|  | /* | 
|  | * Memory Device Interface | 
|  | * | 
|  | * Copyright ProfitBricks GmbH 2012 | 
|  | * Copyright (C) 2014 Red Hat Inc | 
|  | * Copyright (c) 2018 Red Hat Inc | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
|  | * See the COPYING file in the top-level directory. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/error-report.h" | 
|  | #include "hw/mem/memory-device.h" | 
|  | #include "qapi/error.h" | 
|  | #include "hw/boards.h" | 
|  | #include "qemu/range.h" | 
|  | #include "hw/virtio/vhost.h" | 
|  | #include "system/kvm.h" | 
|  | #include "system/address-spaces.h" | 
|  | #include "trace.h" | 
|  |  | 
|  | static bool memory_device_is_empty(const MemoryDeviceState *md) | 
|  | { | 
|  | const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); | 
|  | Error *local_err = NULL; | 
|  | MemoryRegion *mr; | 
|  |  | 
|  | /* dropping const here is fine as we don't touch the memory region */ | 
|  | mr = mdc->get_memory_region((MemoryDeviceState *)md, &local_err); | 
|  | if (local_err) { | 
|  | /* Not empty, we'll report errors later when containing the MR again. */ | 
|  | error_free(local_err); | 
|  | return false; | 
|  | } | 
|  | return !mr; | 
|  | } | 
|  |  | 
|  | static gint memory_device_addr_sort(gconstpointer a, gconstpointer b) | 
|  | { | 
|  | const MemoryDeviceState *md_a = MEMORY_DEVICE(a); | 
|  | const MemoryDeviceState *md_b = MEMORY_DEVICE(b); | 
|  | const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a); | 
|  | const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b); | 
|  | const uint64_t addr_a = mdc_a->get_addr(md_a); | 
|  | const uint64_t addr_b = mdc_b->get_addr(md_b); | 
|  |  | 
|  | if (addr_a > addr_b) { | 
|  | return 1; | 
|  | } else if (addr_a < addr_b) { | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int memory_device_build_list(Object *obj, void *opaque) | 
|  | { | 
|  | GSList **list = opaque; | 
|  |  | 
|  | if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) { | 
|  | DeviceState *dev = DEVICE(obj); | 
|  | if (dev->realized) { /* only realized memory devices matter */ | 
|  | *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort); | 
|  | } | 
|  | } | 
|  |  | 
|  | object_child_foreach(obj, memory_device_build_list, opaque); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int memory_device_get_memslots(MemoryDeviceState *md) | 
|  | { | 
|  | const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); | 
|  |  | 
|  | if (mdc->get_memslots) { | 
|  | return mdc->get_memslots(md); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Memslots that are reserved by memory devices (required but still reported | 
|  | * as free from KVM / vhost). | 
|  | */ | 
|  | static unsigned int get_reserved_memslots(MachineState *ms) | 
|  | { | 
|  | if (ms->device_memory->used_memslots > | 
|  | ms->device_memory->required_memslots) { | 
|  | /* This is unexpected, and we warned already in the memory notifier. */ | 
|  | return 0; | 
|  | } | 
|  | return ms->device_memory->required_memslots - | 
|  | ms->device_memory->used_memslots; | 
|  | } | 
|  |  | 
|  | unsigned int memory_devices_get_reserved_memslots(void) | 
|  | { | 
|  | if (!current_machine->device_memory) { | 
|  | return 0; | 
|  | } | 
|  | return get_reserved_memslots(current_machine); | 
|  | } | 
|  |  | 
|  | bool memory_devices_memslot_auto_decision_active(void) | 
|  | { | 
|  | if (!current_machine->device_memory) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return current_machine->device_memory->memslot_auto_decision_active; | 
|  | } | 
|  |  | 
|  | static unsigned int memory_device_memslot_decision_limit(MachineState *ms, | 
|  | MemoryRegion *mr) | 
|  | { | 
|  | const unsigned int reserved = get_reserved_memslots(ms); | 
|  | const uint64_t size = memory_region_size(mr); | 
|  | unsigned int max = vhost_get_max_memslots(); | 
|  | unsigned int free = vhost_get_free_memslots(); | 
|  | uint64_t available_space; | 
|  | unsigned int memslots; | 
