| /* |
| * QEMU System Emulator |
| * |
| * Copyright (c) 2003-2008 Fabrice Bellard |
| * Copyright (c) 2011-2015 Red Hat Inc |
| * |
| * Authors: |
| * Juan Quintela <quintela@redhat.com> |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/cutils.h" |
| #include "qemu/bitops.h" |
| #include "qemu/bitmap.h" |
| #include "qemu/madvise.h" |
| #include "qemu/main-loop.h" |
| #include "io/channel-null.h" |
| #include "xbzrle.h" |
| #include "ram.h" |
| #include "migration.h" |
| #include "migration/register.h" |
| #include "migration/misc.h" |
| #include "qemu-file.h" |
| #include "postcopy-ram.h" |
| #include "page_cache.h" |
| #include "qemu/error-report.h" |
| #include "qapi/error.h" |
| #include "qapi/qapi-types-migration.h" |
| #include "qapi/qapi-events-migration.h" |
| #include "qapi/qmp/qerror.h" |
| #include "trace.h" |
| #include "exec/ram_addr.h" |
| #include "exec/target_page.h" |
| #include "qemu/rcu_queue.h" |
| #include "migration/colo.h" |
| #include "block.h" |
| #include "sysemu/cpu-throttle.h" |
| #include "savevm.h" |
| #include "qemu/iov.h" |
| #include "multifd.h" |
| #include "sysemu/runstate.h" |
| #include "options.h" |
| |
| #include "hw/boards.h" /* for machine_dump_guest_core() */ |
| |
| #if defined(__linux__) |
| #include "qemu/userfaultfd.h" |
| #endif /* defined(__linux__) */ |
| |
| /***********************************************************/ |
| /* ram save/restore */ |
| |
| /* |
| * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it |
| * worked for pages that were filled with the same char. We switched |
| * it to only search for the zero value. And to avoid confusion with |
| * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it. |
| */ |
| /* |
| * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now |
| */ |
| #define RAM_SAVE_FLAG_FULL 0x01 |
| #define RAM_SAVE_FLAG_ZERO 0x02 |
| #define RAM_SAVE_FLAG_MEM_SIZE 0x04 |
| #define RAM_SAVE_FLAG_PAGE 0x08 |
| #define RAM_SAVE_FLAG_EOS 0x10 |
| #define RAM_SAVE_FLAG_CONTINUE 0x20 |
| #define RAM_SAVE_FLAG_XBZRLE 0x40 |
| /* 0x80 is reserved in qemu-file.h for RAM_SAVE_FLAG_HOOK */ |
| #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 |
| /* We can't use any flag that is bigger than 0x200 */ |
| |
| int (*xbzrle_encode_buffer_func)(uint8_t *, uint8_t *, int, |
| uint8_t *, int) = xbzrle_encode_buffer; |
| #if defined(CONFIG_AVX512BW_OPT) |
| #include "qemu/cpuid.h" |
| static void __attribute__((constructor)) init_cpu_flag(void) |
| { |
| unsigned max = __get_cpuid_max(0, NULL); |
| int a, b, c, d; |
| if (max >= 1) { |
| __cpuid(1, a, b, c, d); |
| /* We must check that AVX is not just available, but usable. */ |
| if ((c & bit_OSXSAVE) && (c & bit_AVX) && max >= 7) { |
| int bv; |
| __asm("xgetbv" : "=a"(bv), "=d"(d) : "c"(0)); |
| __cpuid_count(7, 0, a, b, c, d); |
| /* 0xe6: |
| * XCR0[7:5] = 111b (OPMASK state, upper 256-bit of ZMM0-ZMM15 |
| * and ZMM16-ZMM31 state are enabled by OS) |
| * XCR0[2:1] = 11b (XMM state and YMM state are enabled by OS) |
| */ |
| if ((bv & 0xe6) == 0xe6 && (b & bit_AVX512BW)) { |
| xbzrle_encode_buffer_func = xbzrle_encode_buffer_avx512; |
| } |
| } |
| } |
| } |
| #endif |
| |
| XBZRLECacheStats xbzrle_counters; |
| |
| /* used by the search for pages to send */ |
| struct PageSearchStatus { |
| /* The migration channel used for a specific host page */ |
| QEMUFile *pss_channel; |
| /* Last block from where we have sent data */ |
| RAMBlock *last_sent_block; |
| /* Current block being searched */ |
| RAMBlock *block; |
| /* Current page to search from */ |
| unsigned long page; |
| /* Set once we wrap around */ |
| bool complete_round; |
| /* Whether we're sending a host page */ |
| bool host_page_sending; |
| /* The start/end of current host page. Invalid if host_page_sending==false */ |
| unsigned long host_page_start; |
| unsigned long host_page_end; |
