blob: 16c0e8ad15db9ea7ae038003f7dfdf7585729400 [file] [log] [blame]
/*
* Arm SSE Subsystem System Counter
*
* Copyright (c) 2020 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/*
* This is a model of the "System counter" which is documented in
* the Arm SSE-123 Example Subsystem Technical Reference Manual:
* https://developer.arm.com/documentation/101370/latest/
*
* The system counter is a non-stop 64-bit up-counter. It provides
* this count value to other devices like the SSE system timer,
* which are driven by this system timestamp rather than directly
* from a clock. Internally to the counter the count is actually
* 88-bit precision (64.24 fixed point), with a programmable scale factor.
*
* The hardware has the optional feature that it supports dynamic
* clock switching, where two clock inputs are connected, and which
* one is used is selected via a CLKSEL input signal. Since the
* users of this device in QEMU don't use this feature, we only model
* the HWCLKSW=0 configuration.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/timer.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/timer/sse-counter.h"
#include "hw/sysbus.h"
#include "hw/registerfields.h"
#include "hw/clock.h"
#include "hw/qdev-clock.h"
#include "migration/vmstate.h"
/* Registers in the control frame */
REG32(CNTCR, 0x0)
FIELD(CNTCR, EN, 0, 1)
FIELD(CNTCR, HDBG, 1, 1)
FIELD(CNTCR, SCEN, 2, 1)
FIELD(CNTCR, INTRMASK, 3, 1)
FIELD(CNTCR, PSLVERRDIS, 4, 1)
FIELD(CNTCR, INTRCLR, 5, 1)
/*
* Although CNTCR defines interrupt-related bits, the counter doesn't
* appear to actually have an interrupt output. So INTRCLR is
* effectively a RAZ/WI bit, as are the reserved bits [31:6].
*/
#define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \
R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \
R_CNTCR_PSLVERRDIS_MASK)
REG32(CNTSR, 0x4)
REG32(CNTCV_LO, 0x8)
REG32(CNTCV_HI, 0xc)
REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */
REG32(CNTID, 0x1c)
FIELD(CNTID, CNTSC, 0, 4)
FIELD(CNTID, CNTCS, 16, 1)
FIELD(CNTID, CNTSELCLK, 17, 2)
FIELD(CNTID, CNTSCR_OVR, 19, 1)
REG32(CNTSCR0, 0xd0)
REG32(CNTSCR1, 0xd4)
/* Registers in the status frame */
REG32(STATUS_CNTCV_LO, 0x0)
REG32(STATUS_CNTCV_HI, 0x4)
/* Standard ID registers, present in both frames */
REG32(PID4, 0xFD0)
REG32(PID5, 0xFD4)
REG32(PID6, 0xFD8)
REG32(PID7, 0xFDC)
REG32(PID0, 0xFE0)
REG32(PID1, 0xFE4)
REG32(PID2, 0xFE8)
REG32(PID3, 0xFEC)
REG32(CID0, 0xFF0)
REG32(CID1, 0xFF4)
REG32(CID2, 0xFF8)
REG32(CID3, 0xFFC)
/* PID/CID values */
static const int control_id[] = {
0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
};
static const int status_id[] = {
0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
};
static void sse_counter_notify_users(SSECounter *s)
{
/*
* Notify users of the count timestamp that they may
* need to recalculate.
*/
notifier_list_notify(&s->notifier_list, NULL);
}
static bool sse_counter_enabled(SSECounter *s)
{
return (s->cntcr & R_CNTCR_EN_MASK) != 0;
}
uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick)
{
if (!sse_counter_enabled(s)) {
return UINT64_MAX;
}
tick -= s->ticks_then;
if (s->cntcr & R_CNTCR_SCEN_MASK) {
/* Adjust the tick count to account for the scale factor */
tick = muldiv64(tick, 0x01000000, s->cntscr0);
}
return s->ns_then + clock_ticks_to_ns(s->clk, tick);
}
void sse_counter_register_consumer(SSECounter *s, Notifier *notifier)
{
/*
* For the moment we assume that both we and the devices
* which consume us last for the life of the simulation,
* and so there is no mechanism for removing a notifier.
