| /* |
| * CRIS helper routines. |
| * |
| * Copyright (c) 2007 AXIS Communications AB |
| * Written by Edgar E. Iglesias. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "cpu.h" |
| #include "mmu.h" |
| #include "host-utils.h" |
| |
| |
| //#define CRIS_HELPER_DEBUG |
| |
| |
| #ifdef CRIS_HELPER_DEBUG |
| #define D(x) x |
| #define D_LOG(...) qemu_log(__VA__ARGS__) |
| #else |
| #define D(x) |
| #define D_LOG(...) do { } while (0) |
| #endif |
| |
| #if defined(CONFIG_USER_ONLY) |
| |
| void do_interrupt (CPUState *env) |
| { |
| env->exception_index = -1; |
| env->pregs[PR_ERP] = env->pc; |
| } |
| |
| int cpu_cris_handle_mmu_fault(CPUState * env, target_ulong address, int rw, |
| int mmu_idx) |
| { |
| env->exception_index = 0xaa; |
| env->pregs[PR_EDA] = address; |
| cpu_dump_state(env, stderr, fprintf, 0); |
| return 1; |
| } |
| |
| #else /* !CONFIG_USER_ONLY */ |
| |
| |
| static void cris_shift_ccs(CPUState *env) |
| { |
| uint32_t ccs; |
| /* Apply the ccs shift. */ |
| ccs = env->pregs[PR_CCS]; |
| ccs = ((ccs & 0xc0000000) | ((ccs << 12) >> 2)) & ~0x3ff; |
| env->pregs[PR_CCS] = ccs; |
| } |
| |
| int cpu_cris_handle_mmu_fault (CPUState *env, target_ulong address, int rw, |
| int mmu_idx) |
| { |
| struct cris_mmu_result res; |
| int prot, miss; |
| int r = -1; |
| target_ulong phy; |
| |
| D(printf ("%s addr=%x pc=%x rw=%x\n", __func__, address, env->pc, rw)); |
| miss = cris_mmu_translate(&res, env, address & TARGET_PAGE_MASK, |
| rw, mmu_idx, 0); |
| if (miss) |
| { |
| if (env->exception_index == EXCP_BUSFAULT) |
| cpu_abort(env, |
| "CRIS: Illegal recursive bus fault." |
| "addr=%x rw=%d\n", |
| address, rw); |
| |
| env->pregs[PR_EDA] = address; |
| env->exception_index = EXCP_BUSFAULT; |
| env->fault_vector = res.bf_vec; |
| r = 1; |
| } |
| else |
| { |
| /* |
| * Mask off the cache selection bit. The ETRAX busses do not |
| * see the top bit. |
| */ |
| phy = res.phy & ~0x80000000; |
| prot = res.prot; |
| tlb_set_page(env, address & TARGET_PAGE_MASK, phy, |
| prot, mmu_idx, TARGET_PAGE_SIZE); |
| r = 0; |
| } |
| if (r > 0) |
| D_LOG("%s returns %d irqreq=%x addr=%x phy=%x vec=%x pc=%x\n", |
| __func__, r, env->interrupt_request, address, res.phy, |
| res.bf_vec, env->pc); |
| return r; |
| } |
| |
| static void do_interruptv10(CPUState *env) |
| { |
| int ex_vec = -1; |
| |
| D_LOG( "exception index=%d interrupt_req=%d\n", |
| env->exception_index, |
| env->interrupt_request); |
| |
| assert(!(env->pregs[PR_CCS] & PFIX_FLAG)); |
| switch (env->exception_index) |
| { |
| case EXCP_BREAK: |
| /* These exceptions are genereated by the core itself. |
| ERP should point to the insn following the brk. */ |
| ex_vec = env->trap_vector; |
| env->pregs[PR_ERP] = env->pc; |
| break; |
| |
| case EXCP_NMI: |
| /* NMI is hardwired to vector zero. */ |
| ex_vec = 0; |
| env->pregs[PR_CCS] &= ~M_FLAG; |
| env->pregs[PR_NRP] = env->pc; |
| break; |
| |
| case EXCP_BUSFAULT: |
| cpu_abort(env, "Unhandled busfault"); |
| break; |
| |
| default: |
| /* The interrupt controller gives us the vector. */ |
| ex_vec = env->interrupt_vector; |
| /* Normal interrupts are taken between |
| TB's. env->pc is valid here. */ |
| env->pregs[PR_ERP] = env->pc; |
| break; |
| } |
| |
| if (env->pregs[PR_CCS] & U_FLAG) { |