| }; |
| typedef struct PageSearchStatus PageSearchStatus; |
| |
| /* struct contains XBZRLE cache and a static page |
| used by the compression */ |
| static struct { |
| /* buffer used for XBZRLE encoding */ |
| uint8_t *encoded_buf; |
| /* buffer for storing page content */ |
| uint8_t *current_buf; |
| /* Cache for XBZRLE, Protected by lock. */ |
| PageCache *cache; |
| QemuMutex lock; |
| /* it will store a page full of zeros */ |
| uint8_t *zero_target_page; |
| /* buffer used for XBZRLE decoding */ |
| uint8_t *decoded_buf; |
| } XBZRLE; |
| |
| static void XBZRLE_cache_lock(void) |
| { |
| if (migrate_use_xbzrle()) { |
| qemu_mutex_lock(&XBZRLE.lock); |
| } |
| } |
| |
| static void XBZRLE_cache_unlock(void) |
| { |
| if (migrate_use_xbzrle()) { |
| qemu_mutex_unlock(&XBZRLE.lock); |
| } |
| } |
| |
| /** |
| * xbzrle_cache_resize: resize the xbzrle cache |
| * |
| * This function is called from migrate_params_apply in main |
| * thread, possibly while a migration is in progress. A running |
| * migration may be using the cache and might finish during this call, |
| * hence changes to the cache are protected by XBZRLE.lock(). |
| * |
| * Returns 0 for success or -1 for error |
| * |
| * @new_size: new cache size |
| * @errp: set *errp if the check failed, with reason |
| */ |
| int xbzrle_cache_resize(uint64_t new_size, Error **errp) |
| { |
| PageCache *new_cache; |
| int64_t ret = 0; |
| |
| /* Check for truncation */ |
| if (new_size != (size_t)new_size) { |
| error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", |
| "exceeding address space"); |
| return -1; |
| } |
| |
| if (new_size == migrate_xbzrle_cache_size()) { |
| /* nothing to do */ |
| return 0; |
| } |
| |
| XBZRLE_cache_lock(); |
| |
| if (XBZRLE.cache != NULL) { |
| new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); |
| if (!new_cache) { |
| ret = -1; |
| goto out; |
| } |
| |
| cache_fini(XBZRLE.cache); |
| XBZRLE.cache = new_cache; |
| } |
| out: |
| XBZRLE_cache_unlock(); |
| return ret; |
| } |
| |
| static bool postcopy_preempt_active(void) |
| { |
| return migrate_postcopy_preempt() && migration_in_postcopy(); |
| } |
| |
| bool ramblock_is_ignored(RAMBlock *block) |
| { |
| return !qemu_ram_is_migratable(block) || |
| (migrate_ignore_shared() && qemu_ram_is_shared(block)); |
| } |
| |
| #undef RAMBLOCK_FOREACH |
| |
| int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) |
| { |
| RAMBlock *block; |
| int ret = 0; |
| |
| RCU_READ_LOCK_GUARD(); |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| ret = func(block, opaque); |
| if (ret) { |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| static void ramblock_recv_map_init(void) |
| { |
| RAMBlock *rb; |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
| assert(!rb->receivedmap); |
| rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); |
| } |
| } |
| |
| int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) |
| { |
| return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), |
| rb->receivedmap); |
| } |
| |
| bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) |
| { |
| return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); |
| } |
| |
| void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) |
| { |
| set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); |
| } |
| |
| void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, |
| size_t nr) |
| { |
| bitmap_set_atomic(rb->receivedmap, |
| ramblock_recv_bitmap_offset(host_addr, rb), |
| nr); |
| } |
| |
| #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) |
| |
| /* |
| * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). |
| * |
| * Returns >0 if success with sent bytes, or <0 if error. |
| */ |
| int64_t ramblock_recv_bitmap_send(QEMUFile *file, |
| const char *block_name) |
| { |
| RAMBlock *block = qemu_ram_block_by_name(block_name); |