*/
notifier_list_add(&s->notifier_list, notifier);
}
uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now)
{
/* Return the CNTCV value for a particular timestamp (clock ns value). */
uint64_t ticks;
if (!sse_counter_enabled(s)) {
/* Counter is disabled and does not increment */
return s->ticks_then;
}
ticks = clock_ns_to_ticks(s->clk, now - s->ns_then);
if (s->cntcr & R_CNTCR_SCEN_MASK) {
/*
* Scaling is enabled. The CNTSCR value is the amount added to
* the underlying 88-bit counter for every tick of the
* underlying clock; CNTCV is the top 64 bits of that full
* 88-bit value. Multiplying the tick count by CNTSCR tells us
* how much the full 88-bit counter has moved on; we then
* divide that by 0x01000000 to find out how much the 64-bit
* visible portion has advanced. muldiv64() gives us the
* necessary at-least-88-bit precision for the intermediate
* result.
*/
ticks = muldiv64(ticks, s->cntscr0, 0x01000000);
}
return s->ticks_then + ticks;
}
static uint64_t sse_cntcv(SSECounter *s)
{
/* Return the CNTCV value for the current time */
return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
}
static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit)
{
/*
* Write one 32-bit half of the counter value; startbit is the
* bit position of this half in the 64-bit word, either 0 or 32.
*/
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t cntcv = sse_counter_for_timestamp(s, now);
cntcv = deposit64(cntcv, startbit, 32, value);
s->ticks_then = cntcv;
s->ns_then = now;
sse_counter_notify_users(s);
}
static uint64_t sse_counter_control_read(void *opaque, hwaddr offset,
unsigned size)
{
SSECounter *s = SSE_COUNTER(opaque);
uint64_t r;
switch (offset) {
case A_CNTCR:
r = s->cntcr;
break;
case A_CNTSR:
/*
* The only bit here is DBGH, indicating that the counter has been
* halted via the Halt-on-Debug signal. We don't implement halting
* debug, so the whole register always reads as zero.
*/
r = 0;
break;
case A_CNTCV_LO:
r = extract64(sse_cntcv(s), 0, 32);
break;
case A_CNTCV_HI:
r = extract64(sse_cntcv(s), 32, 32);
break;
case A_CNTID:
/*
* For our implementation:
* - CNTSCR can only be written when CNTCR.EN == 0
* - HWCLKSW=0, so selected clock is always CLK0
* - counter scaling is implemented
*/
r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT);
break;
case A_CNTSCR:
case A_CNTSCR0:
r = s->cntscr0;
break;
case A_CNTSCR1:
/* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
r = 0;
break;
case A_PID4 ... A_CID3:
r = control_id[(offset - A_PID4) / 4];
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"SSE System Counter control frame read: bad offset 0x%x",
(unsigned)offset);
r = 0;
break;
}
trace_sse_counter_control_read(offset, r, size);
return r;
}
static void sse_counter_control_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
SSECounter *s = SSE_COUNTER(opaque);
trace_sse_counter_control_write(offset, value, size);
switch (offset) {
case A_CNTCR:
/*
* Although CNTCR defines interrupt-related bits, the counter doesn't
* appear to actually have an interrupt output. So INTRCLR is
* effectively a RAZ/WI bit, as are the reserved bits [31:6].
* The documentation does not explicitly say so, but we assume
* that changing the scale factor while the counter is enabled
* by toggling CNTCR.SCEN has the same behaviour (making the counter
* value UNKNOWN) as changing it by writing to CNTSCR, and so we
* don't need to try to recalculate for that case.
*/
value &= CNTCR_VALID_MASK;
if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) {
/*
* Whether the counter is being enabled or disabled, the
* required action is the same: sync the (ns_then, ticks_then)
* tuple.
*/
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
s->ticks_then = sse_counter_for_timestamp(s, now);
s->ns_then = now;
sse_counter_notify_users(s);
}
s->cntcr = value;
break;
case A_CNTCV_LO:
sse_write_cntcv(s, value, 0);
break;
case A_CNTCV_HI:
sse_write_cntcv(s, value, 32);
break;
case A_CNTSCR:
case A_CNTSCR0:
/*
* If the scale registers are changed when the counter is enabled,
* the count value becomes UNKNOWN. So we don't try to recalculate
* anything here but only do it on a write to CNTCR.EN.
