| /* |
| * QEMU ARM CPU |
| * |
| * Copyright (c) 2012 SUSE LINUX Products GmbH |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version 2 |
| * of the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see |
| * <http://www.gnu.org/licenses/gpl-2.0.html> |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/qemu-print.h" |
| #include "qemu/timer.h" |
| #include "qemu/log.h" |
| #include "exec/page-vary.h" |
| #include "target/arm/idau.h" |
| #include "qemu/module.h" |
| #include "qapi/error.h" |
| #include "cpu.h" |
| #ifdef CONFIG_TCG |
| #include "hw/core/tcg-cpu-ops.h" |
| #endif /* CONFIG_TCG */ |
| #include "internals.h" |
| #include "cpu-features.h" |
| #include "exec/exec-all.h" |
| #include "hw/qdev-properties.h" |
| #if !defined(CONFIG_USER_ONLY) |
| #include "hw/loader.h" |
| #include "hw/boards.h" |
| #ifdef CONFIG_TCG |
| #include "hw/intc/armv7m_nvic.h" |
| #endif /* CONFIG_TCG */ |
| #endif /* !CONFIG_USER_ONLY */ |
| #include "sysemu/tcg.h" |
| #include "sysemu/qtest.h" |
| #include "sysemu/hw_accel.h" |
| #include "kvm_arm.h" |
| #include "disas/capstone.h" |
| #include "fpu/softfloat.h" |
| #include "cpregs.h" |
| #include "target/arm/cpu-qom.h" |
| #include "target/arm/gtimer.h" |
| |
| static void arm_cpu_set_pc(CPUState *cs, vaddr value) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| if (is_a64(env)) { |
| env->pc = value; |
| env->thumb = false; |
| } else { |
| env->regs[15] = value & ~1; |
| env->thumb = value & 1; |
| } |
| } |
| |
| static vaddr arm_cpu_get_pc(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| if (is_a64(env)) { |
| return env->pc; |
| } else { |
| return env->regs[15]; |
| } |
| } |
| |
| #ifdef CONFIG_TCG |
| void arm_cpu_synchronize_from_tb(CPUState *cs, |
| const TranslationBlock *tb) |
| { |
| /* The program counter is always up to date with CF_PCREL. */ |
| if (!(tb_cflags(tb) & CF_PCREL)) { |
| CPUARMState *env = cpu_env(cs); |
| /* |
| * It's OK to look at env for the current mode here, because it's |
| * never possible for an AArch64 TB to chain to an AArch32 TB. |
| */ |
| if (is_a64(env)) { |
| env->pc = tb->pc; |
| } else { |
| env->regs[15] = tb->pc; |
| } |
| } |
| } |
| |
| void arm_restore_state_to_opc(CPUState *cs, |
| const TranslationBlock *tb, |
| const uint64_t *data) |
| { |
| CPUARMState *env = cpu_env(cs); |
| |
| if (is_a64(env)) { |
| if (tb_cflags(tb) & CF_PCREL) { |
| env->pc = (env->pc & TARGET_PAGE_MASK) | data[0]; |
| } else { |
| env->pc = data[0]; |
| } |
| env->condexec_bits = 0; |
| env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT; |
| } else { |
| if (tb_cflags(tb) & CF_PCREL) { |
| env->regs[15] = (env->regs[15] & TARGET_PAGE_MASK) | data[0]; |
| } else { |
| env->regs[15] = data[0]; |
| } |
| env->condexec_bits = data[1]; |
| env->exception.syndrome = data[2] << ARM_INSN_START_WORD2_SHIFT; |
| } |
| } |
| #endif /* CONFIG_TCG */ |
| |
| /* |
| * With SCTLR_ELx.NMI == 0, IRQ with Superpriority is masked identically with |
| * IRQ without Superpriority. Moreover, if the GIC is configured so that |
| * FEAT_GICv3_NMI is only set if FEAT_NMI is set, then we won't ever see |
| * CPU_INTERRUPT_*NMI anyway. So we might as well accept NMI here |
| * unconditionally. |
| */ |
| static bool arm_cpu_has_work(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| |
| return (cpu->power_state != PSCI_OFF) |
| && cs->interrupt_request & |
| (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD |
| | CPU_INTERRUPT_NMI | CPU_INTERRUPT_VINMI | CPU_INTERRUPT_VFNMI |
| | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR |
| | CPU_INTERRUPT_EXITTB); |
| } |
| |
| static int arm_cpu_mmu_index(CPUState *cs, bool ifetch) |
| { |
| return arm_env_mmu_index(cpu_env(cs)); |
| } |
| |
| void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, |
| void *opaque) |
| { |
| ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); |
| |
| entry->hook = hook; |
| entry->opaque = opaque; |
| |
| QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node); |
| } |
| |
| void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, |
| void *opaque) |
| { |
| ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1); |
| |
| entry->hook = hook; |
| entry->opaque = opaque; |
| |
| QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node); |
| } |
| |
| static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque) |
| { |
| /* Reset a single ARMCPRegInfo register */ |
| ARMCPRegInfo *ri = value; |
| ARMCPU *cpu = opaque; |
| |
| if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) { |
| return; |
| } |
| |
| if (ri->resetfn) { |
| ri->resetfn(&cpu->env, ri); |
| return; |
| } |
| |
| /* A zero offset is never possible as it would be regs[0] |
| * so we use it to indicate that reset is being handled elsewhere. |
| * This is basically only used for fields in non-core coprocessors |
| * (like the pxa2xx ones). |
| */ |
| if (!ri->fieldoffset) { |
| return; |
| } |
| |
| if (cpreg_field_is_64bit(ri)) { |
| CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue; |
| } else { |
| CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue; |
| } |
| } |
| |
| static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque) |
| { |
| /* Purely an assertion check: we've already done reset once, |
| * so now check that running the reset for the cpreg doesn't |
| * change its value. This traps bugs where two different cpregs |
| * both try to reset the same state field but to different values. |
| */ |
| ARMCPRegInfo *ri = value; |
| ARMCPU *cpu = opaque; |
| uint64_t oldvalue, newvalue; |
| |
| if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) { |
| return; |
| } |
| |
| oldvalue = read_raw_cp_reg(&cpu->env, ri); |
| cp_reg_reset(key, value, opaque); |
| newvalue = read_raw_cp_reg(&cpu->env, ri); |
| assert(oldvalue == newvalue); |
| } |
| |
| static void arm_cpu_reset_hold(Object *obj, ResetType type) |
| { |
| CPUState *cs = CPU(obj); |
| ARMCPU *cpu = ARM_CPU(cs); |
| ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); |
| CPUARMState *env = &cpu->env; |
| |
| if (acc->parent_phases.hold) { |
| acc->parent_phases.hold(obj, type); |
| } |
| |
| memset(env, 0, offsetof(CPUARMState, end_reset_fields)); |
| |
| g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu); |
| g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu); |
| |
| env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid; |
| env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0; |
| env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1; |
| env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2; |
| |
| cpu->power_state = cs->start_powered_off ? PSCI_OFF : PSCI_ON; |
| |
| if (arm_feature(env, ARM_FEATURE_IWMMXT)) { |
| env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q'; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| /* 64 bit CPUs always start in 64 bit mode */ |
| env->aarch64 = true; |
| #if defined(CONFIG_USER_ONLY) |
| env->pstate = PSTATE_MODE_EL0t; |
| /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */ |
| env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE; |
| /* Enable all PAC keys. */ |
| env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB | |
| SCTLR_EnDA | SCTLR_EnDB); |
| /* Trap on btype=3 for PACIxSP. */ |
| env->cp15.sctlr_el[1] |= SCTLR_BT0; |
| /* Trap on implementation defined registers. */ |
| if (cpu_isar_feature(aa64_tidcp1, cpu)) { |
| env->cp15.sctlr_el[1] |= SCTLR_TIDCP; |
| } |
| /* and to the FP/Neon instructions */ |
| env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, |
| CPACR_EL1, FPEN, 3); |
| /* and to the SVE instructions, with default vector length */ |
| if (cpu_isar_feature(aa64_sve, cpu)) { |
| env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, |
| CPACR_EL1, ZEN, 3); |
| env->vfp.zcr_el[1] = cpu->sve_default_vq - 1; |
| } |
| /* and for SME instructions, with default vector length, and TPIDR2 */ |
| if (cpu_isar_feature(aa64_sme, cpu)) { |
| env->cp15.sctlr_el[1] |= SCTLR_EnTP2; |
| env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, |
| CPACR_EL1, SMEN, 3); |
| env->vfp.smcr_el[1] = cpu->sme_default_vq - 1; |
| if (cpu_isar_feature(aa64_sme_fa64, cpu)) { |
| env->vfp.smcr_el[1] = FIELD_DP64(env->vfp.smcr_el[1], |
| SMCR, FA64, 1); |
| } |
| } |
| /* |
| * Enable 48-bit address space (TODO: take reserved_va into account). |
| * Enable TBI0 but not TBI1. |
| * Note that this must match useronly_clean_ptr. |
| */ |
| env->cp15.tcr_el[1] = 5 | (1ULL << 37); |
| |
| /* Enable MTE */ |
| if (cpu_isar_feature(aa64_mte, cpu)) { |
| /* Enable tag access, but leave TCF0 as No Effect (0). */ |
| env->cp15.sctlr_el[1] |= SCTLR_ATA0; |
| /* |
| * Exclude all tags, so that tag 0 is always used. |
| * This corresponds to Linux current->thread.gcr_incl = 0. |
| * |
| * Set RRND, so that helper_irg() will generate a seed later. |
| * Here in cpu_reset(), the crypto subsystem has not yet been |
| * initialized. |
| */ |
| env->cp15.gcr_el1 = 0x1ffff; |
| } |
| /* |
| * Disable access to SCXTNUM_EL0 from CSV2_1p2. |
| * This is not yet exposed from the Linux kernel in any way. |
| */ |
| env->cp15.sctlr_el[1] |= SCTLR_TSCXT; |
| /* Disable access to Debug Communication Channel (DCC). */ |
| env->cp15.mdscr_el1 |= 1 << 12; |
| /* Enable FEAT_MOPS */ |
| env->cp15.sctlr_el[1] |= SCTLR_MSCEN; |
| #else |
| /* Reset into the highest available EL */ |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| env->pstate = PSTATE_MODE_EL3h; |
| } else if (arm_feature(env, ARM_FEATURE_EL2)) { |
| env->pstate = PSTATE_MODE_EL2h; |
| } else { |
| env->pstate = PSTATE_MODE_EL1h; |
| } |
| |
| /* Sample rvbar at reset. */ |
| env->cp15.rvbar = cpu->rvbar_prop; |
| env->pc = env->cp15.rvbar; |
| #endif |
| } else { |
| #if defined(CONFIG_USER_ONLY) |
| /* Userspace expects access to cp10 and cp11 for FP/Neon */ |
| env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, |
| CPACR, CP10, 3); |
| env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1, |
| CPACR, CP11, 3); |
| #endif |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| env->cp15.rvbar = cpu->rvbar_prop; |