| /* Swap stack pointers. */ |
| env->pregs[PR_USP] = env->regs[R_SP]; |
| env->regs[R_SP] = env->ksp; |
| } |
| |
| /* Now that we are in kernel mode, load the handlers address. */ |
| env->pc = ldl_code(env->pregs[PR_EBP] + ex_vec * 4); |
| env->locked_irq = 1; |
| env->pregs[PR_CCS] |= F_FLAG_V10; /* set F. */ |
| |
| qemu_log_mask(CPU_LOG_INT, "%s isr=%x vec=%x ccs=%x pid=%d erp=%x\n", |
| __func__, env->pc, ex_vec, |
| env->pregs[PR_CCS], |
| env->pregs[PR_PID], |
| env->pregs[PR_ERP]); |
| } |
| |
| void do_interrupt(CPUState *env) |
| { |
| int ex_vec = -1; |
| |
| if (env->pregs[PR_VR] < 32) |
| return do_interruptv10(env); |
| |
| D_LOG( "exception index=%d interrupt_req=%d\n", |
| env->exception_index, |
| env->interrupt_request); |
| |
| switch (env->exception_index) |
| { |
| case EXCP_BREAK: |
| /* These exceptions are genereated by the core itself. |
| ERP should point to the insn following the brk. */ |
| ex_vec = env->trap_vector; |
| env->pregs[PR_ERP] = env->pc; |
| break; |
| |
| case EXCP_NMI: |
| /* NMI is hardwired to vector zero. */ |
| ex_vec = 0; |
| env->pregs[PR_CCS] &= ~M_FLAG; |
| env->pregs[PR_NRP] = env->pc; |
| break; |
| |
| case EXCP_BUSFAULT: |
| ex_vec = env->fault_vector; |
| env->pregs[PR_ERP] = env->pc; |
| break; |
| |
| default: |
| /* The interrupt controller gives us the vector. */ |
| ex_vec = env->interrupt_vector; |
| /* Normal interrupts are taken between |
| TB's. env->pc is valid here. */ |
| env->pregs[PR_ERP] = env->pc; |
| break; |
| } |
| |
| /* Fill in the IDX field. */ |
| env->pregs[PR_EXS] = (ex_vec & 0xff) << 8; |
| |
| if (env->dslot) { |
| D_LOG("excp isr=%x PC=%x ds=%d SP=%x" |
| " ERP=%x pid=%x ccs=%x cc=%d %x\n", |
| ex_vec, env->pc, env->dslot, |
| env->regs[R_SP], |
| env->pregs[PR_ERP], env->pregs[PR_PID], |
| env->pregs[PR_CCS], |
| env->cc_op, env->cc_mask); |
| /* We loose the btarget, btaken state here so rexec the |
| branch. */ |
| env->pregs[PR_ERP] -= env->dslot; |
| /* Exception starts with dslot cleared. */ |
| env->dslot = 0; |
| } |
| |
| if (env->pregs[PR_CCS] & U_FLAG) { |
| /* Swap stack pointers. */ |
| env->pregs[PR_USP] = env->regs[R_SP]; |
| env->regs[R_SP] = env->ksp; |
| } |
| |
| /* Apply the CRIS CCS shift. Clears U if set. */ |
| cris_shift_ccs(env); |
| |
| /* Now that we are in kernel mode, load the handlers address. |
| This load may not fault, real hw leaves that behaviour as |
| undefined. */ |
| env->pc = ldl_code(env->pregs[PR_EBP] + ex_vec * 4); |
| |
| /* Clear the excption_index to avoid spurios hw_aborts for recursive |
| bus faults. */ |
| env->exception_index = -1; |
| |
| D_LOG("%s isr=%x vec=%x ccs=%x pid=%d erp=%x\n", |
| __func__, env->pc, ex_vec, |
| env->pregs[PR_CCS], |
| env->pregs[PR_PID], |
| env->pregs[PR_ERP]); |
| } |
| |
| target_phys_addr_t cpu_get_phys_page_debug(CPUState * env, target_ulong addr) |
| { |
| uint32_t phy = addr; |
| struct cris_mmu_result res; |
| int miss; |
| |
| miss = cris_mmu_translate(&res, env, addr, 0, 0, 1); |
| /* If D TLB misses, try I TLB. */ |
| if (miss) { |
| miss = cris_mmu_translate(&res, env, addr, 2, 0, 1); |
| } |
| |
| if (!miss) |
| phy = res.phy; |
| D(fprintf(stderr, "%s %x -> %x\n", __func__, addr, phy)); |
| return phy; |
| } |
| #endif |