| /* |
| * QEMU KVM support |
| * |
| * Copyright (C) 2006-2008 Qumranet Technologies |
| * Copyright IBM, Corp. 2008 |
| * |
| * Authors: |
| * Anthony Liguori <aliguori@us.ibm.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include <sys/ioctl.h> |
| #include <sys/utsname.h> |
| |
| #include <linux/kvm.h> |
| #include <linux/kvm_para.h> |
| |
| #include "qemu-common.h" |
| #include "cpu.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/hw_accel.h" |
| #include "sysemu/kvm_int.h" |
| #include "kvm_i386.h" |
| #include "hyperv.h" |
| |
| #include "exec/gdbstub.h" |
| #include "qemu/host-utils.h" |
| #include "qemu/config-file.h" |
| #include "qemu/error-report.h" |
| #include "hw/i386/pc.h" |
| #include "hw/i386/apic.h" |
| #include "hw/i386/apic_internal.h" |
| #include "hw/i386/apic-msidef.h" |
| #include "hw/i386/intel_iommu.h" |
| #include "hw/i386/x86-iommu.h" |
| |
| #include "exec/ioport.h" |
| #include "standard-headers/asm-x86/hyperv.h" |
| #include "hw/pci/pci.h" |
| #include "hw/pci/msi.h" |
| #include "hw/pci/msix.h" |
| #include "migration/blocker.h" |
| #include "exec/memattrs.h" |
| #include "trace.h" |
| |
| //#define DEBUG_KVM |
| |
| #ifdef DEBUG_KVM |
| #define DPRINTF(fmt, ...) \ |
| do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| #define MSR_KVM_WALL_CLOCK 0x11 |
| #define MSR_KVM_SYSTEM_TIME 0x12 |
| |
| /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus |
| * 255 kvm_msr_entry structs */ |
| #define MSR_BUF_SIZE 4096 |
| |
| const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
| KVM_CAP_INFO(SET_TSS_ADDR), |
| KVM_CAP_INFO(EXT_CPUID), |
| KVM_CAP_INFO(MP_STATE), |
| KVM_CAP_LAST_INFO |
| }; |
| |
| static bool has_msr_star; |
| static bool has_msr_hsave_pa; |
| static bool has_msr_tsc_aux; |
| static bool has_msr_tsc_adjust; |
| static bool has_msr_tsc_deadline; |
| static bool has_msr_feature_control; |
| static bool has_msr_misc_enable; |
| static bool has_msr_smbase; |
| static bool has_msr_bndcfgs; |
| static int lm_capable_kernel; |
| static bool has_msr_hv_hypercall; |
| static bool has_msr_hv_crash; |
| static bool has_msr_hv_reset; |
| static bool has_msr_hv_vpindex; |
| static bool has_msr_hv_runtime; |
| static bool has_msr_hv_synic; |
| static bool has_msr_hv_stimer; |
| static bool has_msr_xss; |
| |
| static bool has_msr_architectural_pmu; |
| static uint32_t num_architectural_pmu_counters; |
| |
| static int has_xsave; |
| static int has_xcrs; |
| static int has_pit_state2; |
| |
| static bool has_msr_mcg_ext_ctl; |
| |
| static struct kvm_cpuid2 *cpuid_cache; |
| |
| int kvm_has_pit_state2(void) |
| { |
| return has_pit_state2; |
| } |
| |
| bool kvm_has_smm(void) |
| { |
| return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM); |
| } |
| |
| bool kvm_has_adjust_clock_stable(void) |
| { |
| int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK); |
| |
| return (ret == KVM_CLOCK_TSC_STABLE); |
| } |
| |
| bool kvm_allows_irq0_override(void) |
| { |
| return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing(); |
| } |
| |
| static bool kvm_x2apic_api_set_flags(uint64_t flags) |
| { |
| KVMState *s = KVM_STATE(current_machine->accelerator); |
| |
| return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags); |
| } |
| |
| #define MEMORIZE(fn, _result) \ |
| ({ \ |
| static bool _memorized; \ |
| \ |
| if (_memorized) { \ |
| return _result; \ |
| } \ |
| _memorized = true; \ |
| _result = fn; \ |
| }) |
| |
| static bool has_x2apic_api; |
| |
| bool kvm_has_x2apic_api(void) |
| { |
| return has_x2apic_api; |
| } |
| |
| bool kvm_enable_x2apic(void) |
| { |
| return MEMORIZE( |
| kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS | |
| KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK), |
| has_x2apic_api); |
| } |
| |
| static int kvm_get_tsc(CPUState *cs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| struct { |
| struct kvm_msrs info; |
| struct kvm_msr_entry entries[1]; |
| } msr_data; |
| int ret; |
| |
| if (env->tsc_valid) { |
| return 0; |
| } |
| |
| msr_data.info.nmsrs = 1; |
| msr_data.entries[0].index = MSR_IA32_TSC; |
| env->tsc_valid = !runstate_is_running(); |
| |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| assert(ret == 1); |
| env->tsc = msr_data.entries[0].data; |
| return 0; |
| } |
| |
| static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg) |
| { |
| kvm_get_tsc(cpu); |
| } |
| |
| void kvm_synchronize_all_tsc(void) |
| { |
| CPUState *cpu; |
| |
| if (kvm_enabled()) { |
| CPU_FOREACH(cpu) { |
| run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL); |
| } |
| } |
| } |
| |
| static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
| { |
| struct kvm_cpuid2 *cpuid; |
| int r, size; |
| |
| size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); |
| cpuid = g_malloc0(size); |
| cpuid->nent = max; |
| r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); |
| if (r == 0 && cpuid->nent >= max) { |
| r = -E2BIG; |
| } |
| if (r < 0) { |
| if (r == -E2BIG) { |
| g_free(cpuid); |
| return NULL; |
| } else { |
| fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n", |
| strerror(-r)); |
| exit(1); |
| } |
| } |
| return cpuid; |
| } |
| |
| /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough |
| * for all entries. |
| */ |
| static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s) |
| { |
| struct kvm_cpuid2 *cpuid; |
| int max = 1; |
| |
| if (cpuid_cache != NULL) { |
| return cpuid_cache; |
| } |
| while ((cpuid = try_get_cpuid(s, max)) == NULL) { |
| max *= 2; |
| } |
| cpuid_cache = cpuid; |
| return cpuid; |
| } |
| |
| static const struct kvm_para_features { |
| int cap; |
| int feature; |
| } para_features[] = { |
| { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, |
| { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, |
| { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, |
| { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF }, |
| }; |
| |
| static int get_para_features(KVMState *s) |
| { |
| int i, features = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(para_features); i++) { |
| if (kvm_check_extension(s, para_features[i].cap)) { |
| features |= (1 << para_features[i].feature); |
| } |
| } |
| |
| return features; |
| } |
| |
| static bool host_tsx_blacklisted(void) |
| { |
| int family, model, stepping;\ |
| char vendor[CPUID_VENDOR_SZ + 1]; |
| |
| host_vendor_fms(vendor, &family, &model, &stepping); |
| |
| /* Check if we are running on a Haswell host known to have broken TSX */ |
| return !strcmp(vendor, CPUID_VENDOR_INTEL) && |
| (family == 6) && |
| ((model == 63 && stepping < 4) || |
| model == 60 || model == 69 || model == 70); |
| } |
| |
| /* Returns the value for a specific register on the cpuid entry |
| */ |
| static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg) |
| { |
| uint32_t ret = 0; |
| switch (reg) { |
| case R_EAX: |
| ret = entry->eax; |
| break; |
| case R_EBX: |
| ret = entry->ebx; |
| break; |
| case R_ECX: |
| ret = entry->ecx; |
| break; |
| case R_EDX: |
| ret = entry->edx; |
| break; |
| } |
| return ret; |
| } |
| |
| /* Find matching entry for function/index on kvm_cpuid2 struct |
| */ |
| static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid, |
| uint32_t function, |
| uint32_t index) |
| { |
| int i; |
| for (i = 0; i < cpuid->nent; ++i) { |
| if (cpuid->entries[i].function == function && |
| cpuid->entries[i].index == index) { |
| return &cpuid->entries[i]; |
| } |
| } |
| /* not found: */ |
| return NULL; |
| } |
| |
| uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function, |
| uint32_t index, int reg) |
| { |
| struct kvm_cpuid2 *cpuid; |
| uint32_t ret = 0; |
| uint32_t cpuid_1_edx; |
| bool found = false; |
| |
| cpuid = get_supported_cpuid(s); |
| |
| struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index); |
| if (entry) { |
| found = true; |
| ret = cpuid_entry_get_reg(entry, reg); |
| } |
| |
| /* Fixups for the data returned by KVM, below */ |
| |
| if (function == 1 && reg == R_EDX) { |
| /* KVM before 2.6.30 misreports the following features */ |
| ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; |
| } else if (function == 1 && reg == R_ECX) { |
| /* We can set the hypervisor flag, even if KVM does not return it on |
| * GET_SUPPORTED_CPUID |
| */ |
| ret |= CPUID_EXT_HYPERVISOR; |
| /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it |
| * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER, |
| * and the irqchip is in the kernel. |
| */ |
| if (kvm_irqchip_in_kernel() && |
| kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) { |
| ret |= CPUID_EXT_TSC_DEADLINE_TIMER; |
| } |
| |
| /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled |
| * without the in-kernel irqchip |
| */ |
| if (!kvm_irqchip_in_kernel()) { |
| ret &= ~CPUID_EXT_X2APIC; |
| } |
| } else if (function == 6 && reg == R_EAX) { |
| ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */ |
| } else if (function == 7 && index == 0 && reg == R_EBX) { |
| if (host_tsx_blacklisted()) { |
| ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE); |
| } |
| } else if (function == 0x80000001 && reg == R_EDX) { |
| /* On Intel, kvm returns cpuid according to the Intel spec, |
| * so add missing bits according to the AMD spec: |
| */ |
| cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX); |
| ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES; |
| } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) { |
| /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't |
| * be enabled without the in-kernel irqchip |
| */ |
| if (!kvm_irqchip_in_kernel()) { |
| ret &= ~(1U << KVM_FEATURE_PV_UNHALT); |
| } |
| } |
| |
| /* fallback for older kernels */ |
| if ((function == KVM_CPUID_FEATURES) && !found) { |
| ret = get_para_features(s); |
| } |
| |
| return ret; |
| } |
| |
| typedef struct HWPoisonPage { |
| ram_addr_t ram_addr; |
| QLIST_ENTRY(HWPoisonPage) list; |
| } HWPoisonPage; |
| |
| static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list = |
| QLIST_HEAD_INITIALIZER(hwpoison_page_list); |
| |
| static void kvm_unpoison_all(void *param) |
| { |
| HWPoisonPage *page, *next_page; |
| |
| QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) { |
| QLIST_REMOVE(page, list); |
| qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE); |
| g_free(page); |
| } |
| } |
| |
| static void kvm_hwpoison_page_add(ram_addr_t ram_addr) |
| { |
| HWPoisonPage *page; |
| |
| QLIST_FOREACH(page, &hwpoison_page_list, list) { |
| if (page->ram_addr == ram_addr) { |
| return; |
| } |
| } |
| page = g_new(HWPoisonPage, 1); |
| page->ram_addr = ram_addr; |
| QLIST_INSERT_HEAD(&hwpoison_page_list, page, list); |
| } |
| |
| static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap, |
| int *max_banks) |
| { |
| int r; |
| |
| r = kvm_check_extension(s, KVM_CAP_MCE); |
| if (r > 0) { |
| *max_banks = r; |
| return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap); |
| } |
| return -ENOSYS; |
| } |
| |
| static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUX86State *env = &cpu->env; |
| uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN | |
| MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S; |
| uint64_t mcg_status = MCG_STATUS_MCIP; |
| int flags = 0; |
| |
| if (code == BUS_MCEERR_AR) { |
| status |= MCI_STATUS_AR | 0x134; |
| mcg_status |= MCG_STATUS_EIPV; |
| } else { |
| status |= 0xc0; |
| mcg_status |= MCG_STATUS_RIPV; |
| } |
| |
| flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0; |
| /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the |
| * guest kernel back into env->mcg_ext_ctl. |
| */ |
| cpu_synchronize_state(cs); |
| if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) { |
| mcg_status |= MCG_STATUS_LMCE; |
| flags = 0; |
| } |
| |
| cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr, |
| (MCM_ADDR_PHYS << 6) | 0xc, flags); |
| } |
| |
| static void hardware_memory_error(void) |
| { |
| fprintf(stderr, "Hardware memory error!\n"); |
| exit(1); |
| } |
| |
| void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) |
| { |
| X86CPU *cpu = X86_CPU(c); |
| CPUX86State *env = &cpu->env; |
| ram_addr_t ram_addr; |
| hwaddr paddr; |
| |
| /* If we get an action required MCE, it has been injected by KVM |
| * while the VM was running. An action optional MCE instead should |
| * be coming from the main thread, which qemu_init_sigbus identifies |