| env->regs[15] = cpu->rvbar_prop; |
| } |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| env->uncached_cpsr = ARM_CPU_MODE_USR; |
| /* For user mode we must enable access to coprocessors */ |
| env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30; |
| if (arm_feature(env, ARM_FEATURE_IWMMXT)) { |
| env->cp15.c15_cpar = 3; |
| } else if (arm_feature(env, ARM_FEATURE_XSCALE)) { |
| env->cp15.c15_cpar = 1; |
| } |
| #else |
| |
| /* |
| * If the highest available EL is EL2, AArch32 will start in Hyp |
| * mode; otherwise it starts in SVC. Note that if we start in |
| * AArch64 then these values in the uncached_cpsr will be ignored. |
| */ |
| if (arm_feature(env, ARM_FEATURE_EL2) && |
| !arm_feature(env, ARM_FEATURE_EL3)) { |
| env->uncached_cpsr = ARM_CPU_MODE_HYP; |
| } else { |
| env->uncached_cpsr = ARM_CPU_MODE_SVC; |
| } |
| env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F; |
| |
| /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently |
| * executing as AArch32 then check if highvecs are enabled and |
| * adjust the PC accordingly. |
| */ |
| if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { |
| env->regs[15] = 0xFFFF0000; |
| } |
| |
| env->vfp.xregs[ARM_VFP_FPEXC] = 0; |
| #endif |
| |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| #ifndef CONFIG_USER_ONLY |
| uint32_t initial_msp; /* Loaded from 0x0 */ |
| uint32_t initial_pc; /* Loaded from 0x4 */ |
| uint8_t *rom; |
| uint32_t vecbase; |
| #endif |
| |
| if (cpu_isar_feature(aa32_lob, cpu)) { |
| /* |
| * LTPSIZE is constant 4 if MVE not implemented, and resets |
| * to an UNKNOWN value if MVE is implemented. We choose to |
| * always reset to 4. |
| */ |
| env->v7m.ltpsize = 4; |
| /* The LTPSIZE field in FPDSCR is constant and reads as 4. */ |
| env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT; |
| env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| env->v7m.secure = true; |
| } else { |
| /* This bit resets to 0 if security is supported, but 1 if |
| * it is not. The bit is not present in v7M, but we set it |
| * here so we can avoid having to make checks on it conditional |
| * on ARM_FEATURE_V8 (we don't let the guest see the bit). |
| */ |
| env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK; |
| /* |
| * Set NSACR to indicate "NS access permitted to everything"; |
| * this avoids having to have all the tests of it being |
| * conditional on ARM_FEATURE_M_SECURITY. Note also that from |
| * v8.1M the guest-visible value of NSACR in a CPU without the |
| * Security Extension is 0xcff. |
| */ |
| env->v7m.nsacr = 0xcff; |
| } |
| |
| /* In v7M the reset value of this bit is IMPDEF, but ARM recommends |
| * that it resets to 1, so QEMU always does that rather than making |
| * it dependent on CPU model. In v8M it is RES1. |
| */ |
| env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK; |
| env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK; |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| /* in v8M the NONBASETHRDENA bit [0] is RES1 */ |
| env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; |
| env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; |
| } |
| if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { |
| env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK; |
| env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK; |
| } |
| |
| if (cpu_isar_feature(aa32_vfp_simd, cpu)) { |
| env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK; |
| env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK | |
| R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* Unlike A/R profile, M profile defines the reset LR value */ |
| env->regs[14] = 0xffffffff; |
| |
| env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80; |
| env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80; |
| |
| /* Load the initial SP and PC from offset 0 and 4 in the vector table */ |
| vecbase = env->v7m.vecbase[env->v7m.secure]; |
| rom = rom_ptr_for_as(cs->as, vecbase, 8); |
| if (rom) { |
| /* Address zero is covered by ROM which hasn't yet been |
| * copied into physical memory. |
| */ |
| initial_msp = ldl_p(rom); |
| initial_pc = ldl_p(rom + 4); |
| } else { |
| /* Address zero not covered by a ROM blob, or the ROM blob |
| * is in non-modifiable memory and this is a second reset after |
| * it got copied into memory. In the latter case, rom_ptr |
| * will return a NULL pointer and we should use ldl_phys instead. |
| */ |
| initial_msp = ldl_phys(cs->as, vecbase); |
| initial_pc = ldl_phys(cs->as, vecbase + 4); |
| } |
| |
| qemu_log_mask(CPU_LOG_INT, |
| "Loaded reset SP 0x%x PC 0x%x from vector table\n", |
| initial_msp, initial_pc); |
| |
| env->regs[13] = initial_msp & 0xFFFFFFFC; |
| env->regs[15] = initial_pc & ~1; |
| env->thumb = initial_pc & 1; |
| #else |
| /* |
| * For user mode we run non-secure and with access to the FPU. |
| * The FPU context is active (ie does not need further setup) |
| * and is owned by non-secure. |
| */ |
| env->v7m.secure = false; |
| env->v7m.nsacr = 0xcff; |
| env->v7m.cpacr[M_REG_NS] = 0xf0ffff; |
| env->v7m.fpccr[M_REG_S] &= |
| ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK); |
| env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK; |
| #endif |
| } |
| |
| /* M profile requires that reset clears the exclusive monitor; |
| * A profile does not, but clearing it makes more sense than having it |
| * set with an exclusive access on address zero. |
| */ |
| arm_clear_exclusive(env); |
| |
| if (arm_feature(env, ARM_FEATURE_PMSA)) { |
| if (cpu->pmsav7_dregion > 0) { |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| memset(env->pmsav8.rbar[M_REG_NS], 0, |
| sizeof(*env->pmsav8.rbar[M_REG_NS]) |
| * cpu->pmsav7_dregion); |
| memset(env->pmsav8.rlar[M_REG_NS], 0, |
| sizeof(*env->pmsav8.rlar[M_REG_NS]) |
| * cpu->pmsav7_dregion); |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| memset(env->pmsav8.rbar[M_REG_S], 0, |
| sizeof(*env->pmsav8.rbar[M_REG_S]) |
| * cpu->pmsav7_dregion); |
| memset(env->pmsav8.rlar[M_REG_S], 0, |
| sizeof(*env->pmsav8.rlar[M_REG_S]) |
| * cpu->pmsav7_dregion); |
| } |
| } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| memset(env->pmsav7.drbar, 0, |
| sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion); |
| memset(env->pmsav7.drsr, 0, |
| sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion); |
| memset(env->pmsav7.dracr, 0, |
| sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion); |
| } |
| } |
| |
| if (cpu->pmsav8r_hdregion > 0) { |
| memset(env->pmsav8.hprbar, 0, |
| sizeof(*env->pmsav8.hprbar) * cpu->pmsav8r_hdregion); |
| memset(env->pmsav8.hprlar, 0, |
| sizeof(*env->pmsav8.hprlar) * cpu->pmsav8r_hdregion); |
| } |
| |
| env->pmsav7.rnr[M_REG_NS] = 0; |
| env->pmsav7.rnr[M_REG_S] = 0; |
| env->pmsav8.mair0[M_REG_NS] = 0; |
| env->pmsav8.mair0[M_REG_S] = 0; |
| env->pmsav8.mair1[M_REG_NS] = 0; |
| env->pmsav8.mair1[M_REG_S] = 0; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| if (cpu->sau_sregion > 0) { |
| memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion); |
| memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion); |
| } |
| env->sau.rnr = 0; |
| /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what |
| * the Cortex-M33 does. |
| */ |
| env->sau.ctrl = 0; |
| } |
| |
| set_flush_to_zero(1, &env->vfp.standard_fp_status); |
| set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status); |
| set_default_nan_mode(1, &env->vfp.standard_fp_status); |
| set_default_nan_mode(1, &env->vfp.standard_fp_status_f16); |
| set_float_detect_tininess(float_tininess_before_rounding, |
| &env->vfp.fp_status); |
| set_float_detect_tininess(float_tininess_before_rounding, |
| &env->vfp.standard_fp_status); |
| set_float_detect_tininess(float_tininess_before_rounding, |
| &env->vfp.fp_status_f16); |
| set_float_detect_tininess(float_tininess_before_rounding, |
| &env->vfp.standard_fp_status_f16); |
| #ifndef CONFIG_USER_ONLY |
| if (kvm_enabled()) { |
| kvm_arm_reset_vcpu(cpu); |
| } |
| #endif |
| |
| if (tcg_enabled()) { |
| hw_breakpoint_update_all(cpu); |
| hw_watchpoint_update_all(cpu); |
| |
| arm_rebuild_hflags(env); |
| } |
| } |
| |
| void arm_emulate_firmware_reset(CPUState *cpustate, int target_el) |
| { |
| ARMCPU *cpu = ARM_CPU(cpustate); |
| CPUARMState *env = &cpu->env; |
| bool have_el3 = arm_feature(env, ARM_FEATURE_EL3); |
| bool have_el2 = arm_feature(env, ARM_FEATURE_EL2); |
| |
| /* |
| * Check we have the EL we're aiming for. If that is the |
| * highest implemented EL, then cpu_reset has already done |
| * all the work. |
| */ |
| switch (target_el) { |
| case 3: |
| assert(have_el3); |
| return; |
| case 2: |
| assert(have_el2); |
| if (!have_el3) { |
| return; |
| } |
| break; |
| case 1: |
| if (!have_el3 && !have_el2) { |
| return; |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (have_el3) { |
| /* |
| * Set the EL3 state so code can run at EL2. This should match |
| * the requirements set by Linux in its booting spec. |
| */ |
| if (env->aarch64) { |
| env->cp15.scr_el3 |= SCR_RW; |
| if (cpu_isar_feature(aa64_pauth, cpu)) { |
| env->cp15.scr_el3 |= SCR_API | SCR_APK; |
| } |
| if (cpu_isar_feature(aa64_mte, cpu)) { |
| env->cp15.scr_el3 |= SCR_ATA; |
| } |
| if (cpu_isar_feature(aa64_sve, cpu)) { |
| env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK; |
| env->vfp.zcr_el[3] = 0xf; |
| } |
| if (cpu_isar_feature(aa64_sme, cpu)) { |
| env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK; |
| env->cp15.scr_el3 |= SCR_ENTP2; |
| env->vfp.smcr_el[3] = 0xf; |
| } |
| if (cpu_isar_feature(aa64_hcx, cpu)) { |
| env->cp15.scr_el3 |= SCR_HXEN; |
| } |
| if (cpu_isar_feature(aa64_fgt, cpu)) { |
| env->cp15.scr_el3 |= SCR_FGTEN; |
| } |
| } |
| |
| if (target_el == 2) { |
| /* If the guest is at EL2 then Linux expects the HVC insn to work */ |
| env->cp15.scr_el3 |= SCR_HCE; |
| } |
| |
| /* Put CPU into non-secure state */ |
| env->cp15.scr_el3 |= SCR_NS; |
| /* Set NSACR.{CP11,CP10} so NS can access the FPU */ |
