blob: 7abae3c8df1c6930dd72835fbf0f9fb1f5f1cca5 [file] [log] [blame]
/*
* QEMU monitor
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "monitor/monitor.h"
#include "monitor/hmp-target.h"
#include "monitor/hmp.h"
#include "qapi/qmp/qdict.h"
#include "sysemu/kvm.h"
#include "sysemu/sev.h"
#include "qapi/error.h"
#include "sev_i386.h"
#include "qapi/qapi-commands-misc-target.h"
#include "qapi/qapi-commands-misc.h"
/* Perform linear address sign extension */
static hwaddr addr_canonical(CPUArchState *env, hwaddr addr)
{
#ifdef TARGET_X86_64
if (env->cr[4] & CR4_LA57_MASK) {
if (addr & (1ULL << 56)) {
addr |= (hwaddr)-(1LL << 57);
}
} else {
if (addr & (1ULL << 47)) {
addr |= (hwaddr)-(1LL << 48);
}
}
#endif
return addr;
}
static void print_pte(Monitor *mon, CPUArchState *env, hwaddr addr,
hwaddr pte, hwaddr mask)
{
addr = addr_canonical(env, addr);
monitor_printf(mon, TARGET_FMT_plx ": " TARGET_FMT_plx
" %c%c%c%c%c%c%c%c%c\n",
addr,
pte & mask,
pte & PG_NX_MASK ? 'X' : '-',
pte & PG_GLOBAL_MASK ? 'G' : '-',
pte & PG_PSE_MASK ? 'P' : '-',
pte & PG_DIRTY_MASK ? 'D' : '-',
pte & PG_ACCESSED_MASK ? 'A' : '-',
pte & PG_PCD_MASK ? 'C' : '-',
pte & PG_PWT_MASK ? 'T' : '-',
pte & PG_USER_MASK ? 'U' : '-',
pte & PG_RW_MASK ? 'W' : '-');
}
static void tlb_info_32(Monitor *mon, CPUArchState *env)
{
unsigned int l1, l2;
uint32_t pgd, pde, pte;
pgd = env->cr[3] & ~0xfff;
for(l1 = 0; l1 < 1024; l1++) {
cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
pde = le32_to_cpu(pde);
if (pde & PG_PRESENT_MASK) {
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
/* 4M pages */
print_pte(mon, env, (l1 << 22), pde, ~((1 << 21) - 1));
} else {
for(l2 = 0; l2 < 1024; l2++) {
cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
pte = le32_to_cpu(pte);
if (pte & PG_PRESENT_MASK) {
print_pte(mon, env, (l1 << 22) + (l2 << 12),
pte & ~PG_PSE_MASK,
~0xfff);
}
}
}
}
}
}
static void tlb_info_pae32(Monitor *mon, CPUArchState *env)
{
unsigned int l1, l2, l3;
uint64_t pdpe, pde, pte;
uint64_t pdp_addr, pd_addr, pt_addr;
pdp_addr = env->cr[3] & ~0x1f;
for (l1 = 0; l1 < 4; l1++) {
cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
if (pdpe & PG_PRESENT_MASK) {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
pde = le64_to_cpu(pde);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
/* 2M pages with PAE, CR4.PSE is ignored */
print_pte(mon, env, (l1 << 30) + (l2 << 21), pde,
~((hwaddr)(1 << 20) - 1));
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
pte = le64_to_cpu(pte);
if (pte & PG_PRESENT_MASK) {
print_pte(mon, env, (l1 << 30) + (l2 << 21)
+ (l3 << 12),
pte & ~PG_PSE_MASK,
~(hwaddr)0xfff);
}
}
}
}
}
}
}
}
#ifdef TARGET_X86_64
static void tlb_info_la48(Monitor *mon, CPUArchState *env,
uint64_t l0, uint64_t pml4_addr)
{
uint64_t l1, l2, l3, l4;
uint64_t pml4e, pdpe, pde, pte;
uint64_t pdp_addr, pd_addr, pt_addr;
for (l1 = 0; l1 < 512; l1++) {
cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
pml4e = le64_to_cpu(pml4e);
if (!(pml4e & PG_PRESENT_MASK)) {
continue;
}
pdp_addr = pml4e & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
if (!(pdpe & PG_PRESENT_MASK)) {