|  |  | 
|  | if (kvm_enabled()) { | 
|  | max = MIN(max, kvm_get_max_memslots()); | 
|  | free = MIN(free, kvm_get_free_memslots()); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we only have less overall memslots than what we consider reasonable, | 
|  | * just keep it to a minimum. | 
|  | */ | 
|  | if (max < MEMORY_DEVICES_SAFE_MAX_MEMSLOTS) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Consider our soft-limit across all memory devices. We don't really | 
|  | * expect to exceed this limit in reasonable configurations. | 
|  | */ | 
|  | if (MEMORY_DEVICES_SOFT_MEMSLOT_LIMIT <= | 
|  | ms->device_memory->required_memslots) { | 
|  | return 1; | 
|  | } | 
|  | memslots = MEMORY_DEVICES_SOFT_MEMSLOT_LIMIT - | 
|  | ms->device_memory->required_memslots; | 
|  |  | 
|  | /* | 
|  | * Consider the actually still free memslots. This is only relevant if | 
|  | * other memslot consumers would consume *significantly* more memslots than | 
|  | * what we prepared for (> 253). Unlikely, but let's just handle it | 
|  | * cleanly. | 
|  | */ | 
|  | memslots = MIN(memslots, free - reserved); | 
|  | if (memslots < 1 || unlikely(free < reserved)) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* We cannot have any other memory devices? So give all to this device. */ | 
|  | if (size == ms->maxram_size - ms->ram_size) { | 
|  | return memslots; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Simple heuristic: equally distribute the memslots over the space | 
|  | * still available for memory devices. | 
|  | */ | 
|  | available_space = ms->maxram_size - ms->ram_size - | 
|  | ms->device_memory->used_region_size; | 
|  | memslots = (double)memslots * size / available_space; | 
|  | return memslots < 1 ? 1 : memslots; | 
|  | } | 
|  |  | 
|  | static void memory_device_check_addable(MachineState *ms, MemoryDeviceState *md, | 
|  | MemoryRegion *mr, Error **errp) | 
|  | { | 
|  | const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); | 
|  | const uint64_t used_region_size = ms->device_memory->used_region_size; | 
|  | const uint64_t size = memory_region_size(mr); | 
|  | const unsigned int reserved_memslots = get_reserved_memslots(ms); | 
|  | unsigned int required_memslots, memslot_limit; | 
|  |  | 
|  | /* | 
|  | * Instruct the device to decide how many memslots to use, if applicable, | 
|  | * before we query the number of required memslots the first time. | 
|  | */ | 
|  | if (mdc->decide_memslots) { | 
|  | memslot_limit = memory_device_memslot_decision_limit(ms, mr); | 
|  | mdc->decide_memslots(md, memslot_limit); | 
|  | } | 
|  | required_memslots = memory_device_get_memslots(md); | 
|  |  | 
|  | /* we will need memory slots for kvm and vhost */ | 
|  | if (kvm_enabled() && | 
|  | kvm_get_free_memslots() < required_memslots + reserved_memslots) { | 
|  | error_setg(errp, "hypervisor has not enough free memory slots left"); | 
|  | return; | 
|  | } | 
|  | if (vhost_get_free_memslots() < required_memslots + reserved_memslots) { | 
|  | error_setg(errp, "a used vhost backend has not enough free memory slots left"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* will we exceed the total amount of memory specified */ | 
|  | if (used_region_size + size < used_region_size || | 
|  | used_region_size + size > ms->maxram_size - ms->ram_size) { | 
|  | error_setg(errp, "not enough space, currently 0x%" PRIx64 | 
|  | " in use of total space for memory devices 0x" RAM_ADDR_FMT, | 
|  | used_region_size, ms->maxram_size - ms->ram_size); | 
|  | return; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static uint64_t memory_device_get_free_addr(MachineState *ms, | 
|  | const uint64_t *hint, | 
|  | uint64_t align, uint64_t size, | 
|  | Error **errp) | 
|  | { | 
|  | GSList *list = NULL, *item; | 
|  | Range as, new = range_empty; | 
|  |  | 
|  | range_init_nofail(&as, ms->device_memory->base, | 
|  | memory_region_size(&ms->device_memory->mr)); | 
|  |  | 