| env->cp15.nsacr |= 3 << 10; |
| } |
| |
| if (have_el2 && target_el < 2) { |
| /* Set EL2 state so code can run at EL1. */ |
| if (env->aarch64) { |
| env->cp15.hcr_el2 |= HCR_RW; |
| } |
| } |
| |
| /* Set the CPU to the desired state */ |
| if (env->aarch64) { |
| env->pstate = aarch64_pstate_mode(target_el, true); |
| } else { |
| static const uint32_t mode_for_el[] = { |
| 0, |
| ARM_CPU_MODE_SVC, |
| ARM_CPU_MODE_HYP, |
| ARM_CPU_MODE_SVC, |
| }; |
| |
| cpsr_write(env, mode_for_el[target_el], CPSR_M, CPSRWriteRaw); |
| } |
| } |
| |
| |
| #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY) |
| |
| static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, |
| unsigned int target_el, |
| unsigned int cur_el, bool secure, |
| uint64_t hcr_el2) |
| { |
| CPUARMState *env = cpu_env(cs); |
| bool pstate_unmasked; |
| bool unmasked = false; |
| bool allIntMask = false; |
| |
| /* |
| * Don't take exceptions if they target a lower EL. |
| * This check should catch any exceptions that would not be taken |
| * but left pending. |
| */ |
| if (cur_el > target_el) { |
| return false; |
| } |
| |
| if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) && |
| env->cp15.sctlr_el[target_el] & SCTLR_NMI && cur_el == target_el) { |
| allIntMask = env->pstate & PSTATE_ALLINT || |
| ((env->cp15.sctlr_el[target_el] & SCTLR_SPINTMASK) && |
| (env->pstate & PSTATE_SP)); |
| } |
| |
| switch (excp_idx) { |
| case EXCP_NMI: |
| pstate_unmasked = !allIntMask; |
| break; |
| |
| case EXCP_VINMI: |
| if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { |
| /* VINMIs are only taken when hypervized. */ |
| return false; |
| } |
| return !allIntMask; |
| case EXCP_VFNMI: |
| if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { |
| /* VFNMIs are only taken when hypervized. */ |
| return false; |
| } |
| return !allIntMask; |
| case EXCP_FIQ: |
| pstate_unmasked = (!(env->daif & PSTATE_F)) && (!allIntMask); |
| break; |
| |
| case EXCP_IRQ: |
| pstate_unmasked = (!(env->daif & PSTATE_I)) && (!allIntMask); |
| break; |
| |
| case EXCP_VFIQ: |
| if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) { |
| /* VFIQs are only taken when hypervized. */ |
| return false; |
| } |
| return !(env->daif & PSTATE_F) && (!allIntMask); |
| case EXCP_VIRQ: |
| if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) { |
| /* VIRQs are only taken when hypervized. */ |
| return false; |
| } |
| return !(env->daif & PSTATE_I) && (!allIntMask); |
| case EXCP_VSERR: |
| if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) { |
| /* VIRQs are only taken when hypervized. */ |
| return false; |
| } |
| return !(env->daif & PSTATE_A); |
| default: |
| g_assert_not_reached(); |
| } |
| |
| /* |
| * Use the target EL, current execution state and SCR/HCR settings to |
| * determine whether the corresponding CPSR bit is used to mask the |
| * interrupt. |
| */ |
| if ((target_el > cur_el) && (target_el != 1)) { |
| /* Exceptions targeting a higher EL may not be maskable */ |
| if (arm_feature(env, ARM_FEATURE_AARCH64)) { |
| switch (target_el) { |
| case 2: |
| /* |
| * According to ARM DDI 0487H.a, an interrupt can be masked |
| * when HCR_E2H and HCR_TGE are both set regardless of the |
| * current Security state. Note that we need to revisit this |
| * part again once we need to support NMI. |
| */ |
| if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { |
| unmasked = true; |
| } |
| break; |
| case 3: |
| /* Interrupt cannot be masked when the target EL is 3 */ |
| unmasked = true; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } else { |
| /* |
| * The old 32-bit-only environment has a more complicated |
| * masking setup. HCR and SCR bits not only affect interrupt |
| * routing but also change the behaviour of masking. |
| */ |
| bool hcr, scr; |
| |
| switch (excp_idx) { |
| case EXCP_FIQ: |
| /* |
| * If FIQs are routed to EL3 or EL2 then there are cases where |
| * we override the CPSR.F in determining if the exception is |
| * masked or not. If neither of these are set then we fall back |
| * to the CPSR.F setting otherwise we further assess the state |
| * below. |
| */ |
| hcr = hcr_el2 & HCR_FMO; |
| scr = (env->cp15.scr_el3 & SCR_FIQ); |
| |
| /* |
| * When EL3 is 32-bit, the SCR.FW bit controls whether the |
| * CPSR.F bit masks FIQ interrupts when taken in non-secure |
| * state. If SCR.FW is set then FIQs can be masked by CPSR.F |
| * when non-secure but only when FIQs are only routed to EL3. |
| */ |
| scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr); |
| break; |
| case EXCP_IRQ: |
| /* |
| * When EL3 execution state is 32-bit, if HCR.IMO is set then |
| * we may override the CPSR.I masking when in non-secure state. |
| * The SCR.IRQ setting has already been taken into consideration |
| * when setting the target EL, so it does not have a further |
| * affect here. |
| */ |
| hcr = hcr_el2 & HCR_IMO; |
| scr = false; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if ((scr || hcr) && !secure) { |
| unmasked = true; |
| } |
| } |
| } |
| |
| /* |
| * The PSTATE bits only mask the interrupt if we have not overridden the |
| * ability above. |
| */ |
| return unmasked || pstate_unmasked; |
| } |
| |
| static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cs); |
| CPUARMState *env = cpu_env(cs); |
| uint32_t cur_el = arm_current_el(env); |
| bool secure = arm_is_secure(env); |
| uint64_t hcr_el2 = arm_hcr_el2_eff(env); |
| uint32_t target_el; |
| uint32_t excp_idx; |
| |
| /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */ |
| |
| if (cpu_isar_feature(aa64_nmi, env_archcpu(env)) && |
| (arm_sctlr(env, cur_el) & SCTLR_NMI)) { |
| if (interrupt_request & CPU_INTERRUPT_NMI) { |
| excp_idx = EXCP_NMI; |
| target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); |
| if (arm_excp_unmasked(cs, excp_idx, target_el, |
| cur_el, secure, hcr_el2)) { |
| goto found; |
| } |
| } |
| if (interrupt_request & CPU_INTERRUPT_VINMI) { |
| excp_idx = EXCP_VINMI; |
| target_el = 1; |
| if (arm_excp_unmasked(cs, excp_idx, target_el, |
| cur_el, secure, hcr_el2)) { |
| goto found; |
| } |
| } |
| if (interrupt_request & CPU_INTERRUPT_VFNMI) { |
| excp_idx = EXCP_VFNMI; |
| target_el = 1; |
| if (arm_excp_unmasked(cs, excp_idx, target_el, |
| cur_el, secure, hcr_el2)) { |
| goto found; |
| } |
| } |
| } else { |
| /* |
| * NMI disabled: interrupts with superpriority are handled |
| * as if they didn't have it |
| */ |
| if (interrupt_request & CPU_INTERRUPT_NMI) { |
| interrupt_request |= CPU_INTERRUPT_HARD; |
| } |
| if (interrupt_request & CPU_INTERRUPT_VINMI) { |
| interrupt_request |= CPU_INTERRUPT_VIRQ; |
| } |
| if (interrupt_request & CPU_INTERRUPT_VFNMI) { |
| interrupt_request |= CPU_INTERRUPT_VFIQ; |
| } |
| } |
| |
| if (interrupt_request & CPU_INTERRUPT_FIQ) { |
| excp_idx = EXCP_FIQ; |
| target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); |
| if (arm_excp_unmasked(cs, excp_idx, target_el, |
| cur_el, secure, hcr_el2)) { |
| goto found; |
| } |
| } |
| if (interrupt_request & CPU_INTERRUPT_HARD) { |
| excp_idx = EXCP_IRQ; |
| target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure); |
| if (arm_excp_unmasked(cs, excp_idx, target_el, |
| cur_el, secure, hcr_el2)) { |
| goto found; |
| } |
| } |
| if (interrupt_request & CPU_INTERRUPT_VIRQ) { |
| excp_idx = EXCP_VIRQ; |
| target_el = 1; |
| if (arm_excp_unmasked(cs, excp_idx, target_el, |
| cur_el, secure, hcr_el2)) { |
| goto found; |
| } |
| } |
| if (interrupt_request & CPU_INTERRUPT_VFIQ) { |
| excp_idx = EXCP_VFIQ; |
| target_el = 1; |
| if (arm_excp_unmasked(cs, excp_idx, target_el, |
| cur_el, secure, hcr_el2)) { |
| goto found; |
| } |
| } |
| if (interrupt_request & CPU_INTERRUPT_VSERR) { |
| excp_idx = EXCP_VSERR; |
| target_el = 1; |
| if (arm_excp_unmasked(cs, excp_idx, target_el, |
| cur_el, secure, hcr_el2)) { |
| /* Taking a virtual abort clears HCR_EL2.VSE */ |
| env->cp15.hcr_el2 &= ~HCR_VSE; |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR); |
| goto found; |
| } |
| } |
| return false; |
| |
| found: |
| cs->exception_index = excp_idx; |
| env->exception.target_el = target_el; |
| cc->tcg_ops->do_interrupt(cs); |
| return true; |
| } |
| |
| #endif /* CONFIG_TCG && !CONFIG_USER_ONLY */ |
| |
| void arm_cpu_update_virq(ARMCPU *cpu) |
| { |
| /* |
| * Update the interrupt level for VIRQ, which is the logical OR of |
| * the HCR_EL2.VI bit and the input line level from the GIC. |
| */ |
| CPUARMState *env = &cpu->env; |
| CPUState *cs = CPU(cpu); |
| |
| bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) && |
| !(arm_hcrx_el2_eff(env) & HCRX_VINMI)) || |
| (env->irq_line_state & CPU_INTERRUPT_VIRQ); |
| |
| if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) { |
| if (new_state) { |
| cpu_interrupt(cs, CPU_INTERRUPT_VIRQ); |
| } else { |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ); |
| } |
| } |
| } |
| |
| void arm_cpu_update_vfiq(ARMCPU *cpu) |
| { |
| /* |
| * Update the interrupt level for VFIQ, which is the logical OR of |
| * the HCR_EL2.VF bit and the input line level from the GIC. |
| */ |
| CPUARMState *env = &cpu->env; |
| CPUState *cs = CPU(cpu); |
| |
| bool new_state = ((arm_hcr_el2_eff(env) & HCR_VF) && |
| !(arm_hcrx_el2_eff(env) & HCRX_VFNMI)) || |
| (env->irq_line_state & CPU_INTERRUPT_VFIQ); |
| |
| if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) { |
| if (new_state) { |
| cpu_interrupt(cs, CPU_INTERRUPT_VFIQ); |
| } else { |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ); |
| } |
| } |
| } |
| |
| void arm_cpu_update_vinmi(ARMCPU *cpu) |
| { |
| /* |
| * Update the interrupt level for VINMI, which is the logical OR of |
| * the HCRX_EL2.VINMI bit and the input line level from the GIC. |
| */ |
| CPUARMState *env = &cpu->env; |
| CPUState *cs = CPU(cpu); |
| |
| bool new_state = ((arm_hcr_el2_eff(env) & HCR_VI) && |
| (arm_hcrx_el2_eff(env) & HCRX_VINMI)) || |
| (env->irq_line_state & CPU_INTERRUPT_VINMI); |
| |
| if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VINMI) != 0)) { |
| if (new_state) { |
| cpu_interrupt(cs, CPU_INTERRUPT_VINMI); |