continue;
}
if (pdpe & PG_PSE_MASK) {
/* 1G pages, CR4.PSE is ignored */
print_pte(mon, env, (l0 << 48) + (l1 << 39) + (l2 << 30),
pdpe, 0x3ffffc0000000ULL);
continue;
}
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
pde = le64_to_cpu(pde);
if (!(pde & PG_PRESENT_MASK)) {
continue;
}
if (pde & PG_PSE_MASK) {
/* 2M pages, CR4.PSE is ignored */
print_pte(mon, env, (l0 << 48) + (l1 << 39) + (l2 << 30) +
(l3 << 21), pde, 0x3ffffffe00000ULL);
continue;
}
pt_addr = pde & 0x3fffffffff000ULL;
for (l4 = 0; l4 < 512; l4++) {
cpu_physical_memory_read(pt_addr
+ l4 * 8,
&pte, 8);
pte = le64_to_cpu(pte);
if (pte & PG_PRESENT_MASK) {
print_pte(mon, env, (l0 << 48) + (l1 << 39) +
(l2 << 30) + (l3 << 21) + (l4 << 12),
pte & ~PG_PSE_MASK, 0x3fffffffff000ULL);
}
}
}
}
}
}
static void tlb_info_la57(Monitor *mon, CPUArchState *env)
{
uint64_t l0;
uint64_t pml5e;
uint64_t pml5_addr;
pml5_addr = env->cr[3] & 0x3fffffffff000ULL;
for (l0 = 0; l0 < 512; l0++) {
cpu_physical_memory_read(pml5_addr + l0 * 8, &pml5e, 8);
pml5e = le64_to_cpu(pml5e);
if (pml5e & PG_PRESENT_MASK) {
tlb_info_la48(mon, env, l0, pml5e & 0x3fffffffff000ULL);
}
}
}
#endif /* TARGET_X86_64 */
void hmp_info_tlb(Monitor *mon, const QDict *qdict)
{
CPUArchState *env;
env = mon_get_cpu_env();
if (!env) {
monitor_printf(mon, "No CPU available\n");
return;
}
if (!(env->cr[0] & CR0_PG_MASK)) {
monitor_printf(mon, "PG disabled\n");
return;
}
if (env->cr[4] & CR4_PAE_MASK) {
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
if (env->cr[4] & CR4_LA57_MASK) {
tlb_info_la57(mon, env);
} else {
tlb_info_la48(mon, env, 0, env->cr[3] & 0x3fffffffff000ULL);
}
} else
#endif
{
tlb_info_pae32(mon, env);
}
} else {
tlb_info_32(mon, env);
}
}
static void mem_print(Monitor *mon, CPUArchState *env,
hwaddr *pstart, int *plast_prot,
hwaddr end, int prot)
{
int prot1;
prot1 = *plast_prot;
if (prot != prot1) {
if (*pstart != -1) {
monitor_printf(mon, TARGET_FMT_plx "-" TARGET_FMT_plx " "
TARGET_FMT_plx " %c%c%c\n",
addr_canonical(env, *pstart),
addr_canonical(env, end),
addr_canonical(env, end - *pstart),
prot1 & PG_USER_MASK ? 'u' : '-',
'r',
prot1 & PG_RW_MASK ? 'w' : '-');
}
if (prot != 0)
*pstart = end;
else
*pstart = -1;
*plast_prot = prot;
}
}
static void mem_info_32(Monitor *mon, CPUArchState *env)
{
unsigned int l1, l2;
int prot, last_prot;
uint32_t pgd, pde, pte;
hwaddr start, end;
pgd = env->cr[3] & ~0xfff;
last_prot = 0;
start = -1;
for(l1 = 0; l1 < 1024; l1++) {
cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
pde = le32_to_cpu(pde);
end = l1 << 22;
if (pde & PG_PRESENT_MASK) {
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
mem_print(mon, env, &start, &last_prot, end, prot);
} else {
for(l2 = 0; l2 < 1024; l2++) {
cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
pte = le32_to_cpu(pte);
end = (l1 << 22) + (l2 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & pde &
(PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
} else {
prot = 0;
}
mem_print(mon, env, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, env, &start, &last_prot, end, prot);
}
}
/* Flush last range */
mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 32, 0);
}
static void mem_info_pae32(Monitor *mon, CPUArchState *env)
{
unsigned int l1, l2, l3;
int prot, last_prot;
uint64_t pdpe, pde, pte;
uint64_t pdp_addr, pd_addr, pt_addr;
hwaddr start, end;
pdp_addr = env->cr[3] & ~0x1f;
last_prot = 0;
start = -1;
for (l1 = 0; l1 < 4; l1++) {
cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
end = l1 << 30;
if (pdpe & PG_PRESENT_MASK) {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
pde = le64_to_cpu(pde);
end = (l1 << 30) + (l2 << 21);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
prot = pde & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
mem_print(mon, env, &start, &last_prot, end, prot);
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
pte = le64_to_cpu(pte);
end = (l1 << 30) + (l2 << 21) + (l3 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & pde & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
} else {
prot = 0;
}
mem_print(mon, env, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, env, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, env, &start, &last_prot, end, prot);
}
}
/* Flush last range */
mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 32, 0);
}
#ifdef TARGET_X86_64
static void mem_info_la48(Monitor *mon, CPUArchState *env)
{
int prot, last_prot;
uint64_t l1, l2, l3, l4;
uint64_t pml4e, pdpe, pde, pte;
uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr, start, end;
pml4_addr = env->cr[3] & 0x3fffffffff000ULL;
last_prot = 0;
start = -1;
for (l1 = 0; l1 < 512; l1++) {
cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
pml4e = le64_to_cpu(pml4e);
end = l1 << 39;
if (pml4e & PG_PRESENT_MASK) {
pdp_addr = pml4e & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
end = (l1 << 39) + (l2 << 30);
if (pdpe & PG_PRESENT_MASK) {
if (pdpe & PG_PSE_MASK) {
prot = pdpe & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml4e;
mem_print(mon, env, &start, &last_prot, end, prot);
} else {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
pde = le64_to_cpu(pde);
end = (l1 << 39) + (l2 << 30) + (l3 << 21);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
prot = pde & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml4e & pdpe;
mem_print(mon, env, &start,
&last_prot, end, prot);
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l4 = 0; l4 < 512; l4++) {
cpu_physical_memory_read(pt_addr
+ l4 * 8,
&pte, 8);
pte = le64_to_cpu(pte);
end = (l1 << 39) + (l2 << 30) +
(l3 << 21) + (l4 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml4e & pdpe & pde;
} else {
prot = 0;
}
mem_print(mon, env, &start,
&last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, env, &start,
&last_prot, end, prot);
}
}
}
} else {
prot = 0;
mem_print(mon, env, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, env, &start, &last_prot, end, prot);
}
}
/* Flush last range */
mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 48, 0);
}
static void mem_info_la57(Monitor *mon, CPUArchState *env)
{
int prot, last_prot;
uint64_t l0, l1, l2, l3, l4;
uint64_t pml5e, pml4e, pdpe, pde, pte;
