| /* |
| * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * Copyright (c) 2013 David Gibson, IBM Corporation |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "exec/helper-proto.h" |
| #include "qemu/error-report.h" |
| #include "sysemu/kvm.h" |
| #include "kvm_ppc.h" |
| #include "mmu-hash64.h" |
| #include "exec/log.h" |
| |
| //#define DEBUG_SLB |
| |
| #ifdef DEBUG_SLB |
| # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__) |
| #else |
| # define LOG_SLB(...) do { } while (0) |
| #endif |
| |
| /* |
| * Used to indicate that a CPU has its hash page table (HPT) managed |
| * within the host kernel |
| */ |
| #define MMU_HASH64_KVM_MANAGED_HPT ((void *)-1) |
| |
| /* |
| * SLB handling |
| */ |
| |
| static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr) |
| { |
| CPUPPCState *env = &cpu->env; |
| uint64_t esid_256M, esid_1T; |
| int n; |
| |
| LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr); |
| |
| esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V; |
| esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V; |
| |
| for (n = 0; n < env->slb_nr; n++) { |
| ppc_slb_t *slb = &env->slb[n]; |
| |
| LOG_SLB("%s: slot %d %016" PRIx64 " %016" |
| PRIx64 "\n", __func__, n, slb->esid, slb->vsid); |
| /* We check for 1T matches on all MMUs here - if the MMU |
| * doesn't have 1T segment support, we will have prevented 1T |
| * entries from being inserted in the slbmte code. */ |
| if (((slb->esid == esid_256M) && |
| ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M)) |
| || ((slb->esid == esid_1T) && |
| ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) { |
| return slb; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu) |
| { |
| CPUPPCState *env = &cpu->env; |
| int i; |
| uint64_t slbe, slbv; |
| |
| cpu_synchronize_state(CPU(cpu)); |
| |
| cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n"); |
| for (i = 0; i < env->slb_nr; i++) { |
| slbe = env->slb[i].esid; |
| slbv = env->slb[i].vsid; |
| if (slbe == 0 && slbv == 0) { |
| continue; |
| } |
| cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n", |
| i, slbe, slbv); |
| } |
| } |
| |
| void helper_slbia(CPUPPCState *env) |
| { |
| int n; |
| |
| /* XXX: Warning: slbia never invalidates the first segment */ |
| for (n = 1; n < env->slb_nr; n++) { |
| ppc_slb_t *slb = &env->slb[n]; |
| |
| if (slb->esid & SLB_ESID_V) { |
| slb->esid &= ~SLB_ESID_V; |
| /* XXX: given the fact that segment size is 256 MB or 1TB, |
| * and we still don't have a tlb_flush_mask(env, n, mask) |
| * in QEMU, we just invalidate all TLBs |
| */ |
| env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH; |
| } |
| } |
| } |
| |
| void helper_slbie(CPUPPCState *env, target_ulong addr) |
| { |
| PowerPCCPU *cpu = ppc_env_get_cpu(env); |
| ppc_slb_t *slb; |
| |
| slb = slb_lookup(cpu, addr); |
| if (!slb) { |
| return; |
| } |
| |
| if (slb->esid & SLB_ESID_V) { |
| slb->esid &= ~SLB_ESID_V; |
| |
| /* XXX: given the fact that segment size is 256 MB or 1TB, |
| * and we still don't have a tlb_flush_mask(env, n, mask) |
| * in QEMU, we just invalidate all TLBs |
| */ |
| env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH; |
| } |
| } |
| |
| int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot, |
| target_ulong esid, target_ulong vsid) |
| { |
| CPUPPCState *env = &cpu->env; |
| ppc_slb_t *slb = &env->slb[slot]; |
| const struct ppc_one_seg_page_size *sps = NULL; |
| int i; |
| |
| if (slot >= env->slb_nr) { |
| return -1; /* Bad slot number */ |
| } |
| if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) { |
| return -1; /* Reserved bits set */ |
| } |
| if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) { |
| return -1; /* Bad segment size */ |
| } |
| if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) { |
| return -1; /* 1T segment on MMU that doesn't support it */ |
| } |
| |
| for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { |
| const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i]; |
| |
| if (!sps1->page_shift) { |
| break; |
| } |
| |
| if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) { |
| sps = sps1; |
| break; |
| } |
| } |
| |
| if (!sps) { |
| error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu |
| " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx, |
| slot, esid, vsid); |
| return -1; |
| } |
| |
| slb->esid = esid; |
| slb->vsid = vsid; |
| slb->sps = sps; |
| |
| LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64 |
| " %016" PRIx64 "\n", __func__, slot, esid, vsid, |
| slb->esid, slb->vsid); |
| |
| return 0; |
| } |
| |
| static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb, |
| target_ulong *rt) |
| { |
| CPUPPCState *env = &cpu->env; |
| int slot = rb & 0xfff; |
| ppc_slb_t *slb = &env->slb[slot]; |
| |
| if (slot >= env->slb_nr) { |
| return -1; |
| } |
| |
| *rt = slb->esid; |
| return 0; |
| } |
| |
| static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb, |
| target_ulong *rt) |
| { |
| CPUPPCState *env = &cpu->env; |
| int slot = rb & 0xfff; |
| ppc_slb_t *slb = &env->slb[slot]; |
| |
| if (slot >= env->slb_nr) { |
| return -1; |
| } |
| |
| *rt = slb->vsid; |
| return 0; |
| } |
| |
| static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb, |
| target_ulong *rt) |
| { |
| CPUPPCState *env = &cpu->env; |
| ppc_slb_t *slb; |
| |
| if (!msr_is_64bit(env, env->msr)) { |
| rb &= 0xffffffff; |
| } |
| slb = slb_lookup(cpu, rb); |
| if (slb == NULL) { |
| *rt = (target_ulong)-1ul; |
| } else { |
| *rt = slb->vsid; |
| } |
| return 0; |
| } |
| |
| void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs) |
| { |
| PowerPCCPU *cpu = ppc_env_get_cpu(env); |
| |
| if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) { |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL, GETPC()); |
| } |
| } |
| |
| target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb) |
| { |
| PowerPCCPU *cpu = ppc_env_get_cpu(env); |
| target_ulong rt = 0; |
| |
| if (ppc_load_slb_esid(cpu, rb, &rt) < 0) { |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL, GETPC()); |
| } |
| return rt; |
| } |
| |
| target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb) |
| { |
| PowerPCCPU *cpu = ppc_env_get_cpu(env); |
| target_ulong rt = 0; |
| |
| if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) { |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL, GETPC()); |
| } |
| return rt; |
| } |
| |
| target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb) |
| { |
| PowerPCCPU *cpu = ppc_env_get_cpu(env); |
| target_ulong rt = 0; |
| |
| if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) { |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL, GETPC()); |
| } |
| return rt; |
| } |
| |
| /* |
| * 64-bit hash table MMU handling |
| */ |
| void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value, |
| Error **errp) |
| { |
| CPUPPCState *env = &cpu->env; |
| target_ulong htabsize = value & SDR_64_HTABSIZE; |
| |
| env->spr[SPR_SDR1] = value; |
| if (htabsize > 28) { |
| error_setg(errp, |
| "Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1", |
| htabsize); |
| htabsize = 28; |
| } |
| env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1; |
| env->htab_base = value & SDR_64_HTABORG; |
| } |
| |
| void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift, |
| Error **errp) |
| { |
| CPUPPCState *env = &cpu->env; |
| Error *local_err = NULL; |
| |
| if (hpt) { |
| env->external_htab = hpt; |
| } else { |
| env->external_htab = MMU_HASH64_KVM_MANAGED_HPT; |
| } |
| ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18), |
| &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| /* Not strictly necessary, but makes it clearer that an external |
| * htab is in use when debugging */ |
| env->htab_base = -1; |
| |
| if (kvm_enabled()) { |
| if (kvmppc_put_books_sregs(cpu) < 0) { |
| error_setg(errp, "Unable to update SDR1 in KVM"); |