| } else { |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_VINMI); |
| } |
| } |
| } |
| |
| void arm_cpu_update_vfnmi(ARMCPU *cpu) |
| { |
| /* |
| * Update the interrupt level for VFNMI, which is the HCRX_EL2.VFNMI bit. |
| */ |
| CPUARMState *env = &cpu->env; |
| CPUState *cs = CPU(cpu); |
| |
| bool new_state = (arm_hcr_el2_eff(env) & HCR_VF) && |
| (arm_hcrx_el2_eff(env) & HCRX_VFNMI); |
| |
| if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFNMI) != 0)) { |
| if (new_state) { |
| cpu_interrupt(cs, CPU_INTERRUPT_VFNMI); |
| } else { |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_VFNMI); |
| } |
| } |
| } |
| |
| void arm_cpu_update_vserr(ARMCPU *cpu) |
| { |
| /* |
| * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit. |
| */ |
| CPUARMState *env = &cpu->env; |
| CPUState *cs = CPU(cpu); |
| |
| bool new_state = env->cp15.hcr_el2 & HCR_VSE; |
| |
| if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) { |
| if (new_state) { |
| cpu_interrupt(cs, CPU_INTERRUPT_VSERR); |
| } else { |
| cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR); |
| } |
| } |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| static void arm_cpu_set_irq(void *opaque, int irq, int level) |
| { |
| ARMCPU *cpu = opaque; |
| CPUARMState *env = &cpu->env; |
| CPUState *cs = CPU(cpu); |
| static const int mask[] = { |
| [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD, |
| [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ, |
| [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ, |
| [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ, |
| [ARM_CPU_NMI] = CPU_INTERRUPT_NMI, |
| [ARM_CPU_VINMI] = CPU_INTERRUPT_VINMI, |
| }; |
| |
| if (!arm_feature(env, ARM_FEATURE_EL2) && |
| (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) { |
| /* |
| * The GIC might tell us about VIRQ and VFIQ state, but if we don't |
| * have EL2 support we don't care. (Unless the guest is doing something |
| * silly this will only be calls saying "level is still 0".) |
| */ |
| return; |
| } |
| |
| if (level) { |
| env->irq_line_state |= mask[irq]; |
| } else { |
| env->irq_line_state &= ~mask[irq]; |
| } |
| |
| switch (irq) { |
| case ARM_CPU_VIRQ: |
| arm_cpu_update_virq(cpu); |
| break; |
| case ARM_CPU_VFIQ: |
| arm_cpu_update_vfiq(cpu); |
| break; |
| case ARM_CPU_VINMI: |
| arm_cpu_update_vinmi(cpu); |
| break; |
| case ARM_CPU_IRQ: |
| case ARM_CPU_FIQ: |
| case ARM_CPU_NMI: |
| if (level) { |
| cpu_interrupt(cs, mask[irq]); |
| } else { |
| cpu_reset_interrupt(cs, mask[irq]); |
| } |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level) |
| { |
| #ifdef CONFIG_KVM |
| ARMCPU *cpu = opaque; |
| CPUARMState *env = &cpu->env; |
| CPUState *cs = CPU(cpu); |
| uint32_t linestate_bit; |
| int irq_id; |
| |
| switch (irq) { |
| case ARM_CPU_IRQ: |
| irq_id = KVM_ARM_IRQ_CPU_IRQ; |
| linestate_bit = CPU_INTERRUPT_HARD; |
| break; |
| case ARM_CPU_FIQ: |
| irq_id = KVM_ARM_IRQ_CPU_FIQ; |
| linestate_bit = CPU_INTERRUPT_FIQ; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (level) { |
| env->irq_line_state |= linestate_bit; |
| } else { |
| env->irq_line_state &= ~linestate_bit; |
| } |
| kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level); |
| #endif |
| } |
| |
| static bool arm_cpu_virtio_is_big_endian(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| cpu_synchronize_state(cs); |
| return arm_cpu_data_is_big_endian(env); |
| } |
| |
| #endif |
| |
| static void arm_disas_set_info(CPUState *cpu, disassemble_info *info) |
| { |
| ARMCPU *ac = ARM_CPU(cpu); |
| CPUARMState *env = &ac->env; |
| bool sctlr_b; |
| |
| if (is_a64(env)) { |
| info->cap_arch = CS_ARCH_ARM64; |
| info->cap_insn_unit = 4; |
| info->cap_insn_split = 4; |
| } else { |
| int cap_mode; |
| if (env->thumb) { |
| info->cap_insn_unit = 2; |
| info->cap_insn_split = 4; |
| cap_mode = CS_MODE_THUMB; |
| } else { |
| info->cap_insn_unit = 4; |
| info->cap_insn_split = 4; |
| cap_mode = CS_MODE_ARM; |
| } |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| cap_mode |= CS_MODE_V8; |
| } |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| cap_mode |= CS_MODE_MCLASS; |
| } |
| info->cap_arch = CS_ARCH_ARM; |
| info->cap_mode = cap_mode; |
| } |
| |
| sctlr_b = arm_sctlr_b(env); |
| if (bswap_code(sctlr_b)) { |
| #if TARGET_BIG_ENDIAN |
| info->endian = BFD_ENDIAN_LITTLE; |
| #else |
| info->endian = BFD_ENDIAN_BIG; |
| #endif |
| } |
| info->flags &= ~INSN_ARM_BE32; |
| #ifndef CONFIG_USER_ONLY |
| if (sctlr_b) { |
| info->flags |= INSN_ARM_BE32; |
| } |
| #endif |
| } |
| |
| #ifdef TARGET_AARCH64 |
| |
| static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| uint32_t psr = pstate_read(env); |
| int i, j; |
| int el = arm_current_el(env); |
| uint64_t hcr = arm_hcr_el2_eff(env); |
| const char *ns_status; |
| bool sve; |
| |
| qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); |
| for (i = 0; i < 32; i++) { |
| if (i == 31) { |
| qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); |
| } else { |
| qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], |
| (i + 2) % 3 ? " " : "\n"); |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { |
| ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; |
| } else { |
| ns_status = ""; |
| } |
| qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", |
| psr, |
| psr & PSTATE_N ? 'N' : '-', |
| psr & PSTATE_Z ? 'Z' : '-', |
| psr & PSTATE_C ? 'C' : '-', |
| psr & PSTATE_V ? 'V' : '-', |
| ns_status, |
| el, |
| psr & PSTATE_SP ? 'h' : 't'); |
| |
| if (cpu_isar_feature(aa64_sme, cpu)) { |
| qemu_fprintf(f, " SVCR=%08" PRIx64 " %c%c", |
| env->svcr, |
| (FIELD_EX64(env->svcr, SVCR, ZA) ? 'Z' : '-'), |
| (FIELD_EX64(env->svcr, SVCR, SM) ? 'S' : '-')); |
| } |
| if (cpu_isar_feature(aa64_bti, cpu)) { |
| qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10); |
| } |
| qemu_fprintf(f, "%s%s%s", |
| (hcr & HCR_NV) ? " NV" : "", |
| (hcr & HCR_NV1) ? " NV1" : "", |
| (hcr & HCR_NV2) ? " NV2" : ""); |
| if (!(flags & CPU_DUMP_FPU)) { |
| qemu_fprintf(f, "\n"); |
| return; |
| } |
| if (fp_exception_el(env, el) != 0) { |
| qemu_fprintf(f, " FPU disabled\n"); |
| return; |
| } |
| qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n", |
| vfp_get_fpcr(env), vfp_get_fpsr(env)); |
| |
| if (cpu_isar_feature(aa64_sme, cpu) && FIELD_EX64(env->svcr, SVCR, SM)) { |
| sve = sme_exception_el(env, el) == 0; |
| } else if (cpu_isar_feature(aa64_sve, cpu)) { |
| sve = sve_exception_el(env, el) == 0; |
| } else { |
| sve = false; |
| } |
| |
| if (sve) { |
| int zcr_len = sve_vqm1_for_el(env, el); |
| |
| for (i = 0; i <= FFR_PRED_NUM; i++) { |
| bool eol; |
| if (i == FFR_PRED_NUM) { |
| qemu_fprintf(f, "FFR="); |
| /* It's last, so end the line. */ |
| eol = true; |
| } else { |
| qemu_fprintf(f, "P%02d=", i); |
| switch (zcr_len) { |
| case 0: |
| eol = i % 8 == 7; |
| break; |
| case 1: |
| eol = i % 6 == 5; |
| break; |
| case 2: |
| case 3: |
| eol = i % 3 == 2; |
| break; |
| default: |
| /* More than one quadword per predicate. */ |
| eol = true; |
| break; |
| } |
| } |
| for (j = zcr_len / 4; j >= 0; j--) { |
| int digits; |
| if (j * 4 + 4 <= zcr_len + 1) { |
| digits = 16; |
| } else { |
| digits = (zcr_len % 4 + 1) * 4; |
| } |
| qemu_fprintf(f, "%0*" PRIx64 "%s", digits, |
| env->vfp.pregs[i].p[j], |
| j ? ":" : eol ? "\n" : " "); |
| } |
| } |
| |
| if (zcr_len == 0) { |
| /* |
| * With vl=16, there are only 37 columns per register, |
| * so output two registers per line. |
| */ |
| for (i = 0; i < 32; i++) { |
| qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", |
| i, env->vfp.zregs[i].d[1], |
| env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); |
| } |
| } else { |
| for (i = 0; i < 32; i++) { |
| qemu_fprintf(f, "Z%02d=", i); |
| for (j = zcr_len; j >= 0; j--) { |
| qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", |
| env->vfp.zregs[i].d[j * 2 + 1], |
| env->vfp.zregs[i].d[j * 2 + 0], |
| j ? ":" : "\n"); |
| } |
| } |
| } |
| } else { |
| for (i = 0; i < 32; i++) { |
| uint64_t *q = aa64_vfp_qreg(env, i); |
| qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", |
| i, q[1], q[0], (i & 1 ? "\n" : " ")); |
| } |
| } |
| |
| if (cpu_isar_feature(aa64_sme, cpu) && |
| FIELD_EX64(env->svcr, SVCR, ZA) && |
| sme_exception_el(env, el) == 0) { |
| int zcr_len = sve_vqm1_for_el_sm(env, el, true); |
| int svl = (zcr_len + 1) * 16; |
| int svl_lg10 = svl < 100 ? 2 : 3; |
| |
| for (i = 0; i < svl; i++) { |
| qemu_fprintf(f, "ZA[%0*d]=", svl_lg10, i); |
| for (j = zcr_len; j >= 0; --j) { |
| qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%c", |
| env->zarray[i].d[2 * j + 1], |
| env->zarray[i].d[2 * j], |
| j ? ':' : '\n'); |
| } |
| } |
| } |
| } |
| |
| #else |
| |
| static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags) |
| { |
| g_assert_not_reached(); |
| } |
| |
| #endif |
| |
| static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| int i; |
| |
| if (is_a64(env)) { |
| aarch64_cpu_dump_state(cs, f, flags); |
| return; |
| } |
| |
| for (i = 0; i < 16; i++) { |
| qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]); |
| if ((i % 4) == 3) { |
| qemu_fprintf(f, "\n"); |
| } else { |
| qemu_fprintf(f, " "); |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| uint32_t xpsr = xpsr_read(env); |
| const char *mode; |
| const char *ns_status = ""; |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| ns_status = env->v7m.secure ? "S " : "NS "; |
| } |
| |
| if (xpsr & XPSR_EXCP) { |
| mode = "handler"; |
| } else { |
| if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) { |
| mode = "unpriv-thread"; |
| } else { |
| mode = "priv-thread"; |
| } |
| } |
| |
| qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n", |
| xpsr, |
| xpsr & XPSR_N ? 'N' : '-', |
| xpsr & XPSR_Z ? 'Z' : '-', |
| xpsr & XPSR_C ? 'C' : '-', |
| xpsr & XPSR_V ? 'V' : '-', |
| xpsr & XPSR_T ? 'T' : 'A', |
| ns_status, |
| mode); |
| } else { |
| uint32_t psr = cpsr_read(env); |
| const char *ns_status = ""; |
| |
| if (arm_feature(env, ARM_FEATURE_EL3) && |