|  | /* start of address space indicates the maximum alignment we expect */ | 
|  | if (!QEMU_IS_ALIGNED(range_lob(&as), align)) { | 
|  | warn_report("the alignment (0x%" PRIx64 ") exceeds the expected" | 
|  | " maximum alignment, memory will get fragmented and not" | 
|  | " all 'maxmem' might be usable for memory devices.", | 
|  | align); | 
|  | } | 
|  |  | 
|  | if (hint && !QEMU_IS_ALIGNED(*hint, align)) { | 
|  | error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes", | 
|  | align); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (hint) { | 
|  | if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) { | 
|  | error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64 | 
|  | "], usable range for memory devices [0x%" PRIx64 ":0x%" | 
|  | PRIx64 "]", *hint, size, range_lob(&as), | 
|  | range_size(&as)); | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | if (range_init(&new, QEMU_ALIGN_UP(range_lob(&as), align), size)) { | 
|  | error_setg(errp, "can't add memory device, device too big"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* find address range that will fit new memory device */ | 
|  | object_child_foreach(OBJECT(ms), memory_device_build_list, &list); | 
|  | for (item = list; item; item = g_slist_next(item)) { | 
|  | const MemoryDeviceState *md = item->data; | 
|  | const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md)); | 
|  | uint64_t next_addr; | 
|  | Range tmp; | 
|  |  | 
|  | if (memory_device_is_empty(md)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | range_init_nofail(&tmp, mdc->get_addr(md), | 
|  | memory_device_get_region_size(md, &error_abort)); | 
|  |  | 
|  | if (range_overlaps_range(&tmp, &new)) { | 
|  | if (hint) { | 
|  | const DeviceState *d = DEVICE(md); | 
|  | error_setg(errp, "address range conflicts with memory device" | 
|  | " id='%s'", d->id ? d->id : "(unnamed)"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align); | 
|  | if (!next_addr || range_init(&new, next_addr, range_size(&new))) { | 
|  | range_make_empty(&new); | 
|  | break; | 
|  | } | 
|  | } else if (range_lob(&tmp) > range_upb(&new)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!range_contains_range(&as, &new)) { | 
|  | error_setg(errp, "could not find position in guest address space for " | 
|  | "memory device - memory fragmented due to alignments"); | 
|  | } | 
|  | out: | 
|  | g_slist_free(list); | 
|  | return range_lob(&new); | 
|  | } | 
|  |  | 
|  | MemoryDeviceInfoList *qmp_memory_device_list(void) | 
|  | { | 
|  | GSList *devices = NULL, *item; | 
|  | MemoryDeviceInfoList *list = NULL, **tail = &list; | 
|  |  | 
|  | object_child_foreach(qdev_get_machine(), memory_device_build_list, | 
|  | &devices); | 
|  |  | 
|  | for (item = devices; item; item = g_slist_next(item)) { | 
|  | const MemoryDeviceState *md = MEMORY_DEVICE(item->data); | 
|  | const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data); | 
|  | MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1); | 
|  |  | 
|  | /* Let's query infotmation even for empty memory devices. */ | 
|  | mdc->fill_device_info(md, info); | 
|  |  | 
|  | QAPI_LIST_APPEND(tail, info); | 
|  | } | 
|  |  | 
|  | g_slist_free(devices); | 
|  |  | 
|  | return list; | 
|  | } | 
|  |  | 
|  | static int memory_device_plugged_size(Object *obj, void *opaque) | 
|  | { | 
|  | uint64_t *size = opaque; | 
|  |  | 
|  | if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) { | 
|  | const DeviceState *dev = DEVICE(obj); | 
|  | const MemoryDeviceState *md = MEMORY_DEVICE(obj); | 
|  | const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj); | 
|  |  | 
|  | if (dev->realized && !memory_device_is_empty(md)) { | 
|  | *size += mdc->get_plugged_size(md, &error_abort); | 
|  | } | 
|  | } | 
|  |  | 
|  | object_child_foreach(obj, memory_device_plugged_size, opaque); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint64_t get_plugged_memory_size(void) | 
|  | { | 
|  | uint64_t size = 0; | 