uint64_t pml5_addr, pml4_addr, pdp_addr, pd_addr, pt_addr, start, end;
pml5_addr = env->cr[3] & 0x3fffffffff000ULL;
last_prot = 0;
start = -1;
for (l0 = 0; l0 < 512; l0++) {
cpu_physical_memory_read(pml5_addr + l0 * 8, &pml5e, 8);
pml5e = le64_to_cpu(pml5e);
end = l0 << 48;
if (!(pml5e & PG_PRESENT_MASK)) {
prot = 0;
mem_print(mon, env, &start, &last_prot, end, prot);
continue;
}
pml4_addr = pml5e & 0x3fffffffff000ULL;
for (l1 = 0; l1 < 512; l1++) {
cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
pml4e = le64_to_cpu(pml4e);
end = (l0 << 48) + (l1 << 39);
if (!(pml4e & PG_PRESENT_MASK)) {
prot = 0;
mem_print(mon, env, &start, &last_prot, end, prot);
continue;
}
pdp_addr = pml4e & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
end = (l0 << 48) + (l1 << 39) + (l2 << 30);
if (pdpe & PG_PRESENT_MASK) {
prot = 0;
mem_print(mon, env, &start, &last_prot, end, prot);
continue;
}
if (pdpe & PG_PSE_MASK) {
prot = pdpe & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml5e & pml4e;
mem_print(mon, env, &start, &last_prot, end, prot);
continue;
}
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
pde = le64_to_cpu(pde);
end = (l0 << 48) + (l1 << 39) + (l2 << 30) + (l3 << 21);
if (pde & PG_PRESENT_MASK) {
prot = 0;
mem_print(mon, env, &start, &last_prot, end, prot);
continue;
}
if (pde & PG_PSE_MASK) {
prot = pde & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml5e & pml4e & pdpe;
mem_print(mon, env, &start, &last_prot, end, prot);
continue;
}
pt_addr = pde & 0x3fffffffff000ULL;
for (l4 = 0; l4 < 512; l4++) {
cpu_physical_memory_read(pt_addr + l4 * 8, &pte, 8);
pte = le64_to_cpu(pte);
end = (l0 << 48) + (l1 << 39) + (l2 << 30) +
(l3 << 21) + (l4 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml5e & pml4e & pdpe & pde;
} else {
prot = 0;
}
mem_print(mon, env, &start, &last_prot, end, prot);
}
}
}
}
}
/* Flush last range */
mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 57, 0);
}
#endif /* TARGET_X86_64 */
void hmp_info_mem(Monitor *mon, const QDict *qdict)
{
CPUArchState *env;
env = mon_get_cpu_env();
if (!env) {
monitor_printf(mon, "No CPU available\n");
return;
}
if (!(env->cr[0] & CR0_PG_MASK)) {
monitor_printf(mon, "PG disabled\n");
return;
}
if (env->cr[4] & CR4_PAE_MASK) {
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
if (env->cr[4] & CR4_LA57_MASK) {
mem_info_la57(mon, env);
} else {
mem_info_la48(mon, env);
}
} else
#endif
{
mem_info_pae32(mon, env);
}
} else {
mem_info_32(mon, env);
}
}
void hmp_mce(Monitor *mon, const QDict *qdict)
{
X86CPU *cpu;
CPUState *cs;
int cpu_index = qdict_get_int(qdict, "cpu_index");
int bank = qdict_get_int(qdict, "bank");
uint64_t status = qdict_get_int(qdict, "status");
uint64_t mcg_status = qdict_get_int(qdict, "mcg_status");
uint64_t addr = qdict_get_int(qdict, "addr");
uint64_t misc = qdict_get_int(qdict, "misc");
int flags = MCE_INJECT_UNCOND_AO;
if (qdict_get_try_bool(qdict, "broadcast", false)) {
flags |= MCE_INJECT_BROADCAST;
}
cs = qemu_get_cpu(cpu_index);
if (cs != NULL) {
cpu = X86_CPU(cs);
cpu_x86_inject_mce(mon, cpu, bank, status, mcg_status, addr, misc,
flags);
}
}