| (psr & CPSR_M) != ARM_CPU_MODE_MON) { |
| ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; |
| } |
| |
| qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n", |
| psr, |
| psr & CPSR_N ? 'N' : '-', |
| psr & CPSR_Z ? 'Z' : '-', |
| psr & CPSR_C ? 'C' : '-', |
| psr & CPSR_V ? 'V' : '-', |
| psr & CPSR_T ? 'T' : 'A', |
| ns_status, |
| aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26); |
| } |
| |
| if (flags & CPU_DUMP_FPU) { |
| int numvfpregs = 0; |
| if (cpu_isar_feature(aa32_simd_r32, cpu)) { |
| numvfpregs = 32; |
| } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) { |
| numvfpregs = 16; |
| } |
| for (i = 0; i < numvfpregs; i++) { |
| uint64_t v = *aa32_vfp_dreg(env, i); |
| qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n", |
| i * 2, (uint32_t)v, |
| i * 2 + 1, (uint32_t)(v >> 32), |
| i, v); |
| } |
| qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env)); |
| if (cpu_isar_feature(aa32_mve, cpu)) { |
| qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr); |
| } |
| } |
| } |
| |
| uint64_t arm_build_mp_affinity(int idx, uint8_t clustersz) |
| { |
| uint32_t Aff1 = idx / clustersz; |
| uint32_t Aff0 = idx % clustersz; |
| return (Aff1 << ARM_AFF1_SHIFT) | Aff0; |
| } |
| |
| uint64_t arm_cpu_mp_affinity(ARMCPU *cpu) |
| { |
| return cpu->mp_affinity; |
| } |
| |
| static void arm_cpu_initfn(Object *obj) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| |
| cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal, |
| NULL, g_free); |
| |
| QLIST_INIT(&cpu->pre_el_change_hooks); |
| QLIST_INIT(&cpu->el_change_hooks); |
| |
| #ifdef CONFIG_USER_ONLY |
| # ifdef TARGET_AARCH64 |
| /* |
| * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME. |
| * These values were chosen to fit within the default signal frame. |
| * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length, |
| * and our corresponding cpu property. |
| */ |
| cpu->sve_default_vq = 4; |
| cpu->sme_default_vq = 2; |
| # endif |
| #else |
| /* Our inbound IRQ and FIQ lines */ |
| if (kvm_enabled()) { |
| /* |
| * VIRQ, VFIQ, NMI, VINMI are unused with KVM but we add |
| * them to maintain the same interface as non-KVM CPUs. |
| */ |
| qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 6); |
| } else { |
| qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 6); |
| } |
| |
| qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs, |
| ARRAY_SIZE(cpu->gt_timer_outputs)); |
| |
| qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt, |
| "gicv3-maintenance-interrupt", 1); |
| qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt, |
| "pmu-interrupt", 1); |
| #endif |
| |
| /* DTB consumers generally don't in fact care what the 'compatible' |
| * string is, so always provide some string and trust that a hypothetical |
| * picky DTB consumer will also provide a helpful error message. |
| */ |
| cpu->dtb_compatible = "qemu,unknown"; |
| cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */ |
| cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE; |
| |
| if (tcg_enabled() || hvf_enabled()) { |
| /* TCG and HVF implement PSCI 1.1 */ |
| cpu->psci_version = QEMU_PSCI_VERSION_1_1; |
| } |
| } |
| |
| static Property arm_cpu_gt_cntfrq_property = |
| DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz, |
| NANOSECONDS_PER_SECOND / GTIMER_SCALE); |
| |
| static Property arm_cpu_reset_cbar_property = |
| DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0); |
| |
| static Property arm_cpu_reset_hivecs_property = |
| DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false); |
| |
| #ifndef CONFIG_USER_ONLY |
| static Property arm_cpu_has_el2_property = |
| DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true); |
| |
| static Property arm_cpu_has_el3_property = |
| DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true); |
| #endif |
| |
| static Property arm_cpu_cfgend_property = |
| DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false); |
| |
| static Property arm_cpu_has_vfp_property = |
| DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true); |
| |
| static Property arm_cpu_has_vfp_d32_property = |
| DEFINE_PROP_BOOL("vfp-d32", ARMCPU, has_vfp_d32, true); |
| |
| static Property arm_cpu_has_neon_property = |
| DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true); |
| |
| static Property arm_cpu_has_dsp_property = |
| DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true); |
| |
| static Property arm_cpu_has_mpu_property = |
| DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true); |
| |
| /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value, |
| * because the CPU initfn will have already set cpu->pmsav7_dregion to |
| * the right value for that particular CPU type, and we don't want |
| * to override that with an incorrect constant value. |
| */ |
| static Property arm_cpu_pmsav7_dregion_property = |
| DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU, |
| pmsav7_dregion, |
| qdev_prop_uint32, uint32_t); |
| |
| static bool arm_get_pmu(Object *obj, Error **errp) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| |
| return cpu->has_pmu; |
| } |
| |
| static void arm_set_pmu(Object *obj, bool value, Error **errp) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| |
| if (value) { |
| if (kvm_enabled() && !kvm_arm_pmu_supported()) { |
| error_setg(errp, "'pmu' feature not supported by KVM on this host"); |
| return; |
| } |
| set_feature(&cpu->env, ARM_FEATURE_PMU); |
| } else { |
| unset_feature(&cpu->env, ARM_FEATURE_PMU); |
| } |
| cpu->has_pmu = value; |
| } |
| |
| unsigned int gt_cntfrq_period_ns(ARMCPU *cpu) |
| { |
| /* |
| * The exact approach to calculating guest ticks is: |
| * |
| * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz, |
| * NANOSECONDS_PER_SECOND); |
| * |
| * We don't do that. Rather we intentionally use integer division |
| * truncation below and in the caller for the conversion of host monotonic |
| * time to guest ticks to provide the exact inverse for the semantics of |
| * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so |
| * it loses precision when representing frequencies where |
| * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to |
| * provide an exact inverse leads to scheduling timers with negative |
| * periods, which in turn leads to sticky behaviour in the guest. |
| * |
| * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor |
| * cannot become zero. |
| */ |
| return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ? |
| NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1; |
| } |
| |
| static void arm_cpu_propagate_feature_implications(ARMCPU *cpu) |
| { |
| CPUARMState *env = &cpu->env; |
| bool no_aa32 = false; |
| |
| /* |
| * Some features automatically imply others: set the feature |
| * bits explicitly for these cases. |
| */ |
| |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| set_feature(env, ARM_FEATURE_PMSA); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| set_feature(env, ARM_FEATURE_V7); |
| } else { |
| set_feature(env, ARM_FEATURE_V7VE); |
| } |
| } |
| |
| /* |
| * There exist AArch64 cpus without AArch32 support. When KVM |
| * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN. |
| * Similarly, we cannot check ID_AA64PFR0 without AArch64 support. |
| * As a general principle, we also do not make ID register |
| * consistency checks anywhere unless using TCG, because only |
| * for TCG would a consistency-check failure be a QEMU bug. |
| */ |
| if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| no_aa32 = !cpu_isar_feature(aa64_aa32, cpu); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_V7VE)) { |
| /* |
| * v7 Virtualization Extensions. In real hardware this implies |
| * EL2 and also the presence of the Security Extensions. |
| * For QEMU, for backwards-compatibility we implement some |
| * CPUs or CPU configs which have no actual EL2 or EL3 but do |
| * include the various other features that V7VE implies. |
| * Presence of EL2 itself is ARM_FEATURE_EL2, and of the |
| * Security Extensions is ARM_FEATURE_EL3. |
| */ |
| assert(!tcg_enabled() || no_aa32 || |
| cpu_isar_feature(aa32_arm_div, cpu)); |
| set_feature(env, ARM_FEATURE_LPAE); |
| set_feature(env, ARM_FEATURE_V7); |
| } |
| if (arm_feature(env, ARM_FEATURE_V7)) { |
| set_feature(env, ARM_FEATURE_VAPA); |
| set_feature(env, ARM_FEATURE_THUMB2); |
| set_feature(env, ARM_FEATURE_MPIDR); |
| if (!arm_feature(env, ARM_FEATURE_M)) { |
| set_feature(env, ARM_FEATURE_V6K); |
| } else { |
| set_feature(env, ARM_FEATURE_V6); |
| } |
| |
| /* |
| * Always define VBAR for V7 CPUs even if it doesn't exist in |
| * non-EL3 configs. This is needed by some legacy boards. |
| */ |
| set_feature(env, ARM_FEATURE_VBAR); |
| } |
| if (arm_feature(env, ARM_FEATURE_V6K)) { |
| set_feature(env, ARM_FEATURE_V6); |
| set_feature(env, ARM_FEATURE_MVFR); |
| } |
| if (arm_feature(env, ARM_FEATURE_V6)) { |
| set_feature(env, ARM_FEATURE_V5); |
| if (!arm_feature(env, ARM_FEATURE_M)) { |
| assert(!tcg_enabled() || no_aa32 || |
| cpu_isar_feature(aa32_jazelle, cpu)); |
| set_feature(env, ARM_FEATURE_AUXCR); |
| } |
| } |
| if (arm_feature(env, ARM_FEATURE_V5)) { |
| set_feature(env, ARM_FEATURE_V4T); |
| } |
| if (arm_feature(env, ARM_FEATURE_LPAE)) { |
| set_feature(env, ARM_FEATURE_V7MP); |
| } |
| if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { |
| set_feature(env, ARM_FEATURE_CBAR); |
| } |
| if (arm_feature(env, ARM_FEATURE_THUMB2) && |
| !arm_feature(env, ARM_FEATURE_M)) { |
| set_feature(env, ARM_FEATURE_THUMB_DSP); |
| } |
| } |
| |
| void arm_cpu_post_init(Object *obj) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| |
| /* |
| * Some features imply others. Figure this out now, because we |
| * are going to look at the feature bits in deciding which |
| * properties to add. |
| */ |
| arm_cpu_propagate_feature_implications(cpu); |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) || |
| arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) { |
| qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property); |