| unsigned long *le_bitmap, nbits; |
| uint64_t size; |
| |
| if (!block) { |
| error_report("%s: invalid block name: %s", __func__, block_name); |
| return -1; |
| } |
| |
| nbits = block->postcopy_length >> TARGET_PAGE_BITS; |
| |
| /* |
| * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit |
| * machines we may need 4 more bytes for padding (see below |
| * comment). So extend it a bit before hand. |
| */ |
| le_bitmap = bitmap_new(nbits + BITS_PER_LONG); |
| |
| /* |
| * Always use little endian when sending the bitmap. This is |
| * required that when source and destination VMs are not using the |
| * same endianness. (Note: big endian won't work.) |
| */ |
| bitmap_to_le(le_bitmap, block->receivedmap, nbits); |
| |
| /* Size of the bitmap, in bytes */ |
| size = DIV_ROUND_UP(nbits, 8); |
| |
| /* |
| * size is always aligned to 8 bytes for 64bit machines, but it |
| * may not be true for 32bit machines. We need this padding to |
| * make sure the migration can survive even between 32bit and |
| * 64bit machines. |
| */ |
| size = ROUND_UP(size, 8); |
| |
| qemu_put_be64(file, size); |
| qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); |
| /* |
| * Mark as an end, in case the middle part is screwed up due to |
| * some "mysterious" reason. |
| */ |
| qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); |
| qemu_fflush(file); |
| |
| g_free(le_bitmap); |
| |
| if (qemu_file_get_error(file)) { |
| return qemu_file_get_error(file); |
| } |
| |
| return size + sizeof(size); |
| } |
| |
| /* |
| * An outstanding page request, on the source, having been received |
| * and queued |
| */ |
| struct RAMSrcPageRequest { |
| RAMBlock *rb; |
| hwaddr offset; |
| hwaddr len; |
| |
| QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; |
| }; |
| |
| /* State of RAM for migration */ |
| struct RAMState { |
| /* |
| * PageSearchStatus structures for the channels when send pages. |
| * Protected by the bitmap_mutex. |
| */ |
| PageSearchStatus pss[RAM_CHANNEL_MAX]; |
| /* UFFD file descriptor, used in 'write-tracking' migration */ |
| int uffdio_fd; |
| /* total ram size in bytes */ |
| uint64_t ram_bytes_total; |
| /* Last block that we have visited searching for dirty pages */ |
| RAMBlock *last_seen_block; |
| /* Last dirty target page we have sent */ |
| ram_addr_t last_page; |
| /* last ram version we have seen */ |
| uint32_t last_version; |
| /* How many times we have dirty too many pages */ |
| int dirty_rate_high_cnt; |
| /* these variables are used for bitmap sync */ |
| /* last time we did a full bitmap_sync */ |
| int64_t time_last_bitmap_sync; |
| /* bytes transferred at start_time */ |
| uint64_t bytes_xfer_prev; |
| /* number of dirty pages since start_time */ |
| uint64_t num_dirty_pages_period; |
| /* xbzrle misses since the beginning of the period */ |
| uint64_t xbzrle_cache_miss_prev; |
| /* Amount of xbzrle pages since the beginning of the period */ |
| uint64_t xbzrle_pages_prev; |
| /* Amount of xbzrle encoded bytes since the beginning of the period */ |
| uint64_t xbzrle_bytes_prev; |
| /* Start using XBZRLE (e.g., after the first round). */ |
| bool xbzrle_enabled; |
| /* Are we on the last stage of migration */ |
| bool last_stage; |
| /* compression statistics since the beginning of the period */ |
| /* amount of count that no free thread to compress data */ |
| uint64_t compress_thread_busy_prev; |
| /* amount bytes after compression */ |
| uint64_t compressed_size_prev; |
| /* amount of compressed pages */ |
| uint64_t compress_pages_prev; |
| |
| /* total handled target pages at the beginning of period */ |
| uint64_t target_page_count_prev; |
| /* total handled target pages since start */ |
| uint64_t target_page_count; |
| /* number of dirty bits in the bitmap */ |
| uint64_t migration_dirty_pages; |
| /* |