|  |  | 
|  | memory_device_plugged_size(qdev_get_machine(), &size); | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  | void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms, | 
|  | Error **errp) | 
|  | { | 
|  | const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); | 
|  | Error *local_err = NULL; | 
|  | uint64_t addr, align = 0; | 
|  | MemoryRegion *mr; | 
|  |  | 
|  | /* We support empty memory devices even without device memory. */ | 
|  | if (memory_device_is_empty(md)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!ms->device_memory) { | 
|  | error_setg(errp, "the configuration is not prepared for memory devices" | 
|  | " (e.g., for memory hotplug), consider specifying the" | 
|  | " maxmem option"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | mr = mdc->get_memory_region(md, &local_err); | 
|  | if (local_err) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | memory_device_check_addable(ms, md, mr, &local_err); | 
|  | if (local_err) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We always want the memory region size to be multiples of the memory | 
|  | * region alignment: for example, DIMMs with 1G+1byte size don't make | 
|  | * any sense. Note that we don't check that the size is multiples | 
|  | * of any additional alignment requirements the memory device might | 
|  | * have when it comes to the address in physical address space. | 
|  | */ | 
|  | if (!QEMU_IS_ALIGNED(memory_region_size(mr), | 
|  | memory_region_get_alignment(mr))) { | 
|  | error_setg(errp, "backend memory size must be multiple of 0x%" | 
|  | PRIx64, memory_region_get_alignment(mr)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (mdc->get_min_alignment) { | 
|  | align = mdc->get_min_alignment(md); | 
|  | } | 
|  | align = MAX(align, memory_region_get_alignment(mr)); | 
|  | addr = mdc->get_addr(md); | 
|  | addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align, | 
|  | memory_region_size(mr), &local_err); | 
|  | if (local_err) { | 
|  | goto out; | 
|  | } | 
|  | mdc->set_addr(md, addr, &local_err); | 
|  | if (!local_err) { | 
|  | trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "", | 
|  | addr); | 
|  | } | 
|  | out: | 
|  | error_propagate(errp, local_err); | 
|  | } | 
|  |  | 
|  | void memory_device_plug(MemoryDeviceState *md, MachineState *ms) | 
|  | { | 
|  | const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); | 
|  | unsigned int memslots; | 
|  | uint64_t addr; | 
|  | MemoryRegion *mr; | 
|  |  | 
|  | if (memory_device_is_empty(md)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | memslots = memory_device_get_memslots(md); | 
|  | addr = mdc->get_addr(md); | 
|  |  | 
|  | /* | 
|  | * We expect that a previous call to memory_device_pre_plug() succeeded, so | 
|  | * it can't fail at this point. | 
|  | */ | 
|  | mr = mdc->get_memory_region(md, &error_abort); | 
|  | g_assert(ms->device_memory); | 
|  |  | 
|  | ms->device_memory->used_region_size += memory_region_size(mr); | 
|  | ms->device_memory->required_memslots += memslots; | 
|  | if (mdc->decide_memslots && memslots > 1) { | 
|  | ms->device_memory->memslot_auto_decision_active++; | 
|  | } | 
|  |  | 
|  | memory_region_add_subregion(&ms->device_memory->mr, | 
|  | addr - ms->device_memory->base, mr); | 
|  | trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr); | 
|  | } | 
|  |  | 
|  | void memory_device_unplug(MemoryDeviceState *md, MachineState *ms) | 
|  | { | 
|  | const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); | 
|  | const unsigned int memslots = memory_device_get_memslots(md); | 
|  | MemoryRegion *mr; | 
|  |  | 
|  | if (memory_device_is_empty(md)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We expect that a previous call to memory_device_pre_plug() succeeded, so | 
|  | * it can't fail at this point. | 
|  | */ | 
|  | mr = mdc->get_memory_region(md, &error_abort); | 
|  | g_assert(ms->device_memory); | 
|  |  | 