| } |
| |
| if (!arm_feature(&cpu->env, ARM_FEATURE_M)) { |
| qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property); |
| } |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { |
| object_property_add_uint64_ptr(obj, "rvbar", |
| &cpu->rvbar_prop, |
| OBJ_PROP_FLAG_READWRITE); |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { |
| /* Add the has_el3 state CPU property only if EL3 is allowed. This will |
| * prevent "has_el3" from existing on CPUs which cannot support EL3. |
| */ |
| qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property); |
| |
| object_property_add_link(obj, "secure-memory", |
| TYPE_MEMORY_REGION, |
| (Object **)&cpu->secure_memory, |
| qdev_prop_allow_set_link_before_realize, |
| OBJ_PROP_LINK_STRONG); |
| } |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { |
| qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property); |
| } |
| #endif |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) { |
| cpu->has_pmu = true; |
| object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu); |
| } |
| |
| /* |
| * Allow user to turn off VFP and Neon support, but only for TCG -- |
| * KVM does not currently allow us to lie to the guest about its |
| * ID/feature registers, so the guest always sees what the host has. |
| */ |
| if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| if (cpu_isar_feature(aa64_fp_simd, cpu)) { |
| cpu->has_vfp = true; |
| cpu->has_vfp_d32 = true; |
| if (tcg_enabled() || qtest_enabled()) { |
| qdev_property_add_static(DEVICE(obj), |
| &arm_cpu_has_vfp_property); |
| } |
| } |
| } else if (cpu_isar_feature(aa32_vfp, cpu)) { |
| cpu->has_vfp = true; |
| if (tcg_enabled() || qtest_enabled()) { |
| qdev_property_add_static(DEVICE(obj), |
| &arm_cpu_has_vfp_property); |
| } |
| if (cpu_isar_feature(aa32_simd_r32, cpu)) { |
| cpu->has_vfp_d32 = true; |
| /* |
| * The permitted values of the SIMDReg bits [3:0] on |
| * Armv8-A are either 0b0000 and 0b0010. On such CPUs, |
| * make sure that has_vfp_d32 can not be set to false. |
| */ |
| if ((tcg_enabled() || qtest_enabled()) |
| && !(arm_feature(&cpu->env, ARM_FEATURE_V8) |
| && !arm_feature(&cpu->env, ARM_FEATURE_M))) { |
| qdev_property_add_static(DEVICE(obj), |
| &arm_cpu_has_vfp_d32_property); |
| } |
| } |
| } |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) { |
| cpu->has_neon = true; |
| if (!kvm_enabled()) { |
| qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property); |
| } |
| } |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_M) && |
| arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) { |
| qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property); |
| } |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) { |
| qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property); |
| if (arm_feature(&cpu->env, ARM_FEATURE_V7)) { |
| qdev_property_add_static(DEVICE(obj), |
| &arm_cpu_pmsav7_dregion_property); |
| } |
| } |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) { |
| object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau, |
| qdev_prop_allow_set_link_before_realize, |
| OBJ_PROP_LINK_STRONG); |
| /* |
| * M profile: initial value of the Secure VTOR. We can't just use |
| * a simple DEFINE_PROP_UINT32 for this because we want to permit |
| * the property to be set after realize. |
| */ |
| object_property_add_uint32_ptr(obj, "init-svtor", |
| &cpu->init_svtor, |
| OBJ_PROP_FLAG_READWRITE); |
| } |
| if (arm_feature(&cpu->env, ARM_FEATURE_M)) { |
| /* |
| * Initial value of the NS VTOR (for cores without the Security |
| * extension, this is the only VTOR) |
| */ |
| object_property_add_uint32_ptr(obj, "init-nsvtor", |
| &cpu->init_nsvtor, |
| OBJ_PROP_FLAG_READWRITE); |
| } |
| |
| /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */ |
| object_property_add_uint32_ptr(obj, "psci-conduit", |
| &cpu->psci_conduit, |
| OBJ_PROP_FLAG_READWRITE); |
| |
| qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property); |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) { |
| qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property); |
| } |
| |
| if (kvm_enabled()) { |
| kvm_arm_add_vcpu_properties(cpu); |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && |
| cpu_isar_feature(aa64_mte, cpu)) { |
| object_property_add_link(obj, "tag-memory", |
| TYPE_MEMORY_REGION, |
| (Object **)&cpu->tag_memory, |
| qdev_prop_allow_set_link_before_realize, |
| OBJ_PROP_LINK_STRONG); |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { |
| object_property_add_link(obj, "secure-tag-memory", |
| TYPE_MEMORY_REGION, |
| (Object **)&cpu->secure_tag_memory, |
| qdev_prop_allow_set_link_before_realize, |
| OBJ_PROP_LINK_STRONG); |
| } |
| } |
| #endif |
| } |
| |
| static void arm_cpu_finalizefn(Object *obj) |
| { |
| ARMCPU *cpu = ARM_CPU(obj); |
| ARMELChangeHook *hook, *next; |
| |
| g_hash_table_destroy(cpu->cp_regs); |
| |
| QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) { |
| QLIST_REMOVE(hook, node); |
| g_free(hook); |
| } |
| QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) { |
| QLIST_REMOVE(hook, node); |
| g_free(hook); |
| } |
| #ifndef CONFIG_USER_ONLY |
| if (cpu->pmu_timer) { |
| timer_free(cpu->pmu_timer); |
| } |
| #endif |
| } |
| |
| void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp) |
| { |
| Error *local_err = NULL; |
| |
| #ifdef TARGET_AARCH64 |
| if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { |
| arm_cpu_sve_finalize(cpu, &local_err); |
| if (local_err != NULL) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| /* |
| * FEAT_SME is not architecturally dependent on FEAT_SVE (unless |
| * FEAT_SME_FA64 is present). However our implementation currently |
| * assumes it, so if the user asked for sve=off then turn off SME also. |
| * (KVM doesn't currently support SME at all.) |
| */ |
| if (cpu_isar_feature(aa64_sme, cpu) && !cpu_isar_feature(aa64_sve, cpu)) { |
| object_property_set_bool(OBJECT(cpu), "sme", false, &error_abort); |
| } |
| |
| arm_cpu_sme_finalize(cpu, &local_err); |
| if (local_err != NULL) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| arm_cpu_pauth_finalize(cpu, &local_err); |
| if (local_err != NULL) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| arm_cpu_lpa2_finalize(cpu, &local_err); |
| if (local_err != NULL) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| } |
| #endif |
| |
| if (kvm_enabled()) { |
| kvm_arm_steal_time_finalize(cpu, &local_err); |
| if (local_err != NULL) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| } |
| } |
| |
| static void arm_cpu_realizefn(DeviceState *dev, Error **errp) |
| { |
| CPUState *cs = CPU(dev); |
| ARMCPU *cpu = ARM_CPU(dev); |
| ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev); |
| CPUARMState *env = &cpu->env; |
| Error *local_err = NULL; |
| |
| #if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY) |
| /* Use pc-relative instructions in system-mode */ |
| cs->tcg_cflags |= CF_PCREL; |
| #endif |
| |
| /* If we needed to query the host kernel for the CPU features |
| * then it's possible that might have failed in the initfn, but |
| * this is the first point where we can report it. |
| */ |
| if (cpu->host_cpu_probe_failed) { |
| if (!kvm_enabled() && !hvf_enabled()) { |
| error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF"); |
| } else { |
| error_setg(errp, "Failed to retrieve host CPU features"); |
| } |
| return; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* The NVIC and M-profile CPU are two halves of a single piece of |
| * hardware; trying to use one without the other is a command line |
| * error and will result in segfaults if not caught here. |
| */ |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| if (!env->nvic) { |
| error_setg(errp, "This board cannot be used with Cortex-M CPUs"); |
| return; |
| } |
| } else { |
| if (env->nvic) { |
| error_setg(errp, "This board can only be used with Cortex-M CPUs"); |
| return; |
| } |
| } |
| |
| if (!tcg_enabled() && !qtest_enabled()) { |
| /* |
| * We assume that no accelerator except TCG (and the "not really an |
| * accelerator" qtest) can handle these features, because Arm hardware |
| * virtualization can't virtualize them. |
| * |
| * Catch all the cases which might cause us to create more than one |
| * address space for the CPU (otherwise we will assert() later in |
| * cpu_address_space_init()). |
| */ |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| error_setg(errp, |
| "Cannot enable %s when using an M-profile guest CPU", |
| current_accel_name()); |
| return; |
| } |
| if (cpu->has_el3) { |
| error_setg(errp, |
| "Cannot enable %s when guest CPU has EL3 enabled", |
| current_accel_name()); |
| return; |
| } |
| if (cpu->tag_memory) { |
| error_setg(errp, |
| "Cannot enable %s when guest CPUs has MTE enabled", |
| current_accel_name()); |
| return; |
| } |
| } |
| |
| { |
| uint64_t scale; |
| |
| if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { |
| if (!cpu->gt_cntfrq_hz) { |
| error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz", |
| cpu->gt_cntfrq_hz); |
| return; |
| } |
| scale = gt_cntfrq_period_ns(cpu); |
| } else { |
| scale = GTIMER_SCALE; |
| } |
| |
| cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale, |
| arm_gt_ptimer_cb, cpu); |
| cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, |
| arm_gt_vtimer_cb, cpu); |
| cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale, |
| arm_gt_htimer_cb, cpu); |
| cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale, |
| arm_gt_stimer_cb, cpu); |
| cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale, |
| arm_gt_hvtimer_cb, cpu); |
| } |
| #endif |
| |
| cpu_exec_realizefn(cs, &local_err); |
| if (local_err != NULL) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| arm_cpu_finalize_features(cpu, &local_err); |
| if (local_err != NULL) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| |
| #ifdef CONFIG_USER_ONLY |
| /* |
| * User mode relies on IC IVAU instructions to catch modification of |
| * dual-mapped code. |
| * |