*/
s->cntscr0 = value;
break;
case A_CNTSCR1:
/* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
break;
case A_CNTSR:
case A_CNTID:
case A_PID4 ... A_CID3:
qemu_log_mask(LOG_GUEST_ERROR,
"SSE System Counter control frame: write to RO offset 0x%x\n",
(unsigned)offset);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"SSE System Counter control frame: write to bad offset 0x%x\n",
(unsigned)offset);
break;
}
}
static uint64_t sse_counter_status_read(void *opaque, hwaddr offset,
unsigned size)
{
SSECounter *s = SSE_COUNTER(opaque);
uint64_t r;
switch (offset) {
case A_STATUS_CNTCV_LO:
r = extract64(sse_cntcv(s), 0, 32);
break;
case A_STATUS_CNTCV_HI:
r = extract64(sse_cntcv(s), 32, 32);
break;
case A_PID4 ... A_CID3:
r = status_id[(offset - A_PID4) / 4];
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"SSE System Counter status frame read: bad offset 0x%x",
(unsigned)offset);
r = 0;
break;
}
trace_sse_counter_status_read(offset, r, size);
return r;
}
static void sse_counter_status_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
trace_sse_counter_status_write(offset, value, size);
switch (offset) {
case A_STATUS_CNTCV_LO:
case A_STATUS_CNTCV_HI:
case A_PID4 ... A_CID3:
qemu_log_mask(LOG_GUEST_ERROR,
"SSE System Counter status frame: write to RO offset 0x%x\n",
(unsigned)offset);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"SSE System Counter status frame: write to bad offset 0x%x\n",
(unsigned)offset);
break;
}
}
static const MemoryRegionOps sse_counter_control_ops = {
.read = sse_counter_control_read,
.write = sse_counter_control_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
};
static const MemoryRegionOps sse_counter_status_ops = {
.read = sse_counter_status_read,
.write = sse_counter_status_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
};
static void sse_counter_reset(DeviceState *dev)
{
SSECounter *s = SSE_COUNTER(dev);
trace_sse_counter_reset();
s->cntcr = 0;
s->cntscr0 = 0x01000000;
s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
s->ticks_then = 0;
}
static void sse_clk_callback(void *opaque, ClockEvent event)
{
SSECounter *s = SSE_COUNTER(opaque);
uint64_t now;
switch (event) {
case ClockPreUpdate:
/*
* Before the clock period updates, set (ticks_then, ns_then)
* to the current time and tick count (as calculated with
* the old clock period).
*/
if (sse_counter_enabled(s)) {
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
s->ticks_then = sse_counter_for_timestamp(s, now);
s->ns_then = now;
}
break;
case ClockUpdate:
sse_counter_notify_users(s);
break;
default:
break;
}
}
static void sse_counter_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
SSECounter *s = SSE_COUNTER(obj);
notifier_list_init(&s->notifier_list);
s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s,
ClockPreUpdate | ClockUpdate);
memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops,
s, "sse-counter-control", 0x1000);
memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops,
s, "sse-counter-status", 0x1000);
sysbus_init_mmio(sbd, &s->control_mr);
sysbus_init_mmio(sbd, &s->status_mr);
}
static void sse_counter_realize(DeviceState *dev, Error **errp)
{
SSECounter *s = SSE_COUNTER(dev);
if (!clock_has_source(s->clk)) {
error_setg(errp, "SSE system counter: CLK must be connected");
return;
}
}
static const VMStateDescription sse_counter_vmstate = {
.name = "sse-counter",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_CLOCK(clk, SSECounter),
VMSTATE_END_OF_LIST()
}
};
static void sse_counter_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = sse_counter_realize;
dc->vmsd = &sse_counter_vmstate;
dc->reset = sse_counter_reset;
}
static const TypeInfo sse_counter_info = {
.name = TYPE_SSE_COUNTER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SSECounter),
.instance_init = sse_counter_init,
.class_init = sse_counter_class_init,
};
static void sse_counter_register_types(void)
{
type_register_static(&sse_counter_info);
}
type_init(sse_counter_register_types);