| } |
| } |
| } |
| |
| static int ppc_hash64_pte_prot(PowerPCCPU *cpu, |
| ppc_slb_t *slb, ppc_hash_pte64_t pte) |
| { |
| CPUPPCState *env = &cpu->env; |
| unsigned pp, key; |
| /* Some pp bit combinations have undefined behaviour, so default |
| * to no access in those cases */ |
| int prot = 0; |
| |
| key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP) |
| : (slb->vsid & SLB_VSID_KS)); |
| pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61); |
| |
| if (key == 0) { |
| switch (pp) { |
| case 0x0: |
| case 0x1: |
| case 0x2: |
| prot = PAGE_READ | PAGE_WRITE; |
| break; |
| |
| case 0x3: |
| case 0x6: |
| prot = PAGE_READ; |
| break; |
| } |
| } else { |
| switch (pp) { |
| case 0x0: |
| case 0x6: |
| prot = 0; |
| break; |
| |
| case 0x1: |
| case 0x3: |
| prot = PAGE_READ; |
| break; |
| |
| case 0x2: |
| prot = PAGE_READ | PAGE_WRITE; |
| break; |
| } |
| } |
| |
| /* No execute if either noexec or guarded bits set */ |
| if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) |
| || (slb->vsid & SLB_VSID_N)) { |
| prot |= PAGE_EXEC; |
| } |
| |
| return prot; |
| } |
| |
| static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte) |
| { |
| CPUPPCState *env = &cpu->env; |
| int key, amrbits; |
| int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; |
| |
| /* Only recent MMUs implement Virtual Page Class Key Protection */ |
| if (!(env->mmu_model & POWERPC_MMU_AMR)) { |
| return prot; |
| } |
| |
| key = HPTE64_R_KEY(pte.pte1); |
| amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3; |
| |
| /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */ |
| /* env->spr[SPR_AMR]); */ |
| |
| /* |
| * A store is permitted if the AMR bit is 0. Remove write |
| * protection if it is set. |
| */ |
| if (amrbits & 0x2) { |
| prot &= ~PAGE_WRITE; |
| } |
| /* |
| * A load is permitted if the AMR bit is 0. Remove read |
| * protection if it is set. |
| */ |
| if (amrbits & 0x1) { |
| prot &= ~PAGE_READ; |
| } |
| |
| return prot; |
| } |
| |
| uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index) |
| { |
| uint64_t token = 0; |
| hwaddr pte_offset; |
| |
| pte_offset = pte_index * HASH_PTE_SIZE_64; |
| if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) { |
| /* |
| * HTAB is controlled by KVM. Fetch the PTEG into a new buffer. |
| */ |
| token = kvmppc_hash64_read_pteg(cpu, pte_index); |
| } else if (cpu->env.external_htab) { |
| /* |
| * HTAB is controlled by QEMU. Just point to the internally |
| * accessible PTEG. |
| */ |
| token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset; |
| } else if (cpu->env.htab_base) { |
| token = cpu->env.htab_base + pte_offset; |
| } |
| return token; |
| } |
| |
| void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token) |
| { |
| if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) { |
| kvmppc_hash64_free_pteg(token); |
| } |
| } |
| |
| static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps, |
| uint64_t pte0, uint64_t pte1) |
| { |
| int i; |
| |
| if (!(pte0 & HPTE64_V_LARGE)) { |
| if (sps->page_shift != 12) { |
| /* 4kiB page in a non 4kiB segment */ |
| return 0; |
| } |
| /* Normal 4kiB page */ |
| return 12; |
| } |
| |
| for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { |
| const struct ppc_one_page_size *ps = &sps->enc[i]; |
| uint64_t mask; |
| |
| if (!ps->page_shift) { |
| break; |
| } |
| |
| if (ps->page_shift == 12) { |
| /* L bit is set so this can't be a 4kiB page */ |
| continue; |
| } |
| |
| mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN; |
| |
| if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) { |
| return ps->page_shift; |
| } |
| } |
| |
| return 0; /* Bad page size encoding */ |
| } |
| |
| static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash, |
| const struct ppc_one_seg_page_size *sps, |
| target_ulong ptem, |
| ppc_hash_pte64_t *pte, unsigned *pshift) |
| { |
| CPUPPCState *env = &cpu->env; |
| int i; |