| * as the "early kill" thread. |
| */ |
| assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); |
| |
| if ((env->mcg_cap & MCG_SER_P) && addr) { |
| ram_addr = qemu_ram_addr_from_host(addr); |
| if (ram_addr != RAM_ADDR_INVALID && |
| kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { |
| kvm_hwpoison_page_add(ram_addr); |
| kvm_mce_inject(cpu, paddr, code); |
| return; |
| } |
| |
| fprintf(stderr, "Hardware memory error for memory used by " |
| "QEMU itself instead of guest system!\n"); |
| } |
| |
| if (code == BUS_MCEERR_AR) { |
| hardware_memory_error(); |
| } |
| |
| /* Hope we are lucky for AO MCE */ |
| } |
| |
| static int kvm_inject_mce_oldstyle(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| |
| if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) { |
| unsigned int bank, bank_num = env->mcg_cap & 0xff; |
| struct kvm_x86_mce mce; |
| |
| env->exception_injected = -1; |
| |
| /* |
| * There must be at least one bank in use if an MCE is pending. |
| * Find it and use its values for the event injection. |
| */ |
| for (bank = 0; bank < bank_num; bank++) { |
| if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) { |
| break; |
| } |
| } |
| assert(bank < bank_num); |
| |
| mce.bank = bank; |
| mce.status = env->mce_banks[bank * 4 + 1]; |
| mce.mcg_status = env->mcg_status; |
| mce.addr = env->mce_banks[bank * 4 + 2]; |
| mce.misc = env->mce_banks[bank * 4 + 3]; |
| |
| return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce); |
| } |
| return 0; |
| } |
| |
| static void cpu_update_state(void *opaque, int running, RunState state) |
| { |
| CPUX86State *env = opaque; |
| |
| if (running) { |
| env->tsc_valid = false; |
| } |
| } |
| |
| unsigned long kvm_arch_vcpu_id(CPUState *cs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| return cpu->apic_id; |
| } |
| |
| #ifndef KVM_CPUID_SIGNATURE_NEXT |
| #define KVM_CPUID_SIGNATURE_NEXT 0x40000100 |
| #endif |
| |
| static bool hyperv_hypercall_available(X86CPU *cpu) |
| { |
| return cpu->hyperv_vapic || |
| (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY); |
| } |
| |
| static bool hyperv_enabled(X86CPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 && |
| (hyperv_hypercall_available(cpu) || |
| cpu->hyperv_time || |
| cpu->hyperv_relaxed_timing || |
| cpu->hyperv_crash || |
| cpu->hyperv_reset || |
| cpu->hyperv_vpindex || |
| cpu->hyperv_runtime || |
| cpu->hyperv_synic || |
| cpu->hyperv_stimer); |
| } |
| |
| static int kvm_arch_set_tsc_khz(CPUState *cs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| int r; |
| |
| if (!env->tsc_khz) { |
| return 0; |
| } |
| |
| r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ? |
| kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) : |
| -ENOTSUP; |
| if (r < 0) { |
| /* When KVM_SET_TSC_KHZ fails, it's an error only if the current |
| * TSC frequency doesn't match the one we want. |
| */ |
| int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? |
| kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : |
| -ENOTSUP; |
| if (cur_freq <= 0 || cur_freq != env->tsc_khz) { |
| error_report("warning: TSC frequency mismatch between " |
| "VM (%" PRId64 " kHz) and host (%d kHz), " |
| "and TSC scaling unavailable", |
| env->tsc_khz, cur_freq); |
| return r; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int hyperv_handle_properties(CPUState *cs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| if (cpu->hyperv_time && |
| kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) { |
| cpu->hyperv_time = false; |
| } |
| |
| if (cpu->hyperv_relaxed_timing) { |
| env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
| } |
| if (cpu->hyperv_vapic) { |
| env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
| env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_APIC_ACCESS_AVAILABLE; |
| } |
| if (cpu->hyperv_time) { |
| env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_HYPERCALL_AVAILABLE; |
| env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE; |
| env->features[FEAT_HYPERV_EAX] |= 0x200; |
| } |
| if (cpu->hyperv_crash && has_msr_hv_crash) { |
| env->features[FEAT_HYPERV_EDX] |= HV_X64_GUEST_CRASH_MSR_AVAILABLE; |
| } |
| env->features[FEAT_HYPERV_EDX] |= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE; |
| if (cpu->hyperv_reset && has_msr_hv_reset) { |
| env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_RESET_AVAILABLE; |
| } |
| if (cpu->hyperv_vpindex && has_msr_hv_vpindex) { |
| env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_VP_INDEX_AVAILABLE; |
| } |
| if (cpu->hyperv_runtime && has_msr_hv_runtime) { |
| env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_VP_RUNTIME_AVAILABLE; |
| } |
| if (cpu->hyperv_synic) { |
| int sint; |
| |
| if (!has_msr_hv_synic || |
| kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) { |
| fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n"); |
| return -ENOSYS; |
| } |
| |
| env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_SYNIC_AVAILABLE; |
| env->msr_hv_synic_version = HV_SYNIC_VERSION_1; |
| for (sint = 0; sint < ARRAY_SIZE(env->msr_hv_synic_sint); sint++) { |
| env->msr_hv_synic_sint[sint] = HV_SYNIC_SINT_MASKED; |
| } |
| } |
| if (cpu->hyperv_stimer) { |
| if (!has_msr_hv_stimer) { |
| fprintf(stderr, "Hyper-V timers aren't supported by kernel\n"); |
| return -ENOSYS; |
| } |
| env->features[FEAT_HYPERV_EAX] |= HV_X64_MSR_SYNTIMER_AVAILABLE; |
| } |
| return 0; |
| } |
| |
| static Error *invtsc_mig_blocker; |
| |
| #define KVM_MAX_CPUID_ENTRIES 100 |
| |
| int kvm_arch_init_vcpu(CPUState *cs) |
| { |
| struct { |
| struct kvm_cpuid2 cpuid; |
| struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES]; |
| } QEMU_PACKED cpuid_data; |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| uint32_t limit, i, j, cpuid_i; |
| uint32_t unused; |
| struct kvm_cpuid_entry2 *c; |
| uint32_t signature[3]; |
| int kvm_base = KVM_CPUID_SIGNATURE; |
| int r; |
| Error *local_err = NULL; |
| |
| memset(&cpuid_data, 0, sizeof(cpuid_data)); |
| |
| cpuid_i = 0; |
| |
| /* Paravirtualization CPUIDs */ |
| if (hyperv_enabled(cpu)) { |
| c = &cpuid_data.entries[cpuid_i++]; |
| c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS; |
| if (!cpu->hyperv_vendor_id) { |
| memcpy(signature, "Microsoft Hv", 12); |
| } else { |
| size_t len = strlen(cpu->hyperv_vendor_id); |
| |
| if (len > 12) { |
| error_report("hv-vendor-id truncated to 12 characters"); |
| len = 12; |
| } |
| memset(signature, 0, 12); |
| memcpy(signature, cpu->hyperv_vendor_id, len); |
| } |
| c->eax = HYPERV_CPUID_MIN; |
| c->ebx = signature[0]; |
| c->ecx = signature[1]; |
| c->edx = signature[2]; |
| |
| c = &cpuid_data.entries[cpuid_i++]; |
| c->function = HYPERV_CPUID_INTERFACE; |
| memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12); |
| c->eax = signature[0]; |
| c->ebx = 0; |
| c->ecx = 0; |
| c->edx = 0; |
| |
| c = &cpuid_data.entries[cpuid_i++]; |
| c->function = HYPERV_CPUID_VERSION; |
| c->eax = 0x00001bbc; |
| c->ebx = 0x00060001; |
| |
| c = &cpuid_data.entries[cpuid_i++]; |
| c->function = HYPERV_CPUID_FEATURES; |
| r = hyperv_handle_properties(cs); |
| if (r) { |
| return r; |
| } |
| c->eax = env->features[FEAT_HYPERV_EAX]; |
| c->ebx = env->features[FEAT_HYPERV_EBX]; |
| c->edx = env->features[FEAT_HYPERV_EDX]; |
| |
| c = &cpuid_data.entries[cpuid_i++]; |
| c->function = HYPERV_CPUID_ENLIGHTMENT_INFO; |
| if (cpu->hyperv_relaxed_timing) { |
| c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED; |
| } |
| if (cpu->hyperv_vapic) { |
| c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED; |
| } |
| c->ebx = cpu->hyperv_spinlock_attempts; |
| |
| c = &cpuid_data.entries[cpuid_i++]; |
| c->function = HYPERV_CPUID_IMPLEMENT_LIMITS; |
| c->eax = 0x40; |
| c->ebx = 0x40; |
| |
| kvm_base = KVM_CPUID_SIGNATURE_NEXT; |
| has_msr_hv_hypercall = true; |
| } |
| |
| if (cpu->expose_kvm) { |
| memcpy(signature, "KVMKVMKVM\0\0\0", 12); |
| c = &cpuid_data.entries[cpuid_i++]; |
| c->function = KVM_CPUID_SIGNATURE | kvm_base; |
| c->eax = KVM_CPUID_FEATURES | kvm_base; |
| c->ebx = signature[0]; |
| c->ecx = signature[1]; |
| c->edx = signature[2]; |
| |
| c = &cpuid_data.entries[cpuid_i++]; |
| c->function = KVM_CPUID_FEATURES | kvm_base; |
| c->eax = env->features[FEAT_KVM]; |
| } |
| |
| cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
| |
| for (i = 0; i <= limit; i++) { |
| if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
| fprintf(stderr, "unsupported level value: 0x%x\n", limit); |
| abort(); |
| } |
| c = &cpuid_data.entries[cpuid_i++]; |
| |
| switch (i) { |
| case 2: { |
| /* Keep reading function 2 till all the input is received */ |
| int times; |
| |
| c->function = i; |
| c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
| KVM_CPUID_FLAG_STATE_READ_NEXT; |
| cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| times = c->eax & 0xff; |
| |
| for (j = 1; j < times; ++j) { |
| if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
| fprintf(stderr, "cpuid_data is full, no space for " |
| "cpuid(eax:2):eax & 0xf = 0x%x\n", times); |
| abort(); |
| } |
| c = &cpuid_data.entries[cpuid_i++]; |
| c->function = i; |
| c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
| cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| } |
| break; |
| } |
| case 4: |
| case 0xb: |
| case 0xd: |
| for (j = 0; ; j++) { |
| if (i == 0xd && j == 64) { |
| break; |
| } |
| c->function = i; |
| c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
| c->index = j; |
| cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| |
| if (i == 4 && c->eax == 0) { |
| break; |
| } |
| if (i == 0xb && !(c->ecx & 0xff00)) { |
| break; |
| } |
| if (i == 0xd && c->eax == 0) { |
| continue; |
| } |
| if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
| fprintf(stderr, "cpuid_data is full, no space for " |
| "cpuid(eax:0x%x,ecx:0x%x)\n", i, j); |
| abort(); |
| } |
| c = &cpuid_data.entries[cpuid_i++]; |
| } |
| break; |
| default: |
| c->function = i; |
| c->flags = 0; |
| cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| break; |
| } |
| } |
| |
| if (limit >= 0x0a) { |
| uint32_t ver; |
| |
| cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused); |
| if ((ver & 0xff) > 0) { |
| has_msr_architectural_pmu = true; |
| num_architectural_pmu_counters = (ver & 0xff00) >> 8; |
| |
| /* Shouldn't be more than 32, since that's the number of bits |
| * available in EBX to tell us _which_ counters are available. |
| * Play it safe. |
| */ |
| if (num_architectural_pmu_counters > MAX_GP_COUNTERS) { |
| num_architectural_pmu_counters = MAX_GP_COUNTERS; |
| } |
| } |
| } |
| |
| cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
| |
| for (i = 0x80000000; i <= limit; i++) { |
| if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
| fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit); |
| abort(); |
| } |
| c = &cpuid_data.entries[cpuid_i++]; |
| |
| c->function = i; |
| c->flags = 0; |
| cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| } |
| |
| /* Call Centaur's CPUID instructions they are supported. */ |
| if (env->cpuid_xlevel2 > 0) { |
| cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused); |
| |
| for (i = 0xC0000000; i <= limit; i++) { |
| if (cpuid_i == KVM_MAX_CPUID_ENTRIES) { |
| fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit); |
| abort(); |
| } |
| c = &cpuid_data.entries[cpuid_i++]; |
| |
| c->function = i; |
| c->flags = 0; |
| cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx); |
| } |
| } |
| |
| cpuid_data.cpuid.nent = cpuid_i; |
| |
| if (((env->cpuid_version >> 8)&0xF) >= 6 |
| && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) == |
| (CPUID_MCE | CPUID_MCA) |
| && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) { |
| uint64_t mcg_cap, unsupported_caps; |
| int banks; |
| int ret; |
| |
| ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks); |
| if (ret < 0) { |
| fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret)); |
| return ret; |
| } |
| |
| if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) { |
| error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)", |
| (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks); |
| return -ENOTSUP; |
| } |
| |
| unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK); |
| if (unsupported_caps) { |
| if (unsupported_caps & MCG_LMCE_P) { |
| error_report("kvm: LMCE not supported"); |