| * Protects: |
| * - dirty/clear bitmap |
| * - migration_dirty_pages |
| * - pss structures |
| */ |
| QemuMutex bitmap_mutex; |
| /* The RAMBlock used in the last src_page_requests */ |
| RAMBlock *last_req_rb; |
| /* Queue of outstanding page requests from the destination */ |
| QemuMutex src_page_req_mutex; |
| QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; |
| }; |
| typedef struct RAMState RAMState; |
| |
| static RAMState *ram_state; |
| |
| static NotifierWithReturnList precopy_notifier_list; |
| |
| /* Whether postcopy has queued requests? */ |
| static bool postcopy_has_request(RAMState *rs) |
| { |
| return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); |
| } |
| |
| void precopy_infrastructure_init(void) |
| { |
| notifier_with_return_list_init(&precopy_notifier_list); |
| } |
| |
| void precopy_add_notifier(NotifierWithReturn *n) |
| { |
| notifier_with_return_list_add(&precopy_notifier_list, n); |
| } |
| |
| void precopy_remove_notifier(NotifierWithReturn *n) |
| { |
| notifier_with_return_remove(n); |
| } |
| |
| int precopy_notify(PrecopyNotifyReason reason, Error **errp) |
| { |
| PrecopyNotifyData pnd; |
| pnd.reason = reason; |
| pnd.errp = errp; |
| |
| return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); |
| } |
| |
| uint64_t ram_bytes_remaining(void) |
| { |
| return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : |
| 0; |
| } |
| |
| RAMStats ram_counters; |
| |
| void ram_transferred_add(uint64_t bytes) |
| { |
| if (runstate_is_running()) { |
| stat64_add(&ram_counters.precopy_bytes, bytes); |
| } else if (migration_in_postcopy()) { |
| stat64_add(&ram_counters.postcopy_bytes, bytes); |
| } else { |
| stat64_add(&ram_counters.downtime_bytes, bytes); |
| } |
| stat64_add(&ram_counters.transferred, bytes); |
| } |
| |
| struct MigrationOps { |
| int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss); |
| }; |
| typedef struct MigrationOps MigrationOps; |
| |
| MigrationOps *migration_ops; |
| |
| CompressionStats compression_counters; |
| |
| struct CompressParam { |
| bool done; |
| bool quit; |
| bool zero_page; |
| QEMUFile *file; |
| QemuMutex mutex; |
| QemuCond cond; |
| RAMBlock *block; |
| ram_addr_t offset; |
| |
| /* internally used fields */ |
| z_stream stream; |
| uint8_t *originbuf; |
| }; |
| typedef struct CompressParam CompressParam; |
| |
| struct DecompressParam { |
| bool done; |
| bool quit; |
| QemuMutex mutex; |
| QemuCond cond; |
| void *des; |
| uint8_t *compbuf; |
| int len; |
| z_stream stream; |
| }; |
| typedef struct DecompressParam DecompressParam; |
| |
| static CompressParam *comp_param; |
| static QemuThread *compress_threads; |
| /* comp_done_cond is used to wake up the migration thread when |
| * one of the compression threads has finished the compression. |
| * comp_done_lock is used to co-work with comp_done_cond. |
| */ |
| static QemuMutex comp_done_lock; |
| static QemuCond comp_done_cond; |
| |
| static QEMUFile *decomp_file; |
| static DecompressParam *decomp_param; |
| static QemuThread *decompress_threads; |
| static QemuMutex decomp_done_lock; |
| static QemuCond decomp_done_cond; |
| |
| static int ram_save_host_page_urgent(PageSearchStatus *pss); |
| |
| static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, |
| ram_addr_t offset, uint8_t *source_buf); |
| |
| /* NOTE: page is the PFN not real ram_addr_t. */ |
| static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) |
| { |
| pss->block = rb; |
| pss->page = page; |
| pss->complete_round = false; |
| } |
| |
| /* |
| * Check whether two PSSs are actively sending the same page. Return true |
| * if it is, false otherwise. |
| */ |
| static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) |
| { |
| return pss1->host_page_sending && pss2->host_page_sending && |
| (pss1->host_page_start == pss2->host_page_start); |