| uint64_t token; |
| target_ulong pte0, pte1; |
| target_ulong pte_index; |
| |
| pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP; |
| token = ppc_hash64_start_access(cpu, pte_index); |
| if (!token) { |
| return -1; |
| } |
| for (i = 0; i < HPTES_PER_GROUP; i++) { |
| pte0 = ppc_hash64_load_hpte0(cpu, token, i); |
| pte1 = ppc_hash64_load_hpte1(cpu, token, i); |
| |
| /* This compares V, B, H (secondary) and the AVPN */ |
| if (HPTE64_V_COMPARE(pte0, ptem)) { |
| *pshift = hpte_page_shift(sps, pte0, pte1); |
| /* |
| * If there is no match, ignore the PTE, it could simply |
| * be for a different segment size encoding and the |
| * architecture specifies we should not match. Linux will |
| * potentially leave behind PTEs for the wrong base page |
| * size when demoting segments. |
| */ |
| if (*pshift == 0) { |
| continue; |
| } |
| /* We don't do anything with pshift yet as qemu TLB only deals |
| * with 4K pages anyway |
| */ |
| pte->pte0 = pte0; |
| pte->pte1 = pte1; |
| ppc_hash64_stop_access(cpu, token); |
| return (pte_index + i) * HASH_PTE_SIZE_64; |
| } |
| } |
| ppc_hash64_stop_access(cpu, token); |
| /* |
| * We didn't find a valid entry. |
| */ |
| return -1; |
| } |
| |
| static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu, |
| ppc_slb_t *slb, target_ulong eaddr, |
| ppc_hash_pte64_t *pte, unsigned *pshift) |
| { |
| CPUPPCState *env = &cpu->env; |
| hwaddr pte_offset; |
| hwaddr hash; |
| uint64_t vsid, epnmask, epn, ptem; |
| const struct ppc_one_seg_page_size *sps = slb->sps; |
| |
| /* The SLB store path should prevent any bad page size encodings |
| * getting in there, so: */ |
| assert(sps); |
| |
| /* If ISL is set in LPCR we need to clamp the page size to 4K */ |
| if (env->spr[SPR_LPCR] & LPCR_ISL) { |
| /* We assume that when using TCG, 4k is first entry of SPS */ |
| sps = &env->sps.sps[0]; |
| assert(sps->page_shift == 12); |
| } |
| |
| epnmask = ~((1ULL << sps->page_shift) - 1); |
| |
| if (slb->vsid & SLB_VSID_B) { |
| /* 1TB segment */ |
| vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T; |
| epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask; |
| hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift); |
| } else { |
| /* 256M segment */ |
| vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT; |
| epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask; |
| hash = vsid ^ (epn >> sps->page_shift); |
| } |
| ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN); |
| ptem |= HPTE64_V_VALID; |
| |
| /* Page address translation */ |
| qemu_log_mask(CPU_LOG_MMU, |
| "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx |
| " hash " TARGET_FMT_plx "\n", |
| env->htab_base, env->htab_mask, hash); |
| |
| /* Primary PTEG lookup */ |
| qemu_log_mask(CPU_LOG_MMU, |
| "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx |
| " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx |
| " hash=" TARGET_FMT_plx "\n", |
| env->htab_base, env->htab_mask, vsid, ptem, hash); |
| pte_offset = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift); |
| |
| if (pte_offset == -1) { |
| /* Secondary PTEG lookup */ |
| ptem |= HPTE64_V_SECONDARY; |
| qemu_log_mask(CPU_LOG_MMU, |
| "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx |
| " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx |
| " hash=" TARGET_FMT_plx "\n", env->htab_base, |
| env->htab_mask, vsid, ptem, ~hash); |
| |
| pte_offset = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift); |
| } |
| |
| return pte_offset; |
| } |
| |
| unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu, |
| uint64_t pte0, uint64_t pte1) |
| { |
| CPUPPCState *env = &cpu->env; |
| int i; |
| |
| if (!(pte0 & HPTE64_V_LARGE)) { |
| return 12; |
| } |
| |
| /* |
| * The encodings in env->sps need to be carefully chosen so that |
| * this gives an unambiguous result. |
| */ |
| for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { |
| const struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; |
| unsigned shift; |
| |
| if (!sps->page_shift) { |
| break; |
| } |
| |
| shift = hpte_page_shift(sps, pte0, pte1); |
| if (shift) { |
| return shift; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env, |
| uint64_t error_code) |
| { |
| bool vpm; |
| |
| if (msr_ir) { |
| vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1); |
| } else { |
| vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0); |
| } |
| if (vpm && !msr_hv) { |
| cs->exception_index = POWERPC_EXCP_HISI; |
| } else { |
| cs->exception_index = POWERPC_EXCP_ISI; |
| } |
| env->error_code = error_code; |
| } |
| |
| static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar, |
| uint64_t dsisr) |
| { |
| bool vpm; |
| |
| if (msr_dr) { |
| vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1); |
| } else { |
| vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0); |
| } |
| if (vpm && !msr_hv) { |
| cs->exception_index = POWERPC_EXCP_HDSI; |
| env->spr[SPR_HDAR] = dar; |
| env->spr[SPR_HDSISR] = dsisr; |
| } else { |
| cs->exception_index = POWERPC_EXCP_DSI; |
| env->spr[SPR_DAR] = dar; |
| env->spr[SPR_DSISR] = dsisr; |
| } |
| env->error_code = 0; |
| } |
| |
| |
| int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr, |
| int rwx, int mmu_idx) |
| { |
| CPUState *cs = CPU(cpu); |
| CPUPPCState *env = &cpu->env; |
| ppc_slb_t *slb; |
| unsigned apshift; |
| hwaddr pte_offset; |
| ppc_hash_pte64_t pte; |
| int pp_prot, amr_prot, prot; |
| uint64_t new_pte1, dsisr; |
| const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC}; |
| hwaddr raddr; |
| |
| assert((rwx == 0) || (rwx == 1) || (rwx == 2)); |
| |
| /* Note on LPCR usage: 970 uses HID4, but our special variant |
| * of store_spr copies relevant fields into env->spr[SPR_LPCR]. |
| * Similarily we filter unimplemented bits when storing into |
| * LPCR depending on the MMU version. This code can thus just |
| * use the LPCR "as-is". |
| */ |
| |
| /* 1. Handle real mode accesses */ |
| if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) { |
| /* Translation is supposedly "off" */ |
| /* In real mode the top 4 effective address bits are (mostly) ignored */ |
| raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL; |
| |
| /* In HV mode, add HRMOR if top EA bit is clear */ |
| if (msr_hv || !env->has_hv_mode) { |
| if (!(eaddr >> 63)) { |
| raddr |= env->spr[SPR_HRMOR]; |
| } |
| } else { |
| /* Otherwise, check VPM for RMA vs VRMA */ |
| if (env->spr[SPR_LPCR] & LPCR_VPM0) { |
| slb = &env->vrma_slb; |
| if (slb->sps) { |
| goto skip_slb_search; |
| } |
| /* Not much else to do here */ |
| cs->exception_index = POWERPC_EXCP_MCHECK; |
| env->error_code = 0; |
| return 1; |
| } else if (raddr < env->rmls) { |
| /* RMA. Check bounds in RMLS */ |
| raddr |= env->spr[SPR_RMOR]; |
| } else { |
| /* The access failed, generate the approriate interrupt */ |
| if (rwx == 2) { |
| ppc_hash64_set_isi(cs, env, 0x08000000); |
| } else { |
| dsisr = 0x08000000; |
| if (rwx == 1) { |
| dsisr |= 0x02000000; |
| } |
| ppc_hash64_set_dsi(cs, env, eaddr, dsisr); |
| } |
| return 1; |
| } |
| } |
| tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK, |
| PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx, |
| TARGET_PAGE_SIZE); |
| return 0; |
| } |
| |
| /* 2. Translation is on, so look up the SLB */ |
| slb = slb_lookup(cpu, eaddr); |
| if (!slb) { |
| if (rwx == 2) { |
| cs->exception_index = POWERPC_EXCP_ISEG; |
| env->error_code = 0; |
| } else { |
| cs->exception_index = POWERPC_EXCP_DSEG; |
| env->error_code = 0; |
| env->spr[SPR_DAR] = eaddr; |
| } |
| return 1; |
| } |
| |
| skip_slb_search: |
| |
| /* 3. Check for segment level no-execute violation */ |
| if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) { |
| ppc_hash64_set_isi(cs, env, 0x10000000); |
| return 1; |
| } |
| |
| /* 4. Locate the PTE in the hash table */ |
| pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift); |