| return -ENOTSUP; |
| } |
| error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64, |
| unsupported_caps); |
| } |
| |
| env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK; |
| ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap); |
| if (ret < 0) { |
| fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret)); |
| return ret; |
| } |
| } |
| |
| qemu_add_vm_change_state_handler(cpu_update_state, env); |
| |
| c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0); |
| if (c) { |
| has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) || |
| !!(c->ecx & CPUID_EXT_SMX); |
| } |
| |
| if (env->mcg_cap & MCG_LMCE_P) { |
| has_msr_mcg_ext_ctl = has_msr_feature_control = true; |
| } |
| |
| if (!env->user_tsc_khz) { |
| if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) && |
| invtsc_mig_blocker == NULL) { |
| /* for migration */ |
| error_setg(&invtsc_mig_blocker, |
| "State blocked by non-migratable CPU device" |
| " (invtsc flag)"); |
| r = migrate_add_blocker(invtsc_mig_blocker, &local_err); |
| if (local_err) { |
| error_report_err(local_err); |
| error_free(invtsc_mig_blocker); |
| goto fail; |
| } |
| /* for savevm */ |
| vmstate_x86_cpu.unmigratable = 1; |
| } |
| } |
| |
| r = kvm_arch_set_tsc_khz(cs); |
| if (r < 0) { |
| goto fail; |
| } |
| |
| /* vcpu's TSC frequency is either specified by user, or following |
| * the value used by KVM if the former is not present. In the |
| * latter case, we query it from KVM and record in env->tsc_khz, |
| * so that vcpu's TSC frequency can be migrated later via this field. |
| */ |
| if (!env->tsc_khz) { |
| r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ? |
| kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : |
| -ENOTSUP; |
| if (r > 0) { |
| env->tsc_khz = r; |
| } |
| } |
| |
| if (cpu->vmware_cpuid_freq |
| /* Guests depend on 0x40000000 to detect this feature, so only expose |
| * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */ |
| && cpu->expose_kvm |
| && kvm_base == KVM_CPUID_SIGNATURE |
| /* TSC clock must be stable and known for this feature. */ |
| && ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) |
| || env->user_tsc_khz != 0) |
| && env->tsc_khz != 0) { |
| |
| c = &cpuid_data.entries[cpuid_i++]; |
| c->function = KVM_CPUID_SIGNATURE | 0x10; |
| c->eax = env->tsc_khz; |
| /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's |
| * APIC_BUS_CYCLE_NS */ |
| c->ebx = 1000000; |
| c->ecx = c->edx = 0; |
| |
| c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0); |
| c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10); |
| } |
| |
| cpuid_data.cpuid.nent = cpuid_i; |
| |
| cpuid_data.cpuid.padding = 0; |
| r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data); |
| if (r) { |
| goto fail; |
| } |
| |
| if (has_xsave) { |
| env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave)); |
| } |
| cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE); |
| |
| if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) { |
| has_msr_tsc_aux = false; |
| } |
| |
| return 0; |
| |
| fail: |
| migrate_del_blocker(invtsc_mig_blocker); |
| return r; |
| } |
| |
| void kvm_arch_reset_vcpu(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| |
| env->exception_injected = -1; |
| env->interrupt_injected = -1; |
| env->xcr0 = 1; |
| if (kvm_irqchip_in_kernel()) { |
| env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE : |
| KVM_MP_STATE_UNINITIALIZED; |
| } else { |
| env->mp_state = KVM_MP_STATE_RUNNABLE; |
| } |
| } |
| |
| void kvm_arch_do_init_vcpu(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| |
| /* APs get directly into wait-for-SIPI state. */ |
| if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) { |
| env->mp_state = KVM_MP_STATE_INIT_RECEIVED; |
| } |
| } |
| |
| static int kvm_get_supported_msrs(KVMState *s) |
| { |
| static int kvm_supported_msrs; |
| int ret = 0; |
| |
| /* first time */ |
| if (kvm_supported_msrs == 0) { |
| struct kvm_msr_list msr_list, *kvm_msr_list; |
| |
| kvm_supported_msrs = -1; |
| |
| /* Obtain MSR list from KVM. These are the MSRs that we must |
| * save/restore */ |
| msr_list.nmsrs = 0; |
| ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list); |
| if (ret < 0 && ret != -E2BIG) { |
| return ret; |
| } |
| /* Old kernel modules had a bug and could write beyond the provided |
| memory. Allocate at least a safe amount of 1K. */ |
| kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) + |
| msr_list.nmsrs * |
| sizeof(msr_list.indices[0]))); |
| |
| kvm_msr_list->nmsrs = msr_list.nmsrs; |
| ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
| if (ret >= 0) { |
| int i; |
| |
| for (i = 0; i < kvm_msr_list->nmsrs; i++) { |
| if (kvm_msr_list->indices[i] == MSR_STAR) { |
| has_msr_star = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) { |
| has_msr_hsave_pa = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == MSR_TSC_AUX) { |
| has_msr_tsc_aux = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) { |
| has_msr_tsc_adjust = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) { |
| has_msr_tsc_deadline = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) { |
| has_msr_smbase = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) { |
| has_msr_misc_enable = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) { |
| has_msr_bndcfgs = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == MSR_IA32_XSS) { |
| has_msr_xss = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == HV_X64_MSR_CRASH_CTL) { |
| has_msr_hv_crash = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == HV_X64_MSR_RESET) { |
| has_msr_hv_reset = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_INDEX) { |
| has_msr_hv_vpindex = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_RUNTIME) { |
| has_msr_hv_runtime = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == HV_X64_MSR_SCONTROL) { |
| has_msr_hv_synic = true; |
| continue; |
| } |
| if (kvm_msr_list->indices[i] == HV_X64_MSR_STIMER0_CONFIG) { |
| has_msr_hv_stimer = true; |
| continue; |
| } |
| } |
| } |
| |
| g_free(kvm_msr_list); |
| } |
| |
| return ret; |
| } |
| |
| static Notifier smram_machine_done; |
| static KVMMemoryListener smram_listener; |
| static AddressSpace smram_address_space; |
| static MemoryRegion smram_as_root; |
| static MemoryRegion smram_as_mem; |
| |
| static void register_smram_listener(Notifier *n, void *unused) |
| { |
| MemoryRegion *smram = |
| (MemoryRegion *) object_resolve_path("/machine/smram", NULL); |
| |
| /* Outer container... */ |
| memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull); |
| memory_region_set_enabled(&smram_as_root, true); |
| |
| /* ... with two regions inside: normal system memory with low |
| * priority, and... |
| */ |
| memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram", |
| get_system_memory(), 0, ~0ull); |
| memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0); |
| memory_region_set_enabled(&smram_as_mem, true); |
| |
| if (smram) { |
| /* ... SMRAM with higher priority */ |
| memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10); |
| memory_region_set_enabled(smram, true); |
| } |
| |
| address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM"); |
| kvm_memory_listener_register(kvm_state, &smram_listener, |
| &smram_address_space, 1); |
| } |
| |
| int kvm_arch_init(MachineState *ms, KVMState *s) |
| { |
| uint64_t identity_base = 0xfffbc000; |
| uint64_t shadow_mem; |
| int ret; |
| struct utsname utsname; |
| |
| #ifdef KVM_CAP_XSAVE |
| has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE); |
| #endif |
| |
| #ifdef KVM_CAP_XCRS |
| has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS); |
| #endif |
| |
| #ifdef KVM_CAP_PIT_STATE2 |
| has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); |
| #endif |
| |
| ret = kvm_get_supported_msrs(s); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| uname(&utsname); |
| lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0; |
| |
| /* |
| * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly. |
| * In order to use vm86 mode, an EPT identity map and a TSS are needed. |
| * Since these must be part of guest physical memory, we need to allocate |
| * them, both by setting their start addresses in the kernel and by |
| * creating a corresponding e820 entry. We need 4 pages before the BIOS. |
| * |
| * Older KVM versions may not support setting the identity map base. In |
| * that case we need to stick with the default, i.e. a 256K maximum BIOS |
| * size. |
| */ |
| if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) { |
| /* Allows up to 16M BIOSes. */ |
| identity_base = 0xfeffc000; |
| |
| ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| /* Set TSS base one page after EPT identity map. */ |
| ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| /* Tell fw_cfg to notify the BIOS to reserve the range. */ |
| ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED); |
| if (ret < 0) { |
| fprintf(stderr, "e820_add_entry() table is full\n"); |
| return ret; |
| } |
| qemu_register_reset(kvm_unpoison_all, NULL); |
| |
| shadow_mem = machine_kvm_shadow_mem(ms); |
| if (shadow_mem != -1) { |
| shadow_mem /= 4096; |
| ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| if (kvm_check_extension(s, KVM_CAP_X86_SMM) && |
| object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) && |
| pc_machine_is_smm_enabled(PC_MACHINE(ms))) { |
| smram_machine_done.notify = register_smram_listener; |
| qemu_add_machine_init_done_notifier(&smram_machine_done); |
| } |
| return 0; |
| } |
| |
| static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
| { |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->type = 3; |
| lhs->present = 1; |
| lhs->dpl = 3; |
| lhs->db = 0; |
| lhs->s = 1; |
| lhs->l = 0; |
| lhs->g = 0; |
| lhs->avl = 0; |
| lhs->unusable = 0; |
| } |
| |
| static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
| { |
| unsigned flags = rhs->flags; |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; |
| lhs->present = (flags & DESC_P_MASK) != 0; |
| lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3; |
| lhs->db = (flags >> DESC_B_SHIFT) & 1; |
| lhs->s = (flags & DESC_S_MASK) != 0; |
| lhs->l = (flags >> DESC_L_SHIFT) & 1; |
| lhs->g = (flags & DESC_G_MASK) != 0; |
| lhs->avl = (flags & DESC_AVL_MASK) != 0; |
| lhs->unusable = !lhs->present; |
| lhs->padding = 0; |
| } |
| |
| static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) |
| { |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->flags = (rhs->type << DESC_TYPE_SHIFT) | |
| ((rhs->present && !rhs->unusable) * DESC_P_MASK) | |
| (rhs->dpl << DESC_DPL_SHIFT) | |
| (rhs->db << DESC_B_SHIFT) | |
| (rhs->s * DESC_S_MASK) | |
| (rhs->l << DESC_L_SHIFT) | |
| (rhs->g * DESC_G_MASK) | |
| (rhs->avl * DESC_AVL_MASK); |
| } |
| |
| static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) |
| { |
| if (set) { |
| *kvm_reg = *qemu_reg; |
| } else { |
| *qemu_reg = *kvm_reg; |
| } |
| } |
| |
| static int kvm_getput_regs(X86CPU *cpu, int set) |
| { |
| CPUX86State *env = &cpu->env; |
| struct kvm_regs regs; |
| int ret = 0; |
| |
| if (!set) { |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, ®s); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); |
| kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); |
| kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); |
| kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); |
| kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); |
| kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); |
| kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); |
| kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); |
| #ifdef TARGET_X86_64 |
| kvm_getput_reg(®s.r8, &env->regs[8], set); |
| kvm_getput_reg(®s.r9, &env->regs[9], set); |
| kvm_getput_reg(®s.r10, &env->regs[10], set); |
| kvm_getput_reg(®s.r11, &env->regs[11], set); |
| kvm_getput_reg(®s.r12, &env->regs[12], set); |
| kvm_getput_reg(®s.r13, &env->regs[13], set); |
| kvm_getput_reg(®s.r14, &env->regs[14], set); |
| kvm_getput_reg(®s.r15, &env->regs[15], set); |
| #endif |
| |
| kvm_getput_reg(®s.rflags, &env->eflags, set); |
| kvm_getput_reg(®s.rip, &env->eip, set); |
| |
| if (set) { |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, ®s); |
| } |
| |
| return ret; |
| } |
| |
| static int kvm_put_fpu(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| struct kvm_fpu fpu; |