| } |
| |
| static void *do_data_compress(void *opaque) |
| { |
| CompressParam *param = opaque; |
| RAMBlock *block; |
| ram_addr_t offset; |
| bool zero_page; |
| |
| qemu_mutex_lock(¶m->mutex); |
| while (!param->quit) { |
| if (param->block) { |
| block = param->block; |
| offset = param->offset; |
| param->block = NULL; |
| qemu_mutex_unlock(¶m->mutex); |
| |
| zero_page = do_compress_ram_page(param->file, ¶m->stream, |
| block, offset, param->originbuf); |
| |
| qemu_mutex_lock(&comp_done_lock); |
| param->done = true; |
| param->zero_page = zero_page; |
| qemu_cond_signal(&comp_done_cond); |
| qemu_mutex_unlock(&comp_done_lock); |
| |
| qemu_mutex_lock(¶m->mutex); |
| } else { |
| qemu_cond_wait(¶m->cond, ¶m->mutex); |
| } |
| } |
| qemu_mutex_unlock(¶m->mutex); |
| |
| return NULL; |
| } |
| |
| static void compress_threads_save_cleanup(void) |
| { |
| int i, thread_count; |
| |
| if (!migrate_compress() || !comp_param) { |
| return; |
| } |
| |
| thread_count = migrate_compress_threads(); |
| for (i = 0; i < thread_count; i++) { |
| /* |
| * we use it as a indicator which shows if the thread is |
| * properly init'd or not |
| */ |
| if (!comp_param[i].file) { |
| break; |
| } |
| |
| qemu_mutex_lock(&comp_param[i].mutex); |
| comp_param[i].quit = true; |
| qemu_cond_signal(&comp_param[i].cond); |
| qemu_mutex_unlock(&comp_param[i].mutex); |
| |
| qemu_thread_join(compress_threads + i); |
| qemu_mutex_destroy(&comp_param[i].mutex); |
| qemu_cond_destroy(&comp_param[i].cond); |
| deflateEnd(&comp_param[i].stream); |
| g_free(comp_param[i].originbuf); |
| qemu_fclose(comp_param[i].file); |
| comp_param[i].file = NULL; |
| } |
| qemu_mutex_destroy(&comp_done_lock); |
| qemu_cond_destroy(&comp_done_cond); |
| g_free(compress_threads); |
| g_free(comp_param); |
| compress_threads = NULL; |
| comp_param = NULL; |
| } |
| |
| static int compress_threads_save_setup(void) |
| { |
| int i, thread_count; |
| |
| if (!migrate_compress()) { |
| return 0; |
| } |
| thread_count = migrate_compress_threads(); |
| compress_threads = g_new0(QemuThread, thread_count); |
| comp_param = g_new0(CompressParam, thread_count); |
| qemu_cond_init(&comp_done_cond); |
| qemu_mutex_init(&comp_done_lock); |
| for (i = 0; i < thread_count; i++) { |
| comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); |
| if (!comp_param[i].originbuf) { |
| goto exit; |
| } |
| |
| if (deflateInit(&comp_param[i].stream, |
| migrate_compress_level()) != Z_OK) { |
| g_free(comp_param[i].originbuf); |
| goto exit; |
| } |
| |
| /* comp_param[i].file is just used as a dummy buffer to save data, |
| * set its ops to empty. |
| */ |
| comp_param[i].file = qemu_file_new_output( |
| QIO_CHANNEL(qio_channel_null_new())); |
| comp_param[i].done = true; |
| comp_param[i].quit = false; |
| qemu_mutex_init(&comp_param[i].mutex); |
| qemu_cond_init(&comp_param[i].cond); |
| qemu_thread_create(compress_threads + i, "compress", |
| do_data_compress, comp_param + i, |
| QEMU_THREAD_JOINABLE); |
| } |
| return 0; |
| |
| exit: |
| compress_threads_save_cleanup(); |
| return -1; |
| } |
| |
| /** |
| * save_page_header: write page header to wire |
| * |
| * If this is the 1st block, it also writes the block identification |
| * |
| * Returns the number of bytes written |
| * |
| * @pss: current PSS channel status |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| * in the lower bits, it contains flags |
| */ |
| static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, |
| RAMBlock *block, ram_addr_t offset) |
| { |
| size_t size, len; |
| bool same_block = (block == pss->last_sent_block); |
| |
| if (same_block) { |
| offset |= RAM_SAVE_FLAG_CONTINUE; |
| } |
| qemu_put_be64(f, offset); |
| size = 8; |
| |
| if (!same_block) { |
| len = strlen(block->idstr); |
| qemu_put_byte(f, len); |
| qemu_put_buffer(f, (uint8_t *)block->idstr, len); |