|  | memory_region_del_subregion(&ms->device_memory->mr, mr); | 
|  |  | 
|  | if (mdc->decide_memslots && memslots > 1) { | 
|  | ms->device_memory->memslot_auto_decision_active--; | 
|  | } | 
|  | ms->device_memory->used_region_size -= memory_region_size(mr); | 
|  | ms->device_memory->required_memslots -= memslots; | 
|  | trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "", | 
|  | mdc->get_addr(md)); | 
|  | } | 
|  |  | 
|  | uint64_t memory_device_get_region_size(const MemoryDeviceState *md, | 
|  | Error **errp) | 
|  | { | 
|  | const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); | 
|  | MemoryRegion *mr; | 
|  |  | 
|  | /* dropping const here is fine as we don't touch the memory region */ | 
|  | mr = mdc->get_memory_region((MemoryDeviceState *)md, errp); | 
|  | if (!mr) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return memory_region_size(mr); | 
|  | } | 
|  |  | 
|  | static void memory_devices_region_mod(MemoryListener *listener, | 
|  | MemoryRegionSection *mrs, bool add) | 
|  | { | 
|  | DeviceMemoryState *dms = container_of(listener, DeviceMemoryState, | 
|  | listener); | 
|  |  | 
|  | if (!memory_region_is_ram(mrs->mr)) { | 
|  | warn_report("Unexpected memory region mapped into device memory region."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The expectation is that each distinct RAM memory region section in | 
|  | * our region for memory devices consumes exactly one memslot in KVM | 
|  | * and in vhost. For vhost, this is true, except: | 
|  | * * ROM memory regions don't consume a memslot. These get used very | 
|  | *   rarely for memory devices (R/O NVDIMMs). | 
|  | * * Memslots without a fd (memory-backend-ram) don't necessarily | 
|  | *   consume a memslot. Such setups are quite rare and possibly bogus: | 
|  | *   the memory would be inaccessible by such vhost devices. | 
|  | * | 
|  | * So for vhost, in corner cases we might over-estimate the number of | 
|  | * memslots that are currently used or that might still be reserved | 
|  | * (required - used). | 
|  | */ | 
|  | dms->used_memslots += add ? 1 : -1; | 
|  |  | 
|  | if (dms->used_memslots > dms->required_memslots) { | 
|  | warn_report("Memory devices use more memory slots than indicated as required."); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void memory_devices_region_add(MemoryListener *listener, | 
|  | MemoryRegionSection *mrs) | 
|  | { | 
|  | return memory_devices_region_mod(listener, mrs, true); | 
|  | } | 
|  |  | 
|  | static void memory_devices_region_del(MemoryListener *listener, | 
|  | MemoryRegionSection *mrs) | 
|  | { | 
|  | return memory_devices_region_mod(listener, mrs, false); | 
|  | } | 
|  |  | 
|  | void machine_memory_devices_init(MachineState *ms, hwaddr base, uint64_t size) | 
|  | { | 
|  | g_assert(size); | 
|  | g_assert(!ms->device_memory); | 
|  | ms->device_memory = g_new0(DeviceMemoryState, 1); | 
|  | ms->device_memory->base = base; | 
|  |  | 
|  | memory_region_init(&ms->device_memory->mr, OBJECT(ms), "device-memory", | 
|  | size); | 
|  | address_space_init(&ms->device_memory->as, &ms->device_memory->mr, | 
|  | "device-memory"); | 
|  | memory_region_add_subregion(get_system_memory(), ms->device_memory->base, | 
|  | &ms->device_memory->mr); | 
|  |  | 
|  | /* Track the number of memslots used by memory devices. */ | 
|  | ms->device_memory->listener.region_add = memory_devices_region_add; | 
|  | ms->device_memory->listener.region_del = memory_devices_region_del; | 
|  | memory_listener_register(&ms->device_memory->listener, | 
|  | &ms->device_memory->as); | 
|  | } | 
|  |  | 
|  | static const TypeInfo memory_device_info = { | 
|  | .name          = TYPE_MEMORY_DEVICE, | 
|  | .parent        = TYPE_INTERFACE, | 
|  | .class_size = sizeof(MemoryDeviceClass), | 
|  | }; | 
|  |  | 
|  | static void memory_device_register_types(void) | 
|  | { | 
|  | type_register_static(&memory_device_info); | 
|  | } | 
|  |  | 
|  | type_init(memory_device_register_types) |