| * Clear CTR_EL0.DIC to ensure that software that honors these flags uses |
| * IC IVAU even if the emulated processor does not normally require it. |
| */ |
| cpu->ctr = FIELD_DP64(cpu->ctr, CTR_EL0, DIC, 0); |
| #endif |
| |
| if (arm_feature(env, ARM_FEATURE_AARCH64) && |
| cpu->has_vfp != cpu->has_neon) { |
| /* |
| * This is an architectural requirement for AArch64; AArch32 is |
| * more flexible and permits VFP-no-Neon and Neon-no-VFP. |
| */ |
| error_setg(errp, |
| "AArch64 CPUs must have both VFP and Neon or neither"); |
| return; |
| } |
| |
| if (cpu->has_vfp_d32 != cpu->has_neon) { |
| error_setg(errp, "ARM CPUs must have both VFP-D32 and Neon or neither"); |
| return; |
| } |
| |
| if (!cpu->has_vfp_d32) { |
| uint32_t u; |
| |
| u = cpu->isar.mvfr0; |
| u = FIELD_DP32(u, MVFR0, SIMDREG, 1); /* 16 registers */ |
| cpu->isar.mvfr0 = u; |
| } |
| |
| if (!cpu->has_vfp) { |
| uint64_t t; |
| uint32_t u; |
| |
| t = cpu->isar.id_aa64isar1; |
| t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0); |
| cpu->isar.id_aa64isar1 = t; |
| |
| t = cpu->isar.id_aa64pfr0; |
| t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf); |
| cpu->isar.id_aa64pfr0 = t; |
| |
| u = cpu->isar.id_isar6; |
| u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0); |
| u = FIELD_DP32(u, ID_ISAR6, BF16, 0); |
| cpu->isar.id_isar6 = u; |
| |
| u = cpu->isar.mvfr0; |
| u = FIELD_DP32(u, MVFR0, FPSP, 0); |
| u = FIELD_DP32(u, MVFR0, FPDP, 0); |
| u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0); |
| u = FIELD_DP32(u, MVFR0, FPSQRT, 0); |
| u = FIELD_DP32(u, MVFR0, FPROUND, 0); |
| if (!arm_feature(env, ARM_FEATURE_M)) { |
| u = FIELD_DP32(u, MVFR0, FPTRAP, 0); |
| u = FIELD_DP32(u, MVFR0, FPSHVEC, 0); |
| } |
| cpu->isar.mvfr0 = u; |
| |
| u = cpu->isar.mvfr1; |
| u = FIELD_DP32(u, MVFR1, FPFTZ, 0); |
| u = FIELD_DP32(u, MVFR1, FPDNAN, 0); |
| u = FIELD_DP32(u, MVFR1, FPHP, 0); |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| u = FIELD_DP32(u, MVFR1, FP16, 0); |
| } |
| cpu->isar.mvfr1 = u; |
| |
| u = cpu->isar.mvfr2; |
| u = FIELD_DP32(u, MVFR2, FPMISC, 0); |
| cpu->isar.mvfr2 = u; |
| } |
| |
| if (!cpu->has_neon) { |
| uint64_t t; |
| uint32_t u; |
| |
| unset_feature(env, ARM_FEATURE_NEON); |
| |
| t = cpu->isar.id_aa64isar0; |
| t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0); |
| t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0); |
| t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0); |
| t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0); |
| t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0); |
| t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0); |
| t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0); |
| cpu->isar.id_aa64isar0 = t; |
| |
| t = cpu->isar.id_aa64isar1; |
| t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0); |
| t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0); |
| t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0); |
| cpu->isar.id_aa64isar1 = t; |
| |
| t = cpu->isar.id_aa64pfr0; |
| t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf); |
| cpu->isar.id_aa64pfr0 = t; |
| |
| u = cpu->isar.id_isar5; |
| u = FIELD_DP32(u, ID_ISAR5, AES, 0); |
| u = FIELD_DP32(u, ID_ISAR5, SHA1, 0); |
| u = FIELD_DP32(u, ID_ISAR5, SHA2, 0); |
| u = FIELD_DP32(u, ID_ISAR5, RDM, 0); |
| u = FIELD_DP32(u, ID_ISAR5, VCMA, 0); |
| cpu->isar.id_isar5 = u; |
| |
| u = cpu->isar.id_isar6; |
| u = FIELD_DP32(u, ID_ISAR6, DP, 0); |
| u = FIELD_DP32(u, ID_ISAR6, FHM, 0); |
| u = FIELD_DP32(u, ID_ISAR6, BF16, 0); |
| u = FIELD_DP32(u, ID_ISAR6, I8MM, 0); |
| cpu->isar.id_isar6 = u; |
| |
| if (!arm_feature(env, ARM_FEATURE_M)) { |
| u = cpu->isar.mvfr1; |
| u = FIELD_DP32(u, MVFR1, SIMDLS, 0); |
| u = FIELD_DP32(u, MVFR1, SIMDINT, 0); |
| u = FIELD_DP32(u, MVFR1, SIMDSP, 0); |
| u = FIELD_DP32(u, MVFR1, SIMDHP, 0); |
| cpu->isar.mvfr1 = u; |
| |
| u = cpu->isar.mvfr2; |
| u = FIELD_DP32(u, MVFR2, SIMDMISC, 0); |
| cpu->isar.mvfr2 = u; |
| } |
| } |
| |
| if (!cpu->has_neon && !cpu->has_vfp) { |
| uint64_t t; |
| uint32_t u; |
| |
| t = cpu->isar.id_aa64isar0; |
| t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0); |
| cpu->isar.id_aa64isar0 = t; |
| |
| t = cpu->isar.id_aa64isar1; |
| t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0); |
| cpu->isar.id_aa64isar1 = t; |
| |
| u = cpu->isar.mvfr0; |
| u = FIELD_DP32(u, MVFR0, SIMDREG, 0); |
| cpu->isar.mvfr0 = u; |
| |
| /* Despite the name, this field covers both VFP and Neon */ |
| u = cpu->isar.mvfr1; |
| u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0); |
| cpu->isar.mvfr1 = u; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) { |
| uint32_t u; |
| |
| unset_feature(env, ARM_FEATURE_THUMB_DSP); |
| |
| u = cpu->isar.id_isar1; |
| u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1); |
| cpu->isar.id_isar1 = u; |
| |
| u = cpu->isar.id_isar2; |
| u = FIELD_DP32(u, ID_ISAR2, MULTU, 1); |
| u = FIELD_DP32(u, ID_ISAR2, MULTS, 1); |
| cpu->isar.id_isar2 = u; |
| |
| u = cpu->isar.id_isar3; |
| u = FIELD_DP32(u, ID_ISAR3, SIMD, 1); |
| u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0); |
| cpu->isar.id_isar3 = u; |
| } |
| |
| |
| /* |
| * We rely on no XScale CPU having VFP so we can use the same bits in the |
| * TB flags field for VECSTRIDE and XSCALE_CPAR. |
| */ |
| assert(arm_feature(env, ARM_FEATURE_AARCH64) || |
| !cpu_isar_feature(aa32_vfp_simd, cpu) || |
| !arm_feature(env, ARM_FEATURE_XSCALE)); |
| |
| #ifndef CONFIG_USER_ONLY |
| { |
| int pagebits; |
| if (arm_feature(env, ARM_FEATURE_V7) && |
| !arm_feature(env, ARM_FEATURE_M) && |
| !arm_feature(env, ARM_FEATURE_PMSA)) { |
| /* |
| * v7VMSA drops support for the old ARMv5 tiny pages, |
| * so we can use 4K pages. |
| */ |
| pagebits = 12; |
| } else { |
| /* |
| * For CPUs which might have tiny 1K pages, or which have an |
| * MPU and might have small region sizes, stick with 1K pages. |
| */ |
| pagebits = 10; |
| } |
| if (!set_preferred_target_page_bits(pagebits)) { |
| /* |
| * This can only ever happen for hotplugging a CPU, or if |
| * the board code incorrectly creates a CPU which it has |
| * promised via minimum_page_size that it will not. |
| */ |
| error_setg(errp, "This CPU requires a smaller page size " |
| "than the system is using"); |
| return; |
| } |
| } |
| #endif |
| |
| /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it. |
| * We don't support setting cluster ID ([16..23]) (known as Aff2 |
| * in later ARM ARM versions), or any of the higher affinity level fields, |
| * so these bits always RAZ. |
| */ |
| if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) { |
| cpu->mp_affinity = arm_build_mp_affinity(cs->cpu_index, |
| ARM_DEFAULT_CPUS_PER_CLUSTER); |
| } |
| |
| if (cpu->reset_hivecs) { |
| cpu->reset_sctlr |= (1 << 13); |
| } |
| |
| if (cpu->cfgend) { |
| if (arm_feature(env, ARM_FEATURE_V7)) { |
| cpu->reset_sctlr |= SCTLR_EE; |
| } else { |
| cpu->reset_sctlr |= SCTLR_B; |
| } |
| } |
| |
| if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) { |
| /* If the has_el3 CPU property is disabled then we need to disable the |
| * feature. |
| */ |
| unset_feature(env, ARM_FEATURE_EL3); |
| |
| /* |
| * Disable the security extension feature bits in the processor |
| * feature registers as well. |
| */ |
| cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0); |
| cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0); |
| cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, |
| ID_AA64PFR0, EL3, 0); |
| |
| /* Disable the realm management extension, which requires EL3. */ |
| cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, |
| ID_AA64PFR0, RME, 0); |
| } |
| |
| if (!cpu->has_el2) { |
| unset_feature(env, ARM_FEATURE_EL2); |
| } |
| |
| if (!cpu->has_pmu) { |
| unset_feature(env, ARM_FEATURE_PMU); |
| } |
| if (arm_feature(env, ARM_FEATURE_PMU)) { |
| pmu_init(cpu); |
| |
| if (!kvm_enabled()) { |
| arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0); |
| arm_register_el_change_hook(cpu, &pmu_post_el_change, 0); |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb, |
| cpu); |
| #endif |
| } else { |
| cpu->isar.id_aa64dfr0 = |
| FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0); |
| cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0); |
| cpu->pmceid0 = 0; |
| cpu->pmceid1 = 0; |
| } |
| |
| if (!arm_feature(env, ARM_FEATURE_EL2)) { |
| /* |
| * Disable the hypervisor feature bits in the processor feature |
| * registers if we don't have EL2. |
| */ |
| cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0, |
| ID_AA64PFR0, EL2, 0); |
| cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, |
| ID_PFR1, VIRTUALIZATION, 0); |
| } |
| |
| if (cpu_isar_feature(aa64_mte, cpu)) { |
| /* |
| * The architectural range of GM blocksize is 2-6, however qemu |
| * doesn't support blocksize of 2 (see HELPER(ldgm)). |
| */ |
| if (tcg_enabled()) { |
| assert(cpu->gm_blocksize >= 3 && cpu->gm_blocksize <= 6); |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* |
| * If we do not have tag-memory provided by the machine, |
| * reduce MTE support to instructions enabled at EL0. |
| * This matches Cortex-A710 BROADCASTMTE input being LOW. |
| */ |
| if (cpu->tag_memory == NULL) { |
| cpu->isar.id_aa64pfr1 = |
| FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 1); |
| } |
| #endif |
| } |
| |
| if (tcg_enabled()) { |
| /* |
| * Don't report some architectural features in the ID registers |
| * where TCG does not yet implement it (not even a minimal |
| * stub version). This avoids guests falling over when they |
| * try to access the non-existent system registers for them. |
| */ |
| /* FEAT_SPE (Statistical Profiling Extension) */ |
| cpu->isar.id_aa64dfr0 = |
| FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMSVER, 0); |
| /* FEAT_TRBE (Trace Buffer Extension) */ |
| cpu->isar.id_aa64dfr0 = |
| FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEBUFFER, 0); |
| /* FEAT_TRF (Self-hosted Trace Extension) */ |
| cpu->isar.id_aa64dfr0 = |
| FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEFILT, 0); |