| if (pte_offset == -1) { |
| dsisr = 0x40000000; |
| if (rwx == 2) { |
| ppc_hash64_set_isi(cs, env, dsisr); |
| } else { |
| if (rwx == 1) { |
| dsisr |= 0x02000000; |
| } |
| ppc_hash64_set_dsi(cs, env, eaddr, dsisr); |
| } |
| return 1; |
| } |
| qemu_log_mask(CPU_LOG_MMU, |
| "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset); |
| |
| /* 5. Check access permissions */ |
| |
| pp_prot = ppc_hash64_pte_prot(cpu, slb, pte); |
| amr_prot = ppc_hash64_amr_prot(cpu, pte); |
| prot = pp_prot & amr_prot; |
| |
| if ((need_prot[rwx] & ~prot) != 0) { |
| /* Access right violation */ |
| qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n"); |
| if (rwx == 2) { |
| ppc_hash64_set_isi(cs, env, 0x08000000); |
| } else { |
| dsisr = 0; |
| if (need_prot[rwx] & ~pp_prot) { |
| dsisr |= 0x08000000; |
| } |
| if (rwx == 1) { |
| dsisr |= 0x02000000; |
| } |
| if (need_prot[rwx] & ~amr_prot) { |
| dsisr |= 0x00200000; |
| } |
| ppc_hash64_set_dsi(cs, env, eaddr, dsisr); |
| } |
| return 1; |
| } |
| |
| qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n"); |
| |
| /* 6. Update PTE referenced and changed bits if necessary */ |
| |
| new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */ |
| if (rwx == 1) { |
| new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */ |
| } else { |
| /* Treat the page as read-only for now, so that a later write |
| * will pass through this function again to set the C bit */ |
| prot &= ~PAGE_WRITE; |
| } |
| |
| if (new_pte1 != pte.pte1) { |
| ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64, |
| pte.pte0, new_pte1); |
| } |
| |
| /* 7. Determine the real address from the PTE */ |
| |
| raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr); |
| |
| tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK, |
| prot, mmu_idx, 1ULL << apshift); |
| |
| return 0; |
| } |
| |
| hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr) |
| { |
| CPUPPCState *env = &cpu->env; |
| ppc_slb_t *slb; |
| hwaddr pte_offset, raddr; |
| ppc_hash_pte64_t pte; |
| unsigned apshift; |
| |
| /* Handle real mode */ |
| if (msr_dr == 0) { |
| /* In real mode the top 4 effective address bits are ignored */ |
| raddr = addr & 0x0FFFFFFFFFFFFFFFULL; |
| |
| /* In HV mode, add HRMOR if top EA bit is clear */ |
| if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) { |
| return raddr | env->spr[SPR_HRMOR]; |
| } |
| |
| /* Otherwise, check VPM for RMA vs VRMA */ |
| if (env->spr[SPR_LPCR] & LPCR_VPM0) { |
| slb = &env->vrma_slb; |
| if (!slb->sps) { |
| return -1; |
| } |
| } else if (raddr < env->rmls) { |
| /* RMA. Check bounds in RMLS */ |
| return raddr | env->spr[SPR_RMOR]; |
| } else { |
| return -1; |
| } |
| } else { |
| slb = slb_lookup(cpu, addr); |
| if (!slb) { |
| return -1; |
| } |
| } |
| |
| pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift); |
| if (pte_offset == -1) { |
| return -1; |
| } |
| |
| return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr) |
| & TARGET_PAGE_MASK; |
| } |
| |
| void ppc_hash64_store_hpte(PowerPCCPU *cpu, |
| target_ulong pte_index, |
| target_ulong pte0, target_ulong pte1) |
| { |
| CPUPPCState *env = &cpu->env; |
| |
| if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) { |
| kvmppc_hash64_write_pte(env, pte_index, pte0, pte1); |
| return; |
| } |
| |
| pte_index *= HASH_PTE_SIZE_64; |
| if (env->external_htab) { |
| stq_p(env->external_htab + pte_index, pte0); |
| stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1); |
| } else { |
| stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0); |
| stq_phys(CPU(cpu)->as, |
| env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1); |
| } |
| } |
| |
| void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, |
| target_ulong pte_index, |
| target_ulong pte0, target_ulong pte1) |
| { |
| /* |
| * XXX: given the fact that there are too many segments to |
| * invalidate, and we still don't have a tlb_flush_mask(env, n, |
