mask; |
| |
| val = s->script_ram[addr >> 2]; |
| mask = ((uint64_t)1 << (size * 8)) - 1; |
| val >>= (addr & 3) * 8; |
| return val & mask; |
| } |
| |
| static const MemoryRegionOps lsi_ram_ops = { |
| .read = lsi_ram_read, |
| .write = lsi_ram_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static uint64_t lsi_io_read(void *opaque, target_phys_addr_t addr, |
| unsigned size) |
| { |
| LSIState *s = opaque; |
| return lsi_reg_readb(s, addr & 0xff); |
| } |
| |
| static void lsi_io_write(void *opaque, target_phys_addr_t addr, |
| uint64_t val, unsigned size) |
| { |
| LSIState *s = opaque; |
| lsi_reg_writeb(s, addr & 0xff, val); |
| } |
| |
| static const MemoryRegionOps lsi_io_ops = { |
| .read = lsi_io_read, |
| .write = lsi_io_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 1, |
| }, |
| }; |
| |
| static void lsi_scsi_reset(DeviceState *dev) |
| { |
| LSIState *s = DO_UPCAST(LSIState, dev.qdev, dev); |
| |
| lsi_soft_reset(s); |
| } |
| |
| static void lsi_pre_save(void *opaque) |
| { |
| LSIState *s = opaque; |
| |
| if (s->current) { |
| assert(s->current->dma_buf == NULL); |
| assert(s->current->dma_len == 0); |
| } |
| assert(QTAILQ_EMPTY(&s->queue)); |
| } |
| |
| static const VMStateDescription vmstate_lsi_scsi = { |
| .name = "lsiscsi", |
| .version_id = 0, |
| .minimum_version_id = 0, |
| .minimum_version_id_old = 0, |
| .pre_save = lsi_pre_save, |
| .fields = (VMStateField []) { |
| VMSTATE_PCI_DEVICE(dev, LSIState), |
| |
| VMSTATE_INT32(carry, LSIState), |
| VMSTATE_INT32(status, LSIState), |
| VMSTATE_INT32(msg_action, LSIState), |
| VMSTATE_INT32(msg_len, LSIState), |
| VMSTATE_BUFFER(msg, LSIState), |
| VMSTATE_INT32(waiting, LSIState), |
| |
| VMSTATE_UINT32(dsa, LSIState), |
| VMSTATE_UINT32(temp, LSIState), |
| VMSTATE_UINT32(dnad, LSIState), |
| VMSTATE_UINT32(dbc, LSIState), |
| VMSTATE_UINT8(istat0, LSIState), |
| VMSTATE_UINT8(istat1, LSIState), |
| VMSTATE_UINT8(dcmd, LSIState), |
| VMSTATE_UINT8(dstat, LSIState), |
| VMSTATE_UINT8(dien, LSIState), |
| VMSTATE_UINT8(sist0, LSIState), |
| VMSTATE_UINT8(sist1, LSIState), |
| VMSTATE_UINT8(sien0, LSIState), |
| VMSTATE_UINT8(sien1, LSIState), |
| VMSTATE_UINT8(mbox0, LSIState), |
| VMSTATE_UINT8(mbox1, LSIState), |
| VMSTATE_UINT8(dfifo, LSIState), |
| VMSTATE_UINT8(ctest2, LSIState), |
| VMSTATE_UINT8(ctest3, LSIState), |
| VMSTATE_UINT8(ctest4, LSIState), |
| VMSTATE_UINT8(ctest5, LSIState), |
| VMSTATE_UINT8(ccntl0, LSIState), |
| VMSTATE_UINT8(ccntl1, LSIState), |
| VMSTATE_UINT32(dsp, LSIState), |
| VMSTATE_UINT32(dsps, LSIState), |
| VMSTATE_UINT8(dmode, LSIState), |
| VMSTATE_UINT8(dcntl, LSIState), |
| VMSTATE_UINT8(scntl0, LSIState), |
| VMSTATE_UINT8(scntl1, LSIState), |
| VMSTATE_UINT8(scntl2, LSIState), |
| VMSTATE_UINT8(scntl3, LSIState), |
| VMSTATE_UINT8(sstat0, LSIState), |
| VMSTATE_UINT8(sstat1, LSIState), |
| VMSTATE_UINT8(scid, LSIState), |
| VMSTATE_UINT8(sxfer, LSIState), |
| VMSTATE_UINT8(socl, LSIState), |
| VMSTATE_UINT8(sdid, LSIState), |