static target_long monitor_get_pc(const struct MonitorDef *md, int val)
{
CPUArchState *env = mon_get_cpu_env();
return env->eip + env->segs[R_CS].base;
}
const MonitorDef monitor_defs[] = {
#define SEG(name, seg) \
{ name, offsetof(CPUX86State, segs[seg].selector), NULL, MD_I32 },\
{ name ".base", offsetof(CPUX86State, segs[seg].base) },\
{ name ".limit", offsetof(CPUX86State, segs[seg].limit), NULL, MD_I32 },
{ "eax", offsetof(CPUX86State, regs[0]) },
{ "ecx", offsetof(CPUX86State, regs[1]) },
{ "edx", offsetof(CPUX86State, regs[2]) },
{ "ebx", offsetof(CPUX86State, regs[3]) },
{ "esp|sp", offsetof(CPUX86State, regs[4]) },
{ "ebp|fp", offsetof(CPUX86State, regs[5]) },
{ "esi", offsetof(CPUX86State, regs[6]) },
{ "edi", offsetof(CPUX86State, regs[7]) },
#ifdef TARGET_X86_64
{ "r8", offsetof(CPUX86State, regs[8]) },
{ "r9", offsetof(CPUX86State, regs[9]) },
{ "r10", offsetof(CPUX86State, regs[10]) },
{ "r11", offsetof(CPUX86State, regs[11]) },
{ "r12", offsetof(CPUX86State, regs[12]) },
{ "r13", offsetof(CPUX86State, regs[13]) },
{ "r14", offsetof(CPUX86State, regs[14]) },
{ "r15", offsetof(CPUX86State, regs[15]) },
#endif
{ "eflags", offsetof(CPUX86State, eflags) },
{ "eip", offsetof(CPUX86State, eip) },
SEG("cs", R_CS)
SEG("ds", R_DS)
SEG("es", R_ES)
SEG("ss", R_SS)
SEG("fs", R_FS)
SEG("gs", R_GS)
{ "pc", 0, monitor_get_pc, },
{ NULL },
};
const MonitorDef *target_monitor_defs(void)
{
return monitor_defs;
}
void hmp_info_local_apic(Monitor *mon, const QDict *qdict)
{
CPUState *cs;
if (qdict_haskey(qdict, "apic-id")) {
int id = qdict_get_try_int(qdict, "apic-id", 0);
cs = cpu_by_arch_id(id);
} else {
cs = mon_get_cpu();
}
if (!cs) {
monitor_printf(mon, "No CPU available\n");
return;
}
x86_cpu_dump_local_apic_state(cs, CPU_DUMP_FPU);
}
void hmp_info_io_apic(Monitor *mon, const QDict *qdict)
{
monitor_printf(mon, "This command is obsolete and will be "
"removed soon. Please use 'info pic' instead.\n");
}
SevInfo *qmp_query_sev(Error **errp)
{
SevInfo *info;
info = sev_get_info();
if (!info) {
error_setg(errp, "SEV feature is not available");
return NULL;
}
return info;
}
void hmp_info_sev(Monitor *mon, const QDict *qdict)
{
SevInfo *info = sev_get_info();
if (info && info->enabled) {
monitor_printf(mon, "handle: %d\n", info->handle);
monitor_printf(mon, "state: %s\n", SevState_str(info->state));
monitor_printf(mon, "build: %d\n", info->build_id);
monitor_printf(mon, "api version: %d.%d\n",
info->api_major, info->api_minor);
monitor_printf(mon, "debug: %s\n",
info->policy & SEV_POLICY_NODBG ? "off" : "on");
monitor_printf(mon, "key-sharing: %s\n",
info->policy & SEV_POLICY_NOKS ? "off" : "on");
} else {
monitor_printf(mon, "SEV is not enabled\n");
}
qapi_free_SevInfo(info);
}
SevLaunchMeasureInfo *qmp_query_sev_launch_measure(Error **errp)
{
char *data;
SevLaunchMeasureInfo *info;
data = sev_get_launch_measurement();
if (!data) {
error_setg(errp, "Measurement is not available");
return NULL;
}
info = g_malloc0(sizeof(*info));
info->data = data;
return info;
}
SevCapability *qmp_query_sev_capabilities(Error **errp)
{
return sev_get_capabilities(errp);
}