| int i; |
| |
| memset(&fpu, 0, sizeof fpu); |
| fpu.fsw = env->fpus & ~(7 << 11); |
| fpu.fsw |= (env->fpstt & 7) << 11; |
| fpu.fcw = env->fpuc; |
| fpu.last_opcode = env->fpop; |
| fpu.last_ip = env->fpip; |
| fpu.last_dp = env->fpdp; |
| for (i = 0; i < 8; ++i) { |
| fpu.ftwx |= (!env->fptags[i]) << i; |
| } |
| memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs); |
| for (i = 0; i < CPU_NB_REGS; i++) { |
| stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0)); |
| stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1)); |
| } |
| fpu.mxcsr = env->mxcsr; |
| |
| return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu); |
| } |
| |
| #define XSAVE_FCW_FSW 0 |
| #define XSAVE_FTW_FOP 1 |
| #define XSAVE_CWD_RIP 2 |
| #define XSAVE_CWD_RDP 4 |
| #define XSAVE_MXCSR 6 |
| #define XSAVE_ST_SPACE 8 |
| #define XSAVE_XMM_SPACE 40 |
| #define XSAVE_XSTATE_BV 128 |
| #define XSAVE_YMMH_SPACE 144 |
| #define XSAVE_BNDREGS 240 |
| #define XSAVE_BNDCSR 256 |
| #define XSAVE_OPMASK 272 |
| #define XSAVE_ZMM_Hi256 288 |
| #define XSAVE_Hi16_ZMM 416 |
| #define XSAVE_PKRU 672 |
| |
| #define XSAVE_BYTE_OFFSET(word_offset) \ |
| ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0])) |
| |
| #define ASSERT_OFFSET(word_offset, field) \ |
| QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \ |
| offsetof(X86XSaveArea, field)) |
| |
| ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw); |
| ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw); |
| ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip); |
| ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp); |
| ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr); |
| ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs); |
| ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs); |
| ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv); |
| ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state); |
| ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state); |
| ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state); |
| ASSERT_OFFSET(XSAVE_OPMASK, opmask_state); |
| ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state); |
| ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state); |
| ASSERT_OFFSET(XSAVE_PKRU, pkru_state); |
| |
| static int kvm_put_xsave(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| X86XSaveArea *xsave = env->kvm_xsave_buf; |
| uint16_t cwd, swd, twd; |
| int i; |
| |
| if (!has_xsave) { |
| return kvm_put_fpu(cpu); |
| } |
| |
| memset(xsave, 0, sizeof(struct kvm_xsave)); |
| twd = 0; |
| swd = env->fpus & ~(7 << 11); |
| swd |= (env->fpstt & 7) << 11; |
| cwd = env->fpuc; |
| for (i = 0; i < 8; ++i) { |
| twd |= (!env->fptags[i]) << i; |
| } |
| xsave->legacy.fcw = cwd; |
| xsave->legacy.fsw = swd; |
| xsave->legacy.ftw = twd; |
| xsave->legacy.fpop = env->fpop; |
| xsave->legacy.fpip = env->fpip; |
| xsave->legacy.fpdp = env->fpdp; |
| memcpy(&xsave->legacy.fpregs, env->fpregs, |
| sizeof env->fpregs); |
| xsave->legacy.mxcsr = env->mxcsr; |
| xsave->header.xstate_bv = env->xstate_bv; |
| memcpy(&xsave->bndreg_state.bnd_regs, env->bnd_regs, |
| sizeof env->bnd_regs); |
| xsave->bndcsr_state.bndcsr = env->bndcs_regs; |
| memcpy(&xsave->opmask_state.opmask_regs, env->opmask_regs, |
| sizeof env->opmask_regs); |
| |
| for (i = 0; i < CPU_NB_REGS; i++) { |
| uint8_t *xmm = xsave->legacy.xmm_regs[i]; |
| uint8_t *ymmh = xsave->avx_state.ymmh[i]; |
| uint8_t *zmmh = xsave->zmm_hi256_state.zmm_hi256[i]; |
| stq_p(xmm, env->xmm_regs[i].ZMM_Q(0)); |
| stq_p(xmm+8, env->xmm_regs[i].ZMM_Q(1)); |
| stq_p(ymmh, env->xmm_regs[i].ZMM_Q(2)); |
| stq_p(ymmh+8, env->xmm_regs[i].ZMM_Q(3)); |
| stq_p(zmmh, env->xmm_regs[i].ZMM_Q(4)); |
| stq_p(zmmh+8, env->xmm_regs[i].ZMM_Q(5)); |
| stq_p(zmmh+16, env->xmm_regs[i].ZMM_Q(6)); |
| stq_p(zmmh+24, env->xmm_regs[i].ZMM_Q(7)); |
| } |
| |
| #ifdef TARGET_X86_64 |
| memcpy(&xsave->hi16_zmm_state.hi16_zmm, &env->xmm_regs[16], |
| 16 * sizeof env->xmm_regs[16]); |
| memcpy(&xsave->pkru_state, &env->pkru, sizeof env->pkru); |
| #endif |
| return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave); |
| } |
| |
| static int kvm_put_xcrs(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| struct kvm_xcrs xcrs = {}; |
| |
| if (!has_xcrs) { |
| return 0; |
| } |
| |
| xcrs.nr_xcrs = 1; |
| xcrs.flags = 0; |
| xcrs.xcrs[0].xcr = 0; |
| xcrs.xcrs[0].value = env->xcr0; |
| return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs); |
| } |
| |
| static int kvm_put_sregs(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| struct kvm_sregs sregs; |
| |
| memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
| if (env->interrupt_injected >= 0) { |
| sregs.interrupt_bitmap[env->interrupt_injected / 64] |= |
| (uint64_t)1 << (env->interrupt_injected % 64); |
| } |
| |
| if ((env->eflags & VM_MASK)) { |
| set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
| set_v8086_seg(&sregs.ds, &env->segs[R_DS]); |
| set_v8086_seg(&sregs.es, &env->segs[R_ES]); |
| set_v8086_seg(&sregs.fs, &env->segs[R_FS]); |
| set_v8086_seg(&sregs.gs, &env->segs[R_GS]); |
| set_v8086_seg(&sregs.ss, &env->segs[R_SS]); |
| } else { |
| set_seg(&sregs.cs, &env->segs[R_CS]); |
| set_seg(&sregs.ds, &env->segs[R_DS]); |
| set_seg(&sregs.es, &env->segs[R_ES]); |
| set_seg(&sregs.fs, &env->segs[R_FS]); |
| set_seg(&sregs.gs, &env->segs[R_GS]); |
| set_seg(&sregs.ss, &env->segs[R_SS]); |
| } |
| |
| set_seg(&sregs.tr, &env->tr); |
| set_seg(&sregs.ldt, &env->ldt); |
| |
| sregs.idt.limit = env->idt.limit; |
| sregs.idt.base = env->idt.base; |
| memset(sregs.idt.padding, 0, sizeof sregs.idt.padding); |
| sregs.gdt.limit = env->gdt.limit; |
| sregs.gdt.base = env->gdt.base; |
| memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding); |
| |
| sregs.cr0 = env->cr[0]; |
| sregs.cr2 = env->cr[2]; |
| sregs.cr3 = env->cr[3]; |
| sregs.cr4 = env->cr[4]; |
| |
| sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state); |
| sregs.apic_base = cpu_get_apic_base(cpu->apic_state); |
| |
| sregs.efer = env->efer; |
| |
| return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs); |
| } |
| |
| static void kvm_msr_buf_reset(X86CPU *cpu) |
| { |
| memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE); |
| } |
| |
| static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value) |
| { |
| struct kvm_msrs *msrs = cpu->kvm_msr_buf; |
| void *limit = ((void *)msrs) + MSR_BUF_SIZE; |
| struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs]; |
| |
| assert((void *)(entry + 1) <= limit); |
| |
| entry->index = index; |
| entry->reserved = 0; |
| entry->data = value; |
| msrs->nmsrs++; |
| } |
| |
| static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value) |
| { |
| kvm_msr_buf_reset(cpu); |
| kvm_msr_entry_add(cpu, index, value); |
| |
| return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); |
| } |
| |
| void kvm_put_apicbase(X86CPU *cpu, uint64_t value) |
| { |
| int ret; |
| |
| ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value); |
| assert(ret == 1); |
| } |
| |
| static int kvm_put_tscdeadline_msr(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| int ret; |
| |
| if (!has_msr_tsc_deadline) { |
| return 0; |
| } |
| |
| ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| assert(ret == 1); |
| return 0; |
| } |
| |
| /* |
| * Provide a separate write service for the feature control MSR in order to |
| * kick the VCPU out of VMXON or even guest mode on reset. This has to be done |
| * before writing any other state because forcibly leaving nested mode |
| * invalidates the VCPU state. |
| */ |
| static int kvm_put_msr_feature_control(X86CPU *cpu) |
| { |
| int ret; |
| |
| if (!has_msr_feature_control) { |
| return 0; |
| } |
| |
| ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL, |
| cpu->env.msr_ia32_feature_control); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| assert(ret == 1); |
| return 0; |
| } |
| |
| static int kvm_put_msrs(X86CPU *cpu, int level) |
| { |
| CPUX86State *env = &cpu->env; |
| int i; |
| int ret; |
| |
| kvm_msr_buf_reset(cpu); |
| |
| kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
| kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp); |
| kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip); |
| kvm_msr_entry_add(cpu, MSR_PAT, env->pat); |
| if (has_msr_star) { |
| kvm_msr_entry_add(cpu, MSR_STAR, env->star); |
| } |
| if (has_msr_hsave_pa) { |
| kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave); |
| } |
| if (has_msr_tsc_aux) { |
| kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux); |
| } |
| if (has_msr_tsc_adjust) { |
| kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust); |
| } |
| if (has_msr_misc_enable) { |
| kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, |
| env->msr_ia32_misc_enable); |
| } |
| if (has_msr_smbase) { |
| kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase); |
| } |
| if (has_msr_bndcfgs) { |
| kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs); |
| } |
| if (has_msr_xss) { |
| kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss); |
| } |
| #ifdef TARGET_X86_64 |
| if (lm_capable_kernel) { |
| kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar); |
| kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase); |
| kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask); |
| kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar); |
| } |
| #endif |
| /* |
| * The following MSRs have side effects on the guest or are too heavy |
| * for normal writeback. Limit them to reset or full state updates. |
| */ |
| if (level >= KVM_PUT_RESET_STATE) { |
| kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc); |
| kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr); |
| kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr); |
| if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
| kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr); |
| } |
| if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
| kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr); |
| } |
| if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
| kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr); |
| } |
| if (has_msr_architectural_pmu) { |
| /* Stop the counter. */ |
| kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); |
| kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); |
| |
| /* Set the counter values. */ |
| for (i = 0; i < MAX_FIXED_COUNTERS; i++) { |
| kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, |
| env->msr_fixed_counters[i]); |
| } |
| for (i = 0; i < num_architectural_pmu_counters; i++) { |
| kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, |
| env->msr_gp_counters[i]); |
| kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, |
| env->msr_gp_evtsel[i]); |
| } |
| kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, |
| env->msr_global_status); |
| kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, |
| env->msr_global_ovf_ctrl); |
| |
| /* Now start the PMU. */ |
| kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, |
| env->msr_fixed_ctr_ctrl); |
| kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, |
| env->msr_global_ctrl); |
| } |
| if (has_msr_hv_hypercall) { |
| kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, |
| env->msr_hv_guest_os_id); |
| kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, |
| env->msr_hv_hypercall); |
| } |
| if (cpu->hyperv_vapic) { |
| kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, |
| env->msr_hv_vapic); |
| } |
| if (cpu->hyperv_time) { |
| kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, env->msr_hv_tsc); |
| } |
| if (has_msr_hv_crash) { |
| int j; |
| |
| for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) |
| kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, |
| env->msr_hv_crash_params[j]); |
| |
| kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, |
| HV_X64_MSR_CRASH_CTL_NOTIFY); |
| } |
| if (has_msr_hv_runtime) { |
| kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime); |
| } |
| if (cpu->hyperv_synic) { |
| int j; |
| |
| kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, |
| env->msr_hv_synic_control); |
| kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, |
| env->msr_hv_synic_version); |
| kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, |
| env->msr_hv_synic_evt_page); |
| kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, |
| env->msr_hv_synic_msg_page); |
| |
| for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) { |
| kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j, |
| env->msr_hv_synic_sint[j]); |
| } |
| } |
| if (has_msr_hv_stimer) { |
| int j; |
| |
| for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) { |
| kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2, |
| env->msr_hv_stimer_config[j]); |
| } |
| |
| for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) { |
| kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2, |
| env->msr_hv_stimer_count[j]); |
| } |
| } |
| if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
| uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits); |
| |
| kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]); |
| for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
| /* The CPU GPs if we write to a bit above the physical limit of |
| * the host CPU (and KVM emulates that) |
| */ |
| uint64_t mask = env->mtrr_var[i].mask; |
| mask &= phys_mask; |
| |
| kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), |
| env->mtrr_var[i].base); |
| kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask); |
| } |
| } |
| |
| /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see |
| * kvm_put_msr_feature_control. */ |
| } |
| if (env->mcg_cap) { |
| int i; |
| |
| kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status); |
| kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl); |
| if (has_msr_mcg_ext_ctl) { |
| kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl); |
| } |
| for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
| kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]); |
| } |
| } |
| |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| if (ret < cpu->kvm_msr_buf->nmsrs) { |
| struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; |
| error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64, |
| (uint32_t)e->index, (uint64_t)e->data); |
| } |
| |
| assert(ret == cpu->kvm_msr_buf->nmsrs); |
| return 0; |
| } |
| |
| |
| static int kvm_get_fpu(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| struct kvm_fpu fpu; |
| int i, ret; |
| |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| env->fpstt = (fpu.fsw >> 11) & 7; |
| env->fpus = fpu.fsw; |
| env->fpuc = fpu.fcw; |
| env->fpop = fpu.last_opcode; |
| env->fpip = fpu.last_ip; |
| env->fpdp = fpu.last_dp; |
| for (i = 0; i < 8; ++i) { |
| env->fptags[i] = !((fpu.ftwx >> i) & 1); |
| } |
| memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs); |
| for (i = 0; i < CPU_NB_REGS; i++) { |
| env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]); |
| env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]); |
| } |
| env->mxcsr = fpu.mxcsr; |
| |
| return 0; |
| } |
| |
| static int kvm_get_xsave(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| X86XSaveArea *xsave = env->kvm_xsave_buf; |
| int ret, i; |
| uint16_t cwd, swd, twd; |
| |
| if (!has_xsave) { |
| return kvm_get_fpu(cpu); |
| } |
| |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| cwd = xsave->legacy.fcw; |
| swd = xsave->legacy.fsw; |
| twd = xsave->legacy.ftw; |
| env->fpop = xsave->legacy.fpop; |
| env->fpstt = (swd >> 11) & 7; |
| env->fpus = swd; |
| env->fpuc = cwd; |
| for (i = 0; i < 8; ++i) { |
| env->fptags[i] = !((twd >> i) & 1); |
| } |
| env->fpip = xsave->legacy.fpip; |
| env->fpdp = xsave->legacy.fpdp; |
| env->mxcsr = xsave->legacy.mxcsr; |
| memcpy(env->fpregs, &xsave->legacy.fpregs, |
| sizeof env->fpregs); |
| env->xstate_bv = xsave->header.xstate_bv; |
| memcpy(env->bnd_regs, &xsave->bndreg_state.bnd_regs, |
| sizeof env->bnd_regs); |
| env->bndcs_regs = xsave->bndcsr_state.bndcsr; |
| memcpy(env->opmask_regs, &xsave->opmask_state.opmask_regs, |
| sizeof env->opmask_regs); |
| |
| for (i = 0; i < CPU_NB_REGS; i++) { |
| uint8_t *xmm = xsave->legacy.xmm_regs[i]; |
| uint8_t *ymmh = xsave->avx_state.ymmh[i]; |
| uint8_t *zmmh = xsave->zmm_hi256_state.zmm_hi256[i]; |
| env->xmm_regs[i].ZMM_Q(0) = ldq_p(xmm); |
| env->xmm_regs[i].ZMM_Q(1) = ldq_p(xmm+8); |
| env->xmm_regs[i].ZMM_Q(2) = ldq_p(ymmh); |
| env->xmm_regs[i].ZMM_Q(3) = ldq_p(ymmh+8); |
| env->xmm_regs[i].ZMM_Q(4) = ldq_p(zmmh); |
| env->xmm_regs[i].ZMM_Q(5) = ldq_p(zmmh+8); |
| env->xmm_regs[i].ZMM_Q(6) = ldq_p(zmmh+16); |
| env->xmm_regs[i].ZMM_Q(7) = ldq_p(zmmh+24); |
| } |
| |
| #ifdef TARGET_X86_64 |
| memcpy(&env->xmm_regs[16], &xsave->hi16_zmm_state.hi16_zmm, |
| 16 * sizeof env->xmm_regs[16]); |
| memcpy(&env->pkru, &xsave->pkru_state, sizeof env->pkru); |
| #endif |
| return 0; |
| } |
| |
| static int kvm_get_xcrs(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| int i, ret; |
| struct kvm_xcrs xcrs; |
| |
| if (!has_xcrs) { |
| return 0; |
| } |
| |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| for (i = 0; i < xcrs.nr_xcrs; i++) { |
| /* Only support xcr0 now */ |
| if (xcrs.xcrs[i].xcr == 0) { |
| env->xcr0 = xcrs.xcrs[i].value; |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| static int kvm_get_sregs(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| struct kvm_sregs sregs; |
| uint32_t hflags; |
| int bit, i, ret; |
| |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| /* There can only be one pending IRQ set in the bitmap at a time, so try |
| to find it and save its number instead (-1 for none). */ |
| env->interrupt_injected = -1; |
| for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { |
| if (sregs.interrupt_bitmap[i]) { |
| bit = ctz64(sregs.interrupt_bitmap[i]); |
| env->interrupt_injected = i * 64 + bit; |
| break; |
| } |
| } |
| |
| get_seg(&env->segs[R_CS], &sregs.cs); |
| get_seg(&env->segs[R_DS], &sregs.ds); |
| get_seg(&env->segs[R_ES], &sregs.es); |
| get_seg(&env->segs[R_FS], &sregs.fs); |
| get_seg(&env->segs[R_GS], &sregs.gs); |
| get_seg(&env->segs[R_SS], &sregs.ss); |
| |
| get_seg(&env->tr, &sregs.tr); |
| get_seg(&env->ldt, &sregs.ldt); |
| |
| env->idt.limit = sregs.idt.limit; |
| env->idt.base = sregs.idt.base; |
| env->gdt.limit = sregs.gdt.limit; |
| env->gdt.base = sregs.gdt.base; |
| |
| env->cr[0] = sregs.cr0; |
| env->cr[2] = sregs.cr2; |
| env->cr[3] = sregs.cr3; |
| env->cr[4] = sregs.cr4; |
| |
| env->efer = sregs.efer; |
| |
| /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */ |
| |
| #define HFLAG_COPY_MASK \ |
| ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ |
| HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ |
| HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ |
| HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) |
| |
| hflags = env->hflags & HFLAG_COPY_MASK; |
| hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; |
| hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT); |
| hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) & |
| (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
| hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
| |
| if (env->cr[4] & CR4_OSFXSR_MASK) { |
| hflags |= HF_OSFXSR_MASK; |
| } |
| |
| if (env->efer & MSR_EFER_LMA) { |
| hflags |= HF_LMA_MASK; |
| } |
| |
| if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) { |
| hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; |
| } else { |
| hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> |
| (DESC_B_SHIFT - HF_CS32_SHIFT); |
| hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
| (DESC_B_SHIFT - HF_SS32_SHIFT); |
| if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) || |
| !(hflags & HF_CS32_MASK)) { |
| hflags |= HF_ADDSEG_MASK; |
| } else { |
| hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base | |
| env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT; |
| } |
| } |
| env->hflags = hflags; |
| |
| return 0; |
| } |
| |
| static int kvm_get_msrs(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries; |
| int ret, i; |
| uint64_t mtrr_top_bits; |
| |
| kvm_msr_buf_reset(cpu); |
| |
| kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0); |
| kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0); |
| kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0); |
| kvm_msr_entry_add(cpu, MSR_PAT, 0); |
| if (has_msr_star) { |
| kvm_msr_entry_add(cpu, MSR_STAR, 0); |
| } |
| if (has_msr_hsave_pa) { |
| kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0); |
| } |
| if (has_msr_tsc_aux) { |
| kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0); |
| } |
| if (has_msr_tsc_adjust) { |
| kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0); |
| } |
| if (has_msr_tsc_deadline) { |
| kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0); |
| } |
| if (has_msr_misc_enable) { |
| kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0); |
| } |
| if (has_msr_smbase) { |
| kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0); |
| } |
| if (has_msr_feature_control) { |
| kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0); |
| } |
| if (has_msr_bndcfgs) { |
| kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0); |
| } |
| if (has_msr_xss) { |
| kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0); |
| } |
| |
| |
| if (!env->tsc_valid) { |
| kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0); |
| env->tsc_valid = !runstate_is_running(); |
| } |
| |
| #ifdef TARGET_X86_64 |
| if (lm_capable_kernel) { |
| kvm_msr_entry_add(cpu, MSR_CSTAR, 0); |
| kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0); |
| kvm_msr_entry_add(cpu, MSR_FMASK, 0); |
| kvm_msr_entry_add(cpu, MSR_LSTAR, 0); |
| } |
| #endif |
| kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0); |
| kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0); |
| if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) { |
| kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0); |
| } |
| if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) { |
| kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0); |
| } |
| if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) { |
| kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0); |
| } |
| if (has_msr_architectural_pmu) { |
| kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0); |
| kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0); |
| kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0); |
| kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0); |
| for (i = 0; i < MAX_FIXED_COUNTERS; i++) { |
| kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0); |
| } |
| for (i = 0; i < num_architectural_pmu_counters; i++) { |
| kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0); |
| kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0); |
| } |
| } |
| |
| if (env->mcg_cap) { |
| kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0); |
| kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0); |
| if (has_msr_mcg_ext_ctl) { |
| kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0); |
| } |
| for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { |
| kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0); |
| } |
| } |
| |
| if (has_msr_hv_hypercall) { |
| kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0); |
| kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0); |
| } |
| if (cpu->hyperv_vapic) { |
| kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0); |
| } |
| if (cpu->hyperv_time) { |
| kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0); |
| } |
| if (has_msr_hv_crash) { |
| int j; |
| |
| for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) { |
| kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0); |
| } |
| } |
| if (has_msr_hv_runtime) { |
| kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0); |
| } |
| if (cpu->hyperv_synic) { |
| uint32_t msr; |
| |
| kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0); |
| kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, 0); |
| kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0); |
| kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0); |
| for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) { |
| kvm_msr_entry_add(cpu, msr, 0); |
| } |
| } |
| if (has_msr_hv_stimer) { |
| uint32_t msr; |
| |
| for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT; |
| msr++) { |
| kvm_msr_entry_add(cpu, msr, 0); |
| } |
| } |
| if (env->features[FEAT_1_EDX] & CPUID_MTRR) { |
| kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0); |
| kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0); |
| for (i = 0; i < MSR_MTRRcap_VCNT; i++) { |
| kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0); |
| kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0); |
| } |
| } |
| |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| if (ret < cpu->kvm_msr_buf->nmsrs) { |
| struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret]; |
| error_report("error: failed to get MSR 0x%" PRIx32, |
| (uint32_t)e->index); |
| } |
| |
| assert(ret == cpu->kvm_msr_buf->nmsrs); |
| /* |
| * MTRR masks: Each mask consists of 5 parts |
| * a 10..0: must be zero |
| * b 11 : valid bit |
| * c n-1.12: actual mask bits |
| * d 51..n: reserved must be zero |
| * e 63.52: reserved must be zero |
| * |
| * 'n' is the number of physical bits supported by the CPU and is |
| * apparently always <= 52. We know our 'n' but don't know what |
| * the destinations 'n' is; it might be smaller, in which case |
| * it masks (c) on loading. It might be larger, in which case |
| * we fill 'd' so that d..c is consistent irrespetive of the 'n' |
| * we're migrating to. |
| */ |
| |
| if (cpu->fill_mtrr_mask) { |
| QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52); |
| assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS); |
| mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits); |
| } else { |
| mtrr_top_bits = 0; |
| } |
| |
| for (i = 0; i < ret; i++) { |
| uint32_t index = msrs[i].index; |
| switch (index) { |
| case MSR_IA32_SYSENTER_CS: |
| env->sysenter_cs = msrs[i].data; |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| env->sysenter_esp = msrs[i].data; |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| env->sysenter_eip = msrs[i].data; |
| break; |
| case MSR_PAT: |
| env->pat = msrs[i].data; |
| break; |
| case MSR_STAR: |
| env->star = msrs[i].data; |
| break; |
| #ifdef TARGET_X86_64 |
| case MSR_CSTAR: |
| env->cstar = msrs[i].data; |
| break; |
| case MSR_KERNELGSBASE: |
| env->kernelgsbase = msrs[i].data; |
| break; |
| case MSR_FMASK: |
| env->fmask = msrs[i].data; |
| break; |
| case MSR_LSTAR: |
| env->lstar = msrs[i].data; |
| break; |
| #endif |
| case MSR_IA32_TSC: |
| env->tsc = msrs[i].data; |
| break; |
| case MSR_TSC_AUX: |
| env->tsc_aux = msrs[i].data; |
| break; |
| case MSR_TSC_ADJUST: |
| env->tsc_adjust = msrs[i].data; |
| break; |
| case MSR_IA32_TSCDEADLINE: |
| env->tsc_deadline = msrs[i].data; |
| break; |
| case MSR_VM_HSAVE_PA: |
| env->vm_hsave = msrs[i].data; |
| break; |
| case MSR_KVM_SYSTEM_TIME: |
| env->system_time_msr = msrs[i].data; |
| break; |
| case MSR_KVM_WALL_CLOCK: |
| env->wall_clock_msr = msrs[i].data; |
| break; |
| case MSR_MCG_STATUS: |
| env->mcg_status = msrs[i].data; |
| break; |
| case MSR_MCG_CTL: |
| env->mcg_ctl = msrs[i].data; |
| break; |
| case MSR_MCG_EXT_CTL: |
| env->mcg_ext_ctl = msrs[i].data; |
| break; |
| case MSR_IA32_MISC_ENABLE: |
| env->msr_ia32_misc_enable = msrs[i].data; |
| break; |
| case MSR_IA32_SMBASE: |
| env->smbase = msrs[i].data; |
| break; |
| case MSR_IA32_FEATURE_CONTROL: |
| env->msr_ia32_feature_control = msrs[i].data; |
| break; |
| case MSR_IA32_BNDCFGS: |
| env->msr_bndcfgs = msrs[i].data; |
| break; |
| case MSR_IA32_XSS: |
| env->xss = msrs[i].data; |
| break; |
| default: |
| if (msrs[i].index >= MSR_MC0_CTL && |
| msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { |
| env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; |
| } |
| break; |
| case MSR_KVM_ASYNC_PF_EN: |
| env->async_pf_en_msr = msrs[i].data; |
| break; |
| case MSR_KVM_PV_EOI_EN: |
| env->pv_eoi_en_msr = msrs[i].data; |
| break; |
| case MSR_KVM_STEAL_TIME: |
| env->steal_time_msr = msrs[i].data; |
| break; |
| case MSR_CORE_PERF_FIXED_CTR_CTRL: |
| env->msr_fixed_ctr_ctrl = msrs[i].data; |
| break; |
| case MSR_CORE_PERF_GLOBAL_CTRL: |
| env->msr_global_ctrl = msrs[i].data; |
| break; |
| case MSR_CORE_PERF_GLOBAL_STATUS: |
| env->msr_global_status = msrs[i].data; |
| break; |
| case MSR_CORE_PERF_GLOBAL_OVF_CTRL: |
| env->msr_global_ovf_ctrl = msrs[i].data; |
| break; |
| case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1: |
| env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data; |
| break; |
| case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1: |
| env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data; |
| break; |
| case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1: |
| env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data; |
| break; |
| case HV_X64_MSR_HYPERCALL: |
| env->msr_hv_hypercall = msrs[i].data; |
| break; |
| case HV_X64_MSR_GUEST_OS_ID: |
| env->msr_hv_guest_os_id = msrs[i].data; |
| break; |
| case HV_X64_MSR_APIC_ASSIST_PAGE: |
| env->msr_hv_vapic = msrs[i].data; |
| break; |
| case HV_X64_MSR_REFERENCE_TSC: |
| env->msr_hv_tsc = msrs[i].data; |
| break; |
| case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
| env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data; |
| break; |
| case HV_X64_MSR_VP_RUNTIME: |
| env->msr_hv_runtime = msrs[i].data; |
| break; |
| case HV_X64_MSR_SCONTROL: |
| env->msr_hv_synic_control = msrs[i].data; |
| break; |
| case HV_X64_MSR_SVERSION: |
| env->msr_hv_synic_version = msrs[i].data; |
| break; |
| case HV_X64_MSR_SIEFP: |
| env->msr_hv_synic_evt_page = msrs[i].data; |
| break; |
| case HV_X64_MSR_SIMP: |
| env->msr_hv_synic_msg_page = msrs[i].data; |
| break; |
| case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15: |
| env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data; |
| break; |
| case HV_X64_MSR_STIMER0_CONFIG: |
| case HV_X64_MSR_STIMER1_CONFIG: |
| case HV_X64_MSR_STIMER2_CONFIG: |
| case HV_X64_MSR_STIMER3_CONFIG: |
| env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] = |
| msrs[i].data; |
| break; |
| case HV_X64_MSR_STIMER0_COUNT: |
| case HV_X64_MSR_STIMER1_COUNT: |
| case HV_X64_MSR_STIMER2_COUNT: |
| case HV_X64_MSR_STIMER3_COUNT: |
| env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] = |
| msrs[i].data; |
| break; |
| case MSR_MTRRdefType: |
| env->mtrr_deftype = msrs[i].data; |
| break; |
| case MSR_MTRRfix64K_00000: |
| env->mtrr_fixed[0] = msrs[i].data; |
| break; |
| case MSR_MTRRfix16K_80000: |
| env->mtrr_fixed[1] = msrs[i].data; |
| break; |
| case MSR_MTRRfix16K_A0000: |
| env->mtrr_fixed[2] = msrs[i].data; |
| break; |
| case MSR_MTRRfix4K_C0000: |
| env->mtrr_fixed[3] = msrs[i].data; |
| break; |
| case MSR_MTRRfix4K_C8000: |
| env->mtrr_fixed[4] = msrs[i].data; |
| break; |
| case MSR_MTRRfix4K_D0000: |
| env->mtrr_fixed[5] = msrs[i].data; |
| break; |
| case MSR_MTRRfix4K_D8000: |
| env->mtrr_fixed[6] = msrs[i].data; |
| break; |
| case MSR_MTRRfix4K_E0000: |
| env->mtrr_fixed[7] = msrs[i].data; |
| break; |
| case MSR_MTRRfix4K_E8000: |
| env->mtrr_fixed[8] = msrs[i].data; |
| break; |
| case MSR_MTRRfix4K_F0000: |
| env->mtrr_fixed[9] = msrs[i].data; |
| break; |
| case MSR_MTRRfix4K_F8000: |
| env->mtrr_fixed[10] = msrs[i].data; |
| break; |
| case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1): |
| if (index & 1) { |
| env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data | |
| mtrr_top_bits; |
| } else { |
| env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data; |
| } |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_put_mp_state(X86CPU *cpu) |
| { |
| struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state }; |
| |
| return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
| } |
| |
| static int kvm_get_mp_state(X86CPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUX86State *env = &cpu->env; |
| struct kvm_mp_state mp_state; |
| int ret; |
| |
| ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state); |
| if (ret < 0) { |
| return ret; |
| } |
| env->mp_state = mp_state.mp_state; |
| if (kvm_irqchip_in_kernel()) { |
| cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED); |
| } |
| return 0; |
| } |
| |
| static int kvm_get_apic(X86CPU *cpu) |
| { |
| DeviceState *apic = cpu->apic_state; |
| struct kvm_lapic_state kapic; |
| int ret; |
| |
| if (apic && kvm_irqchip_in_kernel()) { |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| kvm_get_apic_state(apic, &kapic); |
| } |
| return 0; |
| } |
| |
| static int kvm_put_vcpu_events(X86CPU *cpu, int level) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUX86State *env = &cpu->env; |
| struct kvm_vcpu_events events = {}; |
| |
| if (!kvm_has_vcpu_events()) { |
| return 0; |
| } |
| |
| events.exception.injected = (env->exception_injected >= 0); |
| events.exception.nr = env->exception_injected; |
| events.exception.has_error_code = env->has_error_code; |
| events.exception.error_code = env->error_code; |
| events.exception.pad = 0; |
| |
| events.interrupt.injected = (env->interrupt_injected >= 0); |
| events.interrupt.nr = env->interrupt_injected; |
| events.interrupt.soft = env->soft_interrupt; |
| |
| events.nmi.injected = env->nmi_injected; |
| events.nmi.pending = env->nmi_pending; |
| events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); |
| events.nmi.pad = 0; |
| |
| events.sipi_vector = env->sipi_vector; |
| events.flags = 0; |
| |
| if (has_msr_smbase) { |
| events.smi.smm = !!(env->hflags & HF_SMM_MASK); |
| events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK); |
| if (kvm_irqchip_in_kernel()) { |
| /* As soon as these are moved to the kernel, remove them |
| * from cs->interrupt_request. |
| */ |
| events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI; |
| events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT; |
| cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI); |
| } else { |
| /* Keep these in cs->interrupt_request. */ |
| events.smi.pending = 0; |
| events.smi.latched_init = 0; |
| } |
| /* Stop SMI delivery on old machine types to avoid a reboot |
| * on an inward migration of an old VM. |
| */ |
| if (!cpu->kvm_no_smi_migration) { |
| events.flags |= KVM_VCPUEVENT_VALID_SMM; |
| } |
| } |
| |
| if (level >= KVM_PUT_RESET_STATE) { |
| events.flags |= |
| KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; |
| } |
| |
| return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events); |
| } |
| |
| static int kvm_get_vcpu_events(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| struct kvm_vcpu_events events; |
| int ret; |
| |
| if (!kvm_has_vcpu_events()) { |
| return 0; |
| } |
| |
| memset(&events, 0, sizeof(events)); |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events); |
| if (ret < 0) { |
| return ret; |
| } |
| env->exception_injected = |
| events.exception.injected ? events.exception.nr : -1; |
| env->has_error_code = events.exception.has_error_code; |
| env->error_code = events.exception.error_code; |
| |
| env->interrupt_injected = |
| events.interrupt.injected ? events.interrupt.nr : -1; |
| env->soft_interrupt = events.interrupt.soft; |
| |
| env->nmi_injected = events.nmi.injected; |
| env->nmi_pending = events.nmi.pending; |
| if (events.nmi.masked) { |
| env->hflags2 |= HF2_NMI_MASK; |
| } else { |
| env->hflags2 &= ~HF2_NMI_MASK; |
| } |
| |
| if (events.flags & KVM_VCPUEVENT_VALID_SMM) { |
| if (events.smi.smm) { |
| env->hflags |= HF_SMM_MASK; |
| } else { |
| env->hflags &= ~HF_SMM_MASK; |
| } |
| if (events.smi.pending) { |
| cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); |
| } else { |
| cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); |
| } |
| if (events.smi.smm_inside_nmi) { |
| env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK; |
| } else { |
| env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK; |
| } |
| if (events.smi.latched_init) { |
| cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); |
| } else { |
| cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT); |
| } |
| } |
| |
| env->sipi_vector = events.sipi_vector; |
| |
| return 0; |
| } |
| |
| static int kvm_guest_debug_workarounds(X86CPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUX86State *env = &cpu->env; |
| int ret = 0; |
| unsigned long reinject_trap = 0; |
| |
| if (!kvm_has_vcpu_events()) { |
| if (env->exception_injected == 1) { |
| reinject_trap = KVM_GUESTDBG_INJECT_DB; |
| } else if (env->exception_injected == 3) { |
| reinject_trap = KVM_GUESTDBG_INJECT_BP; |
| } |
| env->exception_injected = -1; |
| } |
| |
| /* |
| * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF |
| * injected via SET_GUEST_DEBUG while updating GP regs. Work around this |