| * mask) in QEMU, we just invalidate all TLBs |
| */ |
| cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH; |
| } |
| |
| void ppc_hash64_update_rmls(CPUPPCState *env) |
| { |
| uint64_t lpcr = env->spr[SPR_LPCR]; |
| |
| /* |
| * This is the full 4 bits encoding of POWER8. Previous |
| * CPUs only support a subset of these but the filtering |
| * is done when writing LPCR |
| */ |
| switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) { |
| case 0x8: /* 32MB */ |
| env->rmls = 0x2000000ull; |
| break; |
| case 0x3: /* 64MB */ |
| env->rmls = 0x4000000ull; |
| break; |
| case 0x7: /* 128MB */ |
| env->rmls = 0x8000000ull; |
| break; |
| case 0x4: /* 256MB */ |
| env->rmls = 0x10000000ull; |
| break; |
| case 0x2: /* 1GB */ |
| env->rmls = 0x40000000ull; |
| break; |
| case 0x1: /* 16GB */ |
| env->rmls = 0x400000000ull; |
| break; |
| default: |
| /* What to do here ??? */ |
| env->rmls = 0; |
| } |
| } |
| |
| void ppc_hash64_update_vrma(CPUPPCState *env) |
| { |
| const struct ppc_one_seg_page_size *sps = NULL; |
| target_ulong esid, vsid, lpcr; |
| ppc_slb_t *slb = &env->vrma_slb; |
| uint32_t vrmasd; |
| int i; |
| |
| /* First clear it */ |
| slb->esid = slb->vsid = 0; |
| slb->sps = NULL; |
| |
| /* Is VRMA enabled ? */ |
| lpcr = env->spr[SPR_LPCR]; |
| if (!(lpcr & LPCR_VPM0)) { |
| return; |
| } |
| |
| /* Make one up. Mostly ignore the ESID which will not be |
| * needed for translation |
| */ |
| vsid = SLB_VSID_VRMA; |
| vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT; |
| vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP); |
| esid = SLB_ESID_V; |
| |
| for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { |
| const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i]; |
| |
| if (!sps1->page_shift) { |
| break; |
| } |
| |
| if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) { |
| sps = sps1; |
| break; |
| } |
| } |
| |
| if (!sps) { |
| error_report("Bad page size encoding esid 0x"TARGET_FMT_lx |
| " vsid 0x"TARGET_FMT_lx, esid, vsid); |
| return; |
| } |
| |
| slb->vsid = vsid; |
| slb->esid = esid; |
| slb->sps = sps; |
| } |
| |
| void helper_store_lpcr(CPUPPCState *env, target_ulong val) |
| { |
| uint64_t lpcr = 0; |
| |
| /* Filter out bits */ |
| switch (env->mmu_model) { |
| case POWERPC_MMU_64B: /* 970 */ |
| if (val & 0x40) { |
| lpcr |= LPCR_LPES0; |
| } |
| if (val & 0x8000000000000000ull) { |
| lpcr |= LPCR_LPES1; |
| } |
| if (val & 0x20) { |
| lpcr |= (0x4ull << LPCR_RMLS_SHIFT); |
| } |
| if (val & 0x4000000000000000ull) { |
| lpcr |= (0x2ull << LPCR_RMLS_SHIFT); |
| } |
| if (val & 0x2000000000000000ull) { |
| lpcr |= (0x1ull << LPCR_RMLS_SHIFT); |
| } |
| env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26; |
| |
| /* XXX We could also write LPID from HID4 here |
| * but since we don't tag any translation on it |
| * it doesn't actually matter |
| */ |
| /* XXX For proper emulation of 970 we also need |
| * to dig HRMOR out of HID5 |
| */ |
| break; |
| case POWERPC_MMU_2_03: /* P5p */ |
| lpcr = val & (LPCR_RMLS | LPCR_ILE | |
| LPCR_LPES0 | LPCR_LPES1 | |
| LPCR_RMI | LPCR_HDICE); |
| break; |
| case POWERPC_MMU_2_06: /* P7 */ |
| lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD | |
| LPCR_VRMASD | LPCR_RMLS | LPCR_ILE | |
| LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 | |
| LPCR_MER | LPCR_TC | |
| LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE); |
| break; |
| case POWERPC_MMU_2_07: /* P8 */ |
| lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV | |
| LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE | |
| LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 | |
| LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 | |
| LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE); |
| break; |
| default: |
| ; |
| } |
| env->spr[SPR_LPCR] = lpcr; |
| ppc_hash64_update_rmls(env); |
| ppc_hash64_update_vrma(env); |
| } |