| VMSTATE_UINT8(ssid, LSIState), |
| VMSTATE_UINT8(sfbr, LSIState), |
| VMSTATE_UINT8(stest1, LSIState), |
| VMSTATE_UINT8(stest2, LSIState), |
| VMSTATE_UINT8(stest3, LSIState), |
| VMSTATE_UINT8(sidl, LSIState), |
| VMSTATE_UINT8(stime0, LSIState), |
| VMSTATE_UINT8(respid0, LSIState), |
| VMSTATE_UINT8(respid1, LSIState), |
| VMSTATE_UINT32(mmrs, LSIState), |
| VMSTATE_UINT32(mmws, LSIState), |
| VMSTATE_UINT32(sfs, LSIState), |
| VMSTATE_UINT32(drs, LSIState), |
| VMSTATE_UINT32(sbms, LSIState), |
| VMSTATE_UINT32(dbms, LSIState), |
| VMSTATE_UINT32(dnad64, LSIState), |
| VMSTATE_UINT32(pmjad1, LSIState), |
| VMSTATE_UINT32(pmjad2, LSIState), |
| VMSTATE_UINT32(rbc, LSIState), |
| VMSTATE_UINT32(ua, LSIState), |
| VMSTATE_UINT32(ia, LSIState), |
| VMSTATE_UINT32(sbc, LSIState), |
| VMSTATE_UINT32(csbc, LSIState), |
| VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)), |
| VMSTATE_UINT8(sbr, LSIState), |
| |
| VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static int lsi_scsi_uninit(PCIDevice *d) |
| { |
| LSIState *s = DO_UPCAST(LSIState, dev, d); |
| |
| memory_region_destroy(&s->mmio_io); |
| memory_region_destroy(&s->ram_io); |
| memory_region_destroy(&s->io_io); |
| |
| return 0; |
| } |
| |
| static const struct SCSIBusInfo lsi_scsi_info = { |
| .tcq = true, |
| .max_target = LSI_MAX_DEVS, |
| .max_lun = 0, /* LUN support is buggy */ |
| |
| .transfer_data = lsi_transfer_data, |
| .complete = lsi_command_complete, |
| .cancel = lsi_request_cancelled |
| }; |
| |
| static int lsi_scsi_init(PCIDevice *dev) |
| { |
| LSIState *s = DO_UPCAST(LSIState, dev, dev); |
| uint8_t *pci_conf; |
| |
| pci_conf = s->dev.config; |
| |
| /* PCI latency timer = 255 */ |
| pci_conf[PCI_LATENCY_TIMER] = 0xff; |
| /* Interrupt pin A */ |
| pci_conf[PCI_INTERRUPT_PIN] = 0x01; |
| |
| memory_region_init_io(&s->mmio_io, &lsi_mmio_ops, s, "lsi-mmio", 0x400); |
| memory_region_init_io(&s->ram_io, &lsi_ram_ops, s, "lsi-ram", 0x2000); |
| memory_region_init_io(&s->io_io, &lsi_io_ops, s, "lsi-io", 256); |
| |
| pci_register_bar(&s->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io_io); |
| pci_register_bar(&s->dev, 1, 0, &s->mmio_io); |
| pci_register_bar(&s->dev, 2, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->ram_io); |
| QTAILQ_INIT(&s->queue); |
| |
| scsi_bus_new(&s->bus, &dev->qdev, &lsi_scsi_info); |
| if (!dev->qdev.hotplugged) { |
| return scsi_bus_legacy_handle_cmdline(&s->bus); |
| } |
| return 0; |
| } |
| |
| static PCIDeviceInfo lsi_info = { |
| .qdev.name = "lsi53c895a", |
| .qdev.alias = "lsi", |
| .qdev.size = sizeof(LSIState), |
| .qdev.reset = lsi_scsi_reset, |
| .qdev.vmsd = &vmstate_lsi_scsi, |
| .init = lsi_scsi_init, |
| .exit = lsi_scsi_uninit, |
| .vendor_id = PCI_VENDOR_ID_LSI_LOGIC, |
| .device_id = PCI_DEVICE_ID_LSI_53C895A, |
| .class_id = PCI_CLASS_STORAGE_SCSI, |
| .subsystem_id = 0x1000, |
| }; |
| |
| static void lsi53c895a_register_devices(void) |
| { |
| pci_qdev_register(&lsi_info); |
| } |
| |
| device_init(lsi53c895a_register_devices); |