| * by updating the debug state once again if single-stepping is on. |
| * Another reason to call kvm_update_guest_debug here is a pending debug |
| * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to |
| * reinject them via SET_GUEST_DEBUG. |
| */ |
| if (reinject_trap || |
| (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) { |
| ret = kvm_update_guest_debug(cs, reinject_trap); |
| } |
| return ret; |
| } |
| |
| static int kvm_put_debugregs(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| struct kvm_debugregs dbgregs; |
| int i; |
| |
| if (!kvm_has_debugregs()) { |
| return 0; |
| } |
| |
| for (i = 0; i < 4; i++) { |
| dbgregs.db[i] = env->dr[i]; |
| } |
| dbgregs.dr6 = env->dr[6]; |
| dbgregs.dr7 = env->dr[7]; |
| dbgregs.flags = 0; |
| |
| return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs); |
| } |
| |
| static int kvm_get_debugregs(X86CPU *cpu) |
| { |
| CPUX86State *env = &cpu->env; |
| struct kvm_debugregs dbgregs; |
| int i, ret; |
| |
| if (!kvm_has_debugregs()) { |
| return 0; |
| } |
| |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs); |
| if (ret < 0) { |
| return ret; |
| } |
| for (i = 0; i < 4; i++) { |
| env->dr[i] = dbgregs.db[i]; |
| } |
| env->dr[4] = env->dr[6] = dbgregs.dr6; |
| env->dr[5] = env->dr[7] = dbgregs.dr7; |
| |
| return 0; |
| } |
| |
| int kvm_arch_put_registers(CPUState *cpu, int level) |
| { |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| int ret; |
| |
| assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu)); |
| |
| if (level >= KVM_PUT_RESET_STATE) { |
| ret = kvm_put_msr_feature_control(x86_cpu); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| if (level == KVM_PUT_FULL_STATE) { |
| /* We don't check for kvm_arch_set_tsc_khz() errors here, |
| * because TSC frequency mismatch shouldn't abort migration, |
| * unless the user explicitly asked for a more strict TSC |
| * setting (e.g. using an explicit "tsc-freq" option). |
| */ |
| kvm_arch_set_tsc_khz(cpu); |
| } |
| |
| ret = kvm_getput_regs(x86_cpu, 1); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_put_xsave(x86_cpu); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_put_xcrs(x86_cpu); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_put_sregs(x86_cpu); |
| if (ret < 0) { |
| return ret; |
| } |
| /* must be before kvm_put_msrs */ |
| ret = kvm_inject_mce_oldstyle(x86_cpu); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_put_msrs(x86_cpu, level); |
| if (ret < 0) { |
| return ret; |
| } |
| if (level >= KVM_PUT_RESET_STATE) { |
| ret = kvm_put_mp_state(x86_cpu); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| |
| ret = kvm_put_tscdeadline_msr(x86_cpu); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| ret = kvm_put_vcpu_events(x86_cpu, level); |
| if (ret < 0) { |
| return ret; |
| } |
| ret = kvm_put_debugregs(x86_cpu); |
| if (ret < 0) { |
| return ret; |
| } |
| /* must be last */ |
| ret = kvm_guest_debug_workarounds(x86_cpu); |
| if (ret < 0) { |
| return ret; |
| } |
| return 0; |
| } |
| |
| int kvm_arch_get_registers(CPUState *cs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| int ret; |
| |
| assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs)); |
| |
| ret = kvm_getput_regs(cpu, 0); |
| if (ret < 0) { |
| goto out; |
| } |
| ret = kvm_get_xsave(cpu); |
| if (ret < 0) { |
| goto out; |
| } |
| ret = kvm_get_xcrs(cpu); |
| if (ret < 0) { |
| goto out; |
| } |
| ret = kvm_get_sregs(cpu); |
| if (ret < 0) { |
| goto out; |
| } |
| ret = kvm_get_msrs(cpu); |
| if (ret < 0) { |
| goto out; |
| } |
| ret = kvm_get_mp_state(cpu); |
| if (ret < 0) { |
| goto out; |
| } |
| ret = kvm_get_apic(cpu); |
| if (ret < 0) { |
| goto out; |
| } |
| ret = kvm_get_vcpu_events(cpu); |
| if (ret < 0) { |
| goto out; |
| } |
| ret = kvm_get_debugregs(cpu); |
| if (ret < 0) { |
| goto out; |
| } |
| ret = 0; |
| out: |
| cpu_sync_bndcs_hflags(&cpu->env); |
| return ret; |
| } |
| |
| void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
| { |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| CPUX86State *env = &x86_cpu->env; |
| int ret; |
| |
| /* Inject NMI */ |
| if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) { |
| if (cpu->interrupt_request & CPU_INTERRUPT_NMI) { |
| qemu_mutex_lock_iothread(); |
| cpu->interrupt_request &= ~CPU_INTERRUPT_NMI; |
| qemu_mutex_unlock_iothread(); |
| DPRINTF("injected NMI\n"); |
| ret = kvm_vcpu_ioctl(cpu, KVM_NMI); |
| if (ret < 0) { |
| fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n", |
| strerror(-ret)); |
| } |
| } |
| if (cpu->interrupt_request & CPU_INTERRUPT_SMI) { |
| qemu_mutex_lock_iothread(); |
| cpu->interrupt_request &= ~CPU_INTERRUPT_SMI; |
| qemu_mutex_unlock_iothread(); |
| DPRINTF("injected SMI\n"); |
| ret = kvm_vcpu_ioctl(cpu, KVM_SMI); |
| if (ret < 0) { |
| fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n", |
| strerror(-ret)); |
| } |
| } |
| } |
| |
| if (!kvm_pic_in_kernel()) { |
| qemu_mutex_lock_iothread(); |
| } |
| |
| /* Force the VCPU out of its inner loop to process any INIT requests |
| * or (for userspace APIC, but it is cheap to combine the checks here) |
| * pending TPR access reports. |
| */ |
| if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) { |
| if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) && |
| !(env->hflags & HF_SMM_MASK)) { |
| cpu->exit_request = 1; |
| } |
| if (cpu->interrupt_request & CPU_INTERRUPT_TPR) { |
| cpu->exit_request = 1; |
| } |
| } |
| |
| if (!kvm_pic_in_kernel()) { |
| /* Try to inject an interrupt if the guest can accept it */ |
| if (run->ready_for_interrupt_injection && |
| (cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->eflags & IF_MASK)) { |
| int irq; |
| |
| cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
| irq = cpu_get_pic_interrupt(env); |
| if (irq >= 0) { |
| struct kvm_interrupt intr; |
| |
| intr.irq = irq; |
| DPRINTF("injected interrupt %d\n", irq); |
| ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr); |
| if (ret < 0) { |
| fprintf(stderr, |
| "KVM: injection failed, interrupt lost (%s)\n", |
| strerror(-ret)); |
| } |
| } |
| } |
| |
| /* If we have an interrupt but the guest is not ready to receive an |
| * interrupt, request an interrupt window exit. This will |
| * cause a return to userspace as soon as the guest is ready to |
| * receive interrupts. */ |
| if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
| run->request_interrupt_window = 1; |
| } else { |
| run->request_interrupt_window = 0; |
| } |
| |
| DPRINTF("setting tpr\n"); |
| run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state); |
| |
| qemu_mutex_unlock_iothread(); |
| } |
| } |
| |
| MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run) |
| { |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| CPUX86State *env = &x86_cpu->env; |
| |
| if (run->flags & KVM_RUN_X86_SMM) { |
| env->hflags |= HF_SMM_MASK; |
| } else { |
| env->hflags &= ~HF_SMM_MASK; |
| } |
| if (run->if_flag) { |
| env->eflags |= IF_MASK; |
| } else { |
| env->eflags &= ~IF_MASK; |
| } |
| |
| /* We need to protect the apic state against concurrent accesses from |
| * different threads in case the userspace irqchip is used. */ |
| if (!kvm_irqchip_in_kernel()) { |
| qemu_mutex_lock_iothread(); |
| } |
| cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8); |
| cpu_set_apic_base(x86_cpu->apic_state, run->apic_base); |
| if (!kvm_irqchip_in_kernel()) { |
| qemu_mutex_unlock_iothread(); |
| } |
| return cpu_get_mem_attrs(env); |
| } |
| |
| int kvm_arch_process_async_events(CPUState *cs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| if (cs->interrupt_request & CPU_INTERRUPT_MCE) { |
| /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */ |
| assert(env->mcg_cap); |
| |
| cs->interrupt_request &= ~CPU_INTERRUPT_MCE; |
| |
| kvm_cpu_synchronize_state(cs); |
| |
| if (env->exception_injected == EXCP08_DBLE) { |
| /* this means triple fault */ |
| qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
| cs->exit_request = 1; |
| return 0; |
| } |
| env->exception_injected = EXCP12_MCHK; |
| env->has_error_code = 0; |
| |
| cs->halted = 0; |
| if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) { |
| env->mp_state = KVM_MP_STATE_RUNNABLE; |
| } |
| } |
| |
| if ((cs->interrupt_request & CPU_INTERRUPT_INIT) && |
| !(env->hflags & HF_SMM_MASK)) { |
| kvm_cpu_synchronize_state(cs); |
| do_cpu_init(cpu); |
| } |
| |
| if (kvm_irqchip_in_kernel()) { |
| return 0; |
| } |
| |
| if (cs->interrupt_request & CPU_INTERRUPT_POLL) { |
| cs->interrupt_request &= ~CPU_INTERRUPT_POLL; |
| apic_poll_irq(cpu->apic_state); |
| } |
| if (((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->eflags & IF_MASK)) || |
| (cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
| cs->halted = 0; |
| } |
| if (cs->interrupt_request & CPU_INTERRUPT_SIPI) { |
| kvm_cpu_synchronize_state(cs); |
| do_cpu_sipi(cpu); |
| } |
| if (cs->interrupt_request & CPU_INTERRUPT_TPR) { |
| cs->interrupt_request &= ~CPU_INTERRUPT_TPR; |
| kvm_cpu_synchronize_state(cs); |
| apic_handle_tpr_access_report(cpu->apic_state, env->eip, |
| env->tpr_access_type); |
| } |
| |
| return cs->halted; |
| } |
| |
| static int kvm_handle_halt(X86CPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUX86State *env = &cpu->env; |
| |
| if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->eflags & IF_MASK)) && |
| !(cs->interrupt_request & CPU_INTERRUPT_NMI)) { |
| cs->halted = 1; |
| return EXCP_HLT; |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_handle_tpr_access(X86CPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| struct kvm_run *run = cs->kvm_run; |
| |
| apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip, |
| run->tpr_access.is_write ? TPR_ACCESS_WRITE |
| : TPR_ACCESS_READ); |
| return 1; |
| } |
| |
| int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
| { |
| static const uint8_t int3 = 0xcc; |
| |
| if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
| cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) { |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
| { |
| uint8_t int3; |
| |
| if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
| cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) { |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static struct { |
| target_ulong addr; |
| int len; |
| int type; |
| } hw_breakpoint[4]; |
| |
| static int nb_hw_breakpoint; |
| |
| static int find_hw_breakpoint(target_ulong addr, int len, int type) |
| { |
| int n; |
| |
| for (n = 0; n < nb_hw_breakpoint; n++) { |
| if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type && |
| (hw_breakpoint[n].len == len || len == -1)) { |
| return n; |
| } |
| } |
| return -1; |
| } |
| |
| int kvm_arch_insert_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| switch (type) { |
| case GDB_BREAKPOINT_HW: |
| len = 1; |
| break; |
| case GDB_WATCHPOINT_WRITE: |
| case GDB_WATCHPOINT_ACCESS: |
| switch (len) { |
| case 1: |
| break; |
| case 2: |
| case 4: |
| case 8: |
| if (addr & (len - 1)) { |
| return -EINVAL; |
| } |
| break; |
| default: |
| return -EINVAL; |
| } |
| break; |
| default: |
| return -ENOSYS; |
| } |
| |
| if (nb_hw_breakpoint == 4) { |
| return -ENOBUFS; |
| } |
| if (find_hw_breakpoint(addr, len, type) >= 0) { |
| return -EEXIST; |
| } |
| hw_breakpoint[nb_hw_breakpoint].addr = addr; |
| hw_breakpoint[nb_hw_breakpoint].len = len; |
| hw_breakpoint[nb_hw_breakpoint].type = type; |
| nb_hw_breakpoint++; |
| |
| return 0; |
| } |
| |
| int kvm_arch_remove_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| int n; |
| |
| n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type); |
| if (n < 0) { |
| return -ENOENT; |
| } |
| nb_hw_breakpoint--; |
| hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; |
| |
| return 0; |
| } |
| |
| void kvm_arch_remove_all_hw_breakpoints(void) |
| { |
| nb_hw_breakpoint = 0; |
| } |
| |
| static CPUWatchpoint hw_watchpoint; |
| |
| static int kvm_handle_debug(X86CPU *cpu, |
| struct kvm_debug_exit_arch *arch_info) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUX86State *env = &cpu->env; |
| int ret = 0; |
| int n; |
| |
| if (arch_info->exception == 1) { |
| if (arch_info->dr6 & (1 << 14)) { |
| if (cs->singlestep_enabled) { |
| ret = EXCP_DEBUG; |
| } |
| } else { |
| for (n = 0; n < 4; n++) { |
| if (arch_info->dr6 & (1 << n)) { |
| switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