| size += 1 + len; |
| pss->last_sent_block = block; |
| } |
| return size; |
| } |
| |
| /** |
| * mig_throttle_guest_down: throttle down the guest |
| * |
| * Reduce amount of guest cpu execution to hopefully slow down memory |
| * writes. If guest dirty memory rate is reduced below the rate at |
| * which we can transfer pages to the destination then we should be |
| * able to complete migration. Some workloads dirty memory way too |
| * fast and will not effectively converge, even with auto-converge. |
| */ |
| static void mig_throttle_guest_down(uint64_t bytes_dirty_period, |
| uint64_t bytes_dirty_threshold) |
| { |
| MigrationState *s = migrate_get_current(); |
| uint64_t pct_initial = s->parameters.cpu_throttle_initial; |
| uint64_t pct_increment = s->parameters.cpu_throttle_increment; |
| bool pct_tailslow = s->parameters.cpu_throttle_tailslow; |
| int pct_max = s->parameters.max_cpu_throttle; |
| |
| uint64_t throttle_now = cpu_throttle_get_percentage(); |
| uint64_t cpu_now, cpu_ideal, throttle_inc; |
| |
| /* We have not started throttling yet. Let's start it. */ |
| if (!cpu_throttle_active()) { |
| cpu_throttle_set(pct_initial); |
| } else { |
| /* Throttling already on, just increase the rate */ |
| if (!pct_tailslow) { |
| throttle_inc = pct_increment; |
| } else { |
| /* Compute the ideal CPU percentage used by Guest, which may |
| * make the dirty rate match the dirty rate threshold. */ |
| cpu_now = 100 - throttle_now; |
| cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / |
| bytes_dirty_period); |
| throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); |
| } |
| cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); |
| } |
| } |
| |
| void mig_throttle_counter_reset(void) |
| { |
| RAMState *rs = ram_state; |
| |
| rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); |
| rs->num_dirty_pages_period = 0; |
| rs->bytes_xfer_prev = stat64_get(&ram_counters.transferred); |
| } |
| |
| /** |
| * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache |
| * |
| * @rs: current RAM state |
| * @current_addr: address for the zero page |
| * |
| * Update the xbzrle cache to reflect a page that's been sent as all 0. |
| * The important thing is that a stale (not-yet-0'd) page be replaced |
| * by the new data. |
| * As a bonus, if the page wasn't in the cache it gets added so that |
| * when a small write is made into the 0'd page it gets XBZRLE sent. |
| */ |
| static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) |
| { |
| /* We don't care if this fails to allocate a new cache page |
| * as long as it updated an old one */ |
| cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, |
| stat64_get(&ram_counters.dirty_sync_count)); |
| } |
| |
| #define ENCODING_FLAG_XBZRLE 0x1 |
| |
| /** |
| * save_xbzrle_page: compress and send current page |
| * |
| * Returns: 1 means that we wrote the page |
| * 0 means that page is identical to the one already sent |
| * -1 means that xbzrle would be longer than normal |
| * |
| * @rs: current RAM state |
| * @pss: current PSS channel |
| * @current_data: pointer to the address of the page contents |
| * @current_addr: addr of the page |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| */ |
| static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, |
| uint8_t **current_data, ram_addr_t current_addr, |
| RAMBlock *block, ram_addr_t offset) |
| { |
| int encoded_len = 0, bytes_xbzrle; |
| uint8_t *prev_cached_page; |
| QEMUFile *file = pss->pss_channel; |
| uint64_t generation = stat64_get(&ram_counters.dirty_sync_count); |
| |
| if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { |
| xbzrle_counters.cache_miss++; |
| if (!rs->last_stage) { |
| if (cache_insert(XBZRLE.cache, current_addr, *current_data, |
| generation) == -1) { |
| return -1; |
| } else { |