| cpu->isar.id_dfr0 = |
| FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, TRACEFILT, 0); |
| /* Trace Macrocell system register access */ |
| cpu->isar.id_aa64dfr0 = |
| FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, TRACEVER, 0); |
| cpu->isar.id_dfr0 = |
| FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPTRC, 0); |
| /* Memory mapped trace */ |
| cpu->isar.id_dfr0 = |
| FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, MMAPTRC, 0); |
| /* FEAT_AMU (Activity Monitors Extension) */ |
| cpu->isar.id_aa64pfr0 = |
| FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, AMU, 0); |
| cpu->isar.id_pfr0 = |
| FIELD_DP32(cpu->isar.id_pfr0, ID_PFR0, AMU, 0); |
| /* FEAT_MPAM (Memory Partitioning and Monitoring Extension) */ |
| cpu->isar.id_aa64pfr0 = |
| FIELD_DP64(cpu->isar.id_aa64pfr0, ID_AA64PFR0, MPAM, 0); |
| } |
| |
| /* MPU can be configured out of a PMSA CPU either by setting has-mpu |
| * to false or by setting pmsav7-dregion to 0. |
| */ |
| if (!cpu->has_mpu || cpu->pmsav7_dregion == 0) { |
| cpu->has_mpu = false; |
| cpu->pmsav7_dregion = 0; |
| cpu->pmsav8r_hdregion = 0; |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_PMSA) && |
| arm_feature(env, ARM_FEATURE_V7)) { |
| uint32_t nr = cpu->pmsav7_dregion; |
| |
| if (nr > 0xff) { |
| error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr); |
| return; |
| } |
| |
| if (nr) { |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| /* PMSAv8 */ |
| env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr); |
| env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr); |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr); |
| env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr); |
| } |
| } else { |
| env->pmsav7.drbar = g_new0(uint32_t, nr); |
| env->pmsav7.drsr = g_new0(uint32_t, nr); |
| env->pmsav7.dracr = g_new0(uint32_t, nr); |
| } |
| } |
| |
| if (cpu->pmsav8r_hdregion > 0xff) { |
| error_setg(errp, "PMSAv8 MPU EL2 #regions invalid %" PRIu32, |
| cpu->pmsav8r_hdregion); |
| return; |
| } |
| |
| if (cpu->pmsav8r_hdregion) { |
| env->pmsav8.hprbar = g_new0(uint32_t, |
| cpu->pmsav8r_hdregion); |
| env->pmsav8.hprlar = g_new0(uint32_t, |
| cpu->pmsav8r_hdregion); |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { |
| uint32_t nr = cpu->sau_sregion; |
| |
| if (nr > 0xff) { |
| error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr); |
| return; |
| } |
| |
| if (nr) { |
| env->sau.rbar = g_new0(uint32_t, nr); |
| env->sau.rlar = g_new0(uint32_t, nr); |
| } |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| set_feature(env, ARM_FEATURE_VBAR); |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| if (tcg_enabled() && cpu_isar_feature(aa64_rme, cpu)) { |
| arm_register_el_change_hook(cpu, >_rme_post_el_change, 0); |
| } |
| #endif |
| |
| register_cp_regs_for_features(cpu); |
| arm_cpu_register_gdb_regs_for_features(cpu); |
| |
| init_cpreg_list(cpu); |
| |
| #ifndef CONFIG_USER_ONLY |
| MachineState *ms = MACHINE(qdev_get_machine()); |
| unsigned int smp_cpus = ms->smp.cpus; |
| bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY); |
| |
| /* |
| * We must set cs->num_ases to the final value before |
| * the first call to cpu_address_space_init. |
| */ |
| if (cpu->tag_memory != NULL) { |
| cs->num_ases = 3 + has_secure; |
| } else { |
| cs->num_ases = 1 + has_secure; |
| } |
| |
| if (has_secure) { |
| if (!cpu->secure_memory) { |
| cpu->secure_memory = cs->memory; |
| } |
| cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory", |
| cpu->secure_memory); |
| } |
| |
| if (cpu->tag_memory != NULL) { |
| cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory", |
| cpu->tag_memory); |
| if (has_secure) { |
| cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory", |
| cpu->secure_tag_memory); |
| } |
| } |
| |
| cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory); |
| |
| /* No core_count specified, default to smp_cpus. */ |
| if (cpu->core_count == -1) { |
| cpu->core_count = smp_cpus; |
| } |
| #endif |
| |
| if (tcg_enabled()) { |
| int dcz_blocklen = 4 << cpu->dcz_blocksize; |
| |
| /* |
| * We only support DCZ blocklen that fits on one page. |
| * |
| * Architectually this is always true. However TARGET_PAGE_SIZE |
| * is variable and, for compatibility with -machine virt-2.7, |
| * is only 1KiB, as an artifact of legacy ARMv5 subpage support. |
| * But even then, while the largest architectural DCZ blocklen |
| * is 2KiB, no cpu actually uses such a large blocklen. |
| */ |
| assert(dcz_blocklen <= TARGET_PAGE_SIZE); |
| |
| /* |
| * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say |
| * both nibbles of each byte storing tag data may be written at once. |
| * Since TAG_GRANULE is 16, this means that blocklen must be >= 32. |
| */ |
| if (cpu_isar_feature(aa64_mte, cpu)) { |
| assert(dcz_blocklen >= 2 * TAG_GRANULE); |
| } |
| } |
| |
| qemu_init_vcpu(cs); |
| cpu_reset(cs); |
| |
| acc->parent_realize(dev, errp); |
| } |
| |
| static ObjectClass *arm_cpu_class_by_name(const char *cpu_model) |
| { |
| ObjectClass *oc; |
| char *typename; |
| char **cpuname; |
| const char *cpunamestr; |
| |
| cpuname = g_strsplit(cpu_model, ",", 1); |
| cpunamestr = cpuname[0]; |
| #ifdef CONFIG_USER_ONLY |
| /* For backwards compatibility usermode emulation allows "-cpu any", |
| * which has the same semantics as "-cpu max". |
| */ |
| if (!strcmp(cpunamestr, "any")) { |
| cpunamestr = "max"; |
| } |
| #endif |
| typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr); |
| oc = object_class_by_name(typename); |
| g_strfreev(cpuname); |
| g_free(typename); |
| |
| return oc; |
| } |
| |
| static Property arm_cpu_properties[] = { |
| DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0), |
| DEFINE_PROP_UINT64("mp-affinity", ARMCPU, |
| mp_affinity, ARM64_AFFINITY_INVALID), |
| DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID), |
| DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1), |
| DEFINE_PROP_END_OF_LIST() |
| }; |
| |
| static const gchar *arm_gdb_arch_name(CPUState *cs) |
| { |
| ARMCPU *cpu = ARM_CPU(cs); |
| CPUARMState *env = &cpu->env; |
| |
| if (arm_feature(env, ARM_FEATURE_IWMMXT)) { |
| return "iwmmxt"; |
| } |
| return "arm"; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| #include "hw/core/sysemu-cpu-ops.h" |
| |
| static const struct SysemuCPUOps arm_sysemu_ops = { |
| .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug, |
| .asidx_from_attrs = arm_asidx_from_attrs, |
| .write_elf32_note = arm_cpu_write_elf32_note, |
| .write_elf64_note = arm_cpu_write_elf64_note, |
| .virtio_is_big_endian = arm_cpu_virtio_is_big_endian, |
| .legacy_vmsd = &vmstate_arm_cpu, |
| }; |
| #endif |
| |
| #ifdef CONFIG_TCG |
| static const TCGCPUOps arm_tcg_ops = { |
| .initialize = arm_translate_init, |
| .synchronize_from_tb = arm_cpu_synchronize_from_tb, |
| .debug_excp_handler = arm_debug_excp_handler, |
| .restore_state_to_opc = arm_restore_state_to_opc, |
| |
| #ifdef CONFIG_USER_ONLY |
| .record_sigsegv = arm_cpu_record_sigsegv, |
| .record_sigbus = arm_cpu_record_sigbus, |
| #else |
| .tlb_fill = arm_cpu_tlb_fill, |
| .cpu_exec_interrupt = arm_cpu_exec_interrupt, |
| .do_interrupt = arm_cpu_do_interrupt, |
| .do_transaction_failed = arm_cpu_do_transaction_failed, |
| .do_unaligned_access = arm_cpu_do_unaligned_access, |
| .adjust_watchpoint_address = arm_adjust_watchpoint_address, |
| .debug_check_watchpoint = arm_debug_check_watchpoint, |
| .debug_check_breakpoint = arm_debug_check_breakpoint, |
| #endif /* !CONFIG_USER_ONLY */ |
| }; |
| #endif /* CONFIG_TCG */ |
| |
| static void arm_cpu_class_init(ObjectClass *oc, void *data) |
| { |
| ARMCPUClass *acc = ARM_CPU_CLASS(oc); |
| CPUClass *cc = CPU_CLASS(acc); |
| DeviceClass *dc = DEVICE_CLASS(oc); |
| ResettableClass *rc = RESETTABLE_CLASS(oc); |
| |
| device_class_set_parent_realize(dc, arm_cpu_realizefn, |
| &acc->parent_realize); |
| |
| device_class_set_props(dc, arm_cpu_properties); |
| |
| resettable_class_set_parent_phases(rc, NULL, arm_cpu_reset_hold, NULL, |
| &acc->parent_phases); |
| |
| cc->class_by_name = arm_cpu_class_by_name; |
| cc->has_work = arm_cpu_has_work; |
| cc->mmu_index = arm_cpu_mmu_index; |
| cc->dump_state = arm_cpu_dump_state; |
| cc->set_pc = arm_cpu_set_pc; |
| cc->get_pc = arm_cpu_get_pc; |
| cc->gdb_read_register = arm_cpu_gdb_read_register; |
| cc->gdb_write_register = arm_cpu_gdb_write_register; |
| #ifndef CONFIG_USER_ONLY |
| cc->sysemu_ops = &arm_sysemu_ops; |
| #endif |
| cc->gdb_arch_name = arm_gdb_arch_name; |
| cc->gdb_stop_before_watchpoint = true; |
| cc->disas_set_info = arm_disas_set_info; |
| |
| #ifdef CONFIG_TCG |
| cc->tcg_ops = &arm_tcg_ops; |
| #endif /* CONFIG_TCG */ |
| } |
| |
| static void arm_cpu_instance_init(Object *obj) |
| { |
| ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj); |
| |
| acc->info->initfn(obj); |
| arm_cpu_post_init(obj); |
| } |
| |
| static void cpu_register_class_init(ObjectClass *oc, void *data) |
| { |
| ARMCPUClass *acc = ARM_CPU_CLASS(oc); |
| CPUClass *cc = CPU_CLASS(acc); |
| |
| acc->info = data; |
| cc->gdb_core_xml_file = "arm-core.xml"; |
| } |
| |
| void arm_cpu_register(const ARMCPUInfo *info) |
| { |
| TypeInfo type_info = { |
| .parent = TYPE_ARM_CPU, |
| .instance_init = arm_cpu_instance_init, |
| .class_init = info->class_init ?: cpu_register_class_init, |
| .class_data = (void *)info, |
| }; |
| |
| type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name); |
| type_register(&type_info); |
| g_free((void *)type_info.name); |
| } |
| |
| static const TypeInfo arm_cpu_type_info = { |
| .name = TYPE_ARM_CPU, |
| .parent = TYPE_CPU, |
| .instance_size = sizeof(ARMCPU), |
| .instance_align = __alignof__(ARMCPU), |
| .instance_init = arm_cpu_initfn, |
| .instance_finalize = arm_cpu_finalizefn, |
| .abstract = true, |
| .class_size = sizeof(ARMCPUClass), |
| .class_init = arm_cpu_class_init, |
| }; |
| |
| static void arm_cpu_register_types(void) |
| { |
| type_register_static(&arm_cpu_type_info); |
| } |
| |
| type_init(arm_cpu_register_types) |