| case 0x0: |
| ret = EXCP_DEBUG; |
| break; |
| case 0x1: |
| ret = EXCP_DEBUG; |
| cs->watchpoint_hit = &hw_watchpoint; |
| hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
| hw_watchpoint.flags = BP_MEM_WRITE; |
| break; |
| case 0x3: |
| ret = EXCP_DEBUG; |
| cs->watchpoint_hit = &hw_watchpoint; |
| hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
| hw_watchpoint.flags = BP_MEM_ACCESS; |
| break; |
| } |
| } |
| } |
| } |
| } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) { |
| ret = EXCP_DEBUG; |
| } |
| if (ret == 0) { |
| cpu_synchronize_state(cs); |
| assert(env->exception_injected == -1); |
| |
| /* pass to guest */ |
| env->exception_injected = arch_info->exception; |
| env->has_error_code = 0; |
| } |
| |
| return ret; |
| } |
| |
| void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
| { |
| const uint8_t type_code[] = { |
| [GDB_BREAKPOINT_HW] = 0x0, |
| [GDB_WATCHPOINT_WRITE] = 0x1, |
| [GDB_WATCHPOINT_ACCESS] = 0x3 |
| }; |
| const uint8_t len_code[] = { |
| [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 |
| }; |
| int n; |
| |
| if (kvm_sw_breakpoints_active(cpu)) { |
| dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
| } |
| if (nb_hw_breakpoint > 0) { |
| dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; |
| dbg->arch.debugreg[7] = 0x0600; |
| for (n = 0; n < nb_hw_breakpoint; n++) { |
| dbg->arch.debugreg[n] = hw_breakpoint[n].addr; |
| dbg->arch.debugreg[7] |= (2 << (n * 2)) | |
| (type_code[hw_breakpoint[n].type] << (16 + n*4)) | |
| ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4)); |
| } |
| } |
| } |
| |
| static bool host_supports_vmx(void) |
| { |
| uint32_t ecx, unused; |
| |
| host_cpuid(1, 0, &unused, &unused, &ecx, &unused); |
| return ecx & CPUID_EXT_VMX; |
| } |
| |
| #define VMX_INVALID_GUEST_STATE 0x80000021 |
| |
| int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| uint64_t code; |
| int ret; |
| |
| switch (run->exit_reason) { |
| case KVM_EXIT_HLT: |
| DPRINTF("handle_hlt\n"); |
| qemu_mutex_lock_iothread(); |
| ret = kvm_handle_halt(cpu); |
| qemu_mutex_unlock_iothread(); |
| break; |
| case KVM_EXIT_SET_TPR: |
| ret = 0; |
| break; |
| case KVM_EXIT_TPR_ACCESS: |
| qemu_mutex_lock_iothread(); |
| ret = kvm_handle_tpr_access(cpu); |
| qemu_mutex_unlock_iothread(); |
| break; |
| case KVM_EXIT_FAIL_ENTRY: |
| code = run->fail_entry.hardware_entry_failure_reason; |
| fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n", |
| code); |
| if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) { |
| fprintf(stderr, |
| "\nIf you're running a guest on an Intel machine without " |
| "unrestricted mode\n" |
| "support, the failure can be most likely due to the guest " |
| "entering an invalid\n" |
| "state for Intel VT. For example, the guest maybe running " |
| "in big real mode\n" |
| "which is not supported on less recent Intel processors." |
| "\n\n"); |
| } |
| ret = -1; |
| break; |
| case KVM_EXIT_EXCEPTION: |
| fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n", |
| run->ex.exception, run->ex.error_code); |
| ret = -1; |
| break; |
| case KVM_EXIT_DEBUG: |
| DPRINTF("kvm_exit_debug\n"); |
| qemu_mutex_lock_iothread(); |
| ret = kvm_handle_debug(cpu, &run->debug.arch); |
| qemu_mutex_unlock_iothread(); |
| break; |
| case KVM_EXIT_HYPERV: |
| ret = kvm_hv_handle_exit(cpu, &run->hyperv); |
| break; |
| case KVM_EXIT_IOAPIC_EOI: |
| ioapic_eoi_broadcast(run->eoi.vector); |
| ret = 0; |
| break; |
| default: |
| fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason); |
| ret = -1; |
| break; |
| } |
| |
| return ret; |
| } |
| |
| bool kvm_arch_stop_on_emulation_error(CPUState *cs) |
| { |
| X86CPU *cpu = X86_CPU(cs); |
| CPUX86State *env = &cpu->env; |
| |
| kvm_cpu_synchronize_state(cs); |
| return !(env->cr[0] & CR0_PE_MASK) || |
| ((env->segs[R_CS].selector & 3) != 3); |
| } |
| |
| void kvm_arch_init_irq_routing(KVMState *s) |
| { |
| if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { |
| /* If kernel can't do irq routing, interrupt source |
| * override 0->2 cannot be set up as required by HPET. |
| * So we have to disable it. |
| */ |
| no_hpet = 1; |
| } |
| /* We know at this point that we're using the in-kernel |
| * irqchip, so we can use irqfds, and on x86 we know |
| * we can use msi via irqfd and GSI routing. |
| */ |
| kvm_msi_via_irqfd_allowed = true; |
| kvm_gsi_routing_allowed = true; |
| |
| if (kvm_irqchip_is_split()) { |
| int i; |
| |
| /* If the ioapic is in QEMU and the lapics are in KVM, reserve |
| MSI routes for signaling interrupts to the local apics. */ |
| for (i = 0; i < IOAPIC_NUM_PINS; i++) { |
| if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) { |
| error_report("Could not enable split IRQ mode."); |
| exit(1); |
| } |
| } |
| } |
| } |
| |
| int kvm_arch_irqchip_create(MachineState *ms, KVMState *s) |
| { |
| int ret; |
| if (machine_kernel_irqchip_split(ms)) { |
| ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24); |
| if (ret) { |
| error_report("Could not enable split irqchip mode: %s", |
| strerror(-ret)); |
| exit(1); |
| } else { |
| DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n"); |
| kvm_split_irqchip = true; |
| return 1; |
| } |
| } else { |
| return 0; |
| } |
| } |
| |
| /* Classic KVM device assignment interface. Will remain x86 only. */ |
| int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr, |
| uint32_t flags, uint32_t *dev_id) |
| { |
| struct kvm_assigned_pci_dev dev_data = { |
| .segnr = dev_addr->domain, |
| .busnr = dev_addr->bus, |
| .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function), |
| .flags = flags, |
| }; |
| int ret; |
| |
| dev_data.assigned_dev_id = |
| (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn; |
| |
| ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| *dev_id = dev_data.assigned_dev_id; |
| |
| return 0; |
| } |
| |
| int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id) |
| { |
| struct kvm_assigned_pci_dev dev_data = { |
| .assigned_dev_id = dev_id, |
| }; |
| |
| return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data); |
| } |
| |
| static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id, |
| uint32_t irq_type, uint32_t guest_irq) |
| { |
| struct kvm_assigned_irq assigned_irq = { |
| .assigned_dev_id = dev_id, |
| .guest_irq = guest_irq, |
| .flags = irq_type, |
| }; |
| |
| if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) { |
| return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq); |
| } else { |
| return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq); |
| } |
| } |
| |
| int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi, |
| uint32_t guest_irq) |
| { |
| uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX | |
| (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX); |
| |
| return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq); |
| } |
| |
| int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked) |
| { |
| struct kvm_assigned_pci_dev dev_data = { |
| .assigned_dev_id = dev_id, |
| .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0, |
| }; |
| |
| return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data); |
| } |
| |
| static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id, |
| uint32_t type) |
| { |
| struct kvm_assigned_irq assigned_irq = { |
| .assigned_dev_id = dev_id, |
| .flags = type, |
| }; |
| |
| return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq); |
| } |
| |
| int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi) |
| { |
| return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX | |
| (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX)); |
| } |
| |
| int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq) |
| { |
| return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI | |
| KVM_DEV_IRQ_GUEST_MSI, virq); |
| } |
| |
| int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id) |
| { |
| return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI | |
| KVM_DEV_IRQ_HOST_MSI); |
| } |
| |
| bool kvm_device_msix_supported(KVMState *s) |
| { |
| /* The kernel lacks a corresponding KVM_CAP, so we probe by calling |
| * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */ |
| return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT; |
| } |
| |
| int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id, |
| uint32_t nr_vectors) |
| { |
| struct kvm_assigned_msix_nr msix_nr = { |
| .assigned_dev_id = dev_id, |
| .entry_nr = nr_vectors, |
| }; |
| |
| return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr); |
| } |
| |
| int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector, |
| int virq) |
| { |
| struct kvm_assigned_msix_entry msix_entry = { |
| .assigned_dev_id = dev_id, |
| .gsi = virq, |
| .entry = vector, |
| }; |
| |
| return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry); |
| } |
| |
| int kvm_device_msix_assign(KVMState *s, uint32_t dev_id) |
| { |
| return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX | |
| KVM_DEV_IRQ_GUEST_MSIX, 0); |
| } |
| |
| int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id) |
| { |
| return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX | |
| KVM_DEV_IRQ_HOST_MSIX); |
| } |
| |
| int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, |
| uint64_t address, uint32_t data, PCIDevice *dev) |
| { |
| X86IOMMUState *iommu = x86_iommu_get_default(); |
| |
| if (iommu) { |
| int ret; |
| MSIMessage src, dst; |
| X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu); |
| |
| src.address = route->u.msi.address_hi; |
| src.address <<= VTD_MSI_ADDR_HI_SHIFT; |
| src.address |= route->u.msi.address_lo; |
| src.data = route->u.msi.data; |
| |
| ret = class->int_remap(iommu, &src, &dst, dev ? \ |
| pci_requester_id(dev) : \ |
| X86_IOMMU_SID_INVALID); |
| if (ret) { |
| trace_kvm_x86_fixup_msi_error(route->gsi); |
| return 1; |
| } |
| |
| route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT; |
| route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK; |
| route->u.msi.data = dst.data; |
| } |
| |
| return 0; |
| } |
| |
| typedef struct MSIRouteEntry MSIRouteEntry; |
| |
| struct MSIRouteEntry { |
| PCIDevice *dev; /* Device pointer */ |
| int vector; /* MSI/MSIX vector index */ |
| int virq; /* Virtual IRQ index */ |
| QLIST_ENTRY(MSIRouteEntry) list; |
| }; |
| |
| /* List of used GSI routes */ |
| static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \ |
| QLIST_HEAD_INITIALIZER(msi_route_list); |
| |
| static void kvm_update_msi_routes_all(void *private, bool global, |
| uint32_t index, uint32_t mask) |
| { |
| int cnt = 0; |
| MSIRouteEntry *entry; |
| MSIMessage msg; |
| PCIDevice *dev; |
| |
| /* TODO: explicit route update */ |
| QLIST_FOREACH(entry, &msi_route_list, list) { |
| cnt++; |
| dev = entry->dev; |
| if (!msix_enabled(dev) && !msi_enabled(dev)) { |
| continue; |
| } |
| msg = pci_get_msi_message(dev, entry->vector); |
| kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev); |
| } |
| kvm_irqchip_commit_routes(kvm_state); |
| trace_kvm_x86_update_msi_routes(cnt); |
| } |
| |
| int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
| int vector, PCIDevice *dev) |
| { |
| static bool notify_list_inited = false; |
| MSIRouteEntry *entry; |
| |
| if (!dev) { |
| /* These are (possibly) IOAPIC routes only used for split |
| * kernel irqchip mode, while what we are housekeeping are |
| * PCI devices only. */ |
| return 0; |
| } |
| |
| entry = g_new0(MSIRouteEntry, 1); |
| entry->dev = dev; |
| entry->vector = vector; |
| entry->virq = route->gsi; |
| QLIST_INSERT_HEAD(&msi_route_list, entry, list); |
| |
| trace_kvm_x86_add_msi_route(route->gsi); |
| |
| if (!notify_list_inited) { |
| /* For the first time we do add route, add ourselves into |
| * IOMMU's IEC notify list if needed. */ |
| X86IOMMUState *iommu = x86_iommu_get_default(); |
| if (iommu) { |
| x86_iommu_iec_register_notifier(iommu, |
| kvm_update_msi_routes_all, |
| NULL); |
| } |
| notify_list_inited = true; |
| } |
| return 0; |
| } |
| |
| int kvm_arch_release_virq_post(int virq) |
| { |
| MSIRouteEntry *entry, *next; |
| QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) { |
| if (entry->virq == virq) { |
| trace_kvm_x86_remove_msi_route(virq); |
| QLIST_REMOVE(entry, list); |
| break; |
| } |
| } |
| return 0; |
| } |
| |
| int kvm_arch_msi_data_to_gsi(uint32_t data) |
| { |
| abort(); |
| } |