| /* update *current_data when the page has been |
| inserted into cache */ |
| *current_data = get_cached_data(XBZRLE.cache, current_addr); |
| } |
| } |
| return -1; |
| } |
| |
| /* |
| * Reaching here means the page has hit the xbzrle cache, no matter what |
| * encoding result it is (normal encoding, overflow or skipping the page), |
| * count the page as encoded. This is used to calculate the encoding rate. |
| * |
| * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, |
| * 2nd page turns out to be skipped (i.e. no new bytes written to the |
| * page), the overall encoding rate will be 8KB / 2KB = 4, which has the |
| * skipped page included. In this way, the encoding rate can tell if the |
| * guest page is good for xbzrle encoding. |
| */ |
| xbzrle_counters.pages++; |
| prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); |
| |
| /* save current buffer into memory */ |
| memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); |
| |
| /* XBZRLE encoding (if there is no overflow) */ |
| encoded_len = xbzrle_encode_buffer_func(prev_cached_page, XBZRLE.current_buf, |
| TARGET_PAGE_SIZE, XBZRLE.encoded_buf, |
| TARGET_PAGE_SIZE); |
| |
| /* |
| * Update the cache contents, so that it corresponds to the data |
| * sent, in all cases except where we skip the page. |
| */ |
| if (!rs->last_stage && encoded_len != 0) { |
| memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); |
| /* |
| * In the case where we couldn't compress, ensure that the caller |
| * sends the data from the cache, since the guest might have |
| * changed the RAM since we copied it. |
| */ |
| *current_data = prev_cached_page; |
| } |
| |
| if (encoded_len == 0) { |
| trace_save_xbzrle_page_skipping(); |
| return 0; |
| } else if (encoded_len == -1) { |
| trace_save_xbzrle_page_overflow(); |
| xbzrle_counters.overflow++; |
| xbzrle_counters.bytes += TARGET_PAGE_SIZE; |
| return -1; |
| } |
| |
| /* Send XBZRLE based compressed page */ |
| bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, |
| offset | RAM_SAVE_FLAG_XBZRLE); |
| qemu_put_byte(file, ENCODING_FLAG_XBZRLE); |
| qemu_put_be16(file, encoded_len); |
| qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); |
| bytes_xbzrle += encoded_len + 1 + 2; |
| /* |
| * Like compressed_size (please see update_compress_thread_counts), |
| * the xbzrle encoded bytes don't count the 8 byte header with |
| * RAM_SAVE_FLAG_CONTINUE. |
| */ |
| xbzrle_counters.bytes += bytes_xbzrle - 8; |
| ram_transferred_add(bytes_xbzrle); |
| |
| return 1; |
| } |
| |
| /** |
| * pss_find_next_dirty: find the next dirty page of current ramblock |
| * |
| * This function updates pss->page to point to the next dirty page index |
| * within the ramblock to migrate, or the end of ramblock when nothing |
| * found. Note that when pss->host_page_sending==true it means we're |
| * during sending a host page, so we won't look for dirty page that is |
| * outside the host page boundary. |
| * |
| * @pss: the current page search status |
| */ |
| static void pss_find_next_dirty(PageSearchStatus *pss) |
| { |
| RAMBlock *rb = pss->block; |
| unsigned long size = rb->used_length >> TARGET_PAGE_BITS; |
| unsigned long *bitmap = rb->bmap; |
| |
| if (ramblock_is_ignored(rb)) { |
| /* Points directly to the end, so we know no dirty page */ |
| pss->page = size; |
| return; |
| } |
| |
| /* |
| * If during sending a host page, only look for dirty pages within the |
| * current host page being send. |
| */ |
| if (pss->host_page_sending) { |
| assert(pss->host_page_end); |
| size = MIN(size, pss->host_page_end); |
| } |
| |
| pss->page = find_next_bit(bitmap, size, pss->page); |
| } |
| |
| static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, |
| unsigned long page) |
| { |
| uint8_t shift; |
| hwaddr size, start; |
| |
| if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { |
| return; |
| } |
| |
| shift = rb->clear_bmap_shift; |
| /* |
| * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this |
| * can make things easier sometimes since then start address |
| * of the small chunk will always be 64 pages aligned so the |
| * bitmap will always be aligned to unsigned long. We should |
| * even be able to remove this restriction but I'm simply |
| * keeping it. |
| */ |
| assert(shift >= 6); |
| |
| size = 1ULL << (TARGET_PAGE_BITS + shift); |
| start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); |
| trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); |
| memory_region_clear_dirty_bitmap(rb->mr, start, size); |
| } |
| |
| static void |
| migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, |
| unsigned long start, |
| unsigned long npages) |
| { |
| unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; |
| unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); |
| unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); |
| |
| /* |
| * Clear pages from start to start + npages - 1, so the end boundary is |
| * exclusive. |
| */ |
| for (i = chunk_start; i < chunk_end; i += chunk_pages) { |
| migration_clear_memory_region_dirty_bitmap(rb, i); |
| } |
| } |
| |
| /* |
| * colo_bitmap_find_diry:find contiguous dirty pages from start |
| * |
| * Returns the page offset within memory region of the start of the contiguout |
| * dirty page |
| * |
| * @rs: current RAM state |
| * @rb: RAMBlock where to search for dirty pages |
| * @start: page where we start the search |
| * @num: the number of contiguous dirty pages |
| */ |
| static inline |
| unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, |
| unsigned long start, unsigned long *num) |
| { |
| unsigned long size = rb->used_length >> TARGET_PAGE_BITS; |
| unsigned long *bitmap = rb->bmap; |
| unsigned long first, next; |
| |
| *num = 0; |
| |
| if (ramblock_is_ignored(rb)) { |
| return size; |
| } |
| |
| first = find_next_bit(bitmap, size, start); |
| if (first >= size) { |
| return first; |
| } |
| next = find_next_zero_bit(bitmap, size, first + 1); |
| assert(next >= first); |
| *num = next - first; |
| return first; |
| } |
| |
| static inline bool migration_bitmap_clear_dirty(RAMState *rs, |
| RAMBlock *rb, |
| unsigned long page) |
| { |
| bool ret; |
| |
| /* |
| * Clear dirty bitmap if needed. This _must_ be called before we |
| * send any of the page in the chunk because we need to make sure |
| * we can capture further page content changes when we sync dirty |
| * log the next time. So as long as we are going to send any of |
| * the page in the chunk we clear the remote dirty bitmap for all. |
| * Clearing it earlier won't be a problem, but too late will. |
| */ |
| migration_clear_memory_region_dirty_bitmap(rb, page); |
| |
| ret = test_and_clear_bit(page, rb->bmap); |
| if (ret) { |
| rs->migration_dirty_pages--; |
| } |
| |
| return ret; |
| } |
| |
| static void dirty_bitmap_clear_section(MemoryRegionSection *section, |
| void *opaque) |
| { |
| const hwaddr offset = section->offset_within_region; |
| const hwaddr size = int128_get64(section->size); |
| const unsigned long start = offset >> TARGET_PAGE_BITS; |
| const unsigned long npages = size >> TARGET_PAGE_BITS; |
| RAMBlock *rb = section->mr->ram_block; |
| uint64_t *cleared_bits = opaque; |
| |
| /* |
| * We don't grab ram_state->bitmap_mutex because we expect to run |
| * only when starting migration or during postcopy recovery where |
| * we don't have concurrent access. |
| */ |
| if (!migration_in_postcopy() && !migrate_background_snapshot()) { |
| migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); |
| } |
| *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); |
| bitmap_clear(rb->bmap, start, npages); |
| } |
| |
| /* |
| * Exclude all dirty pages from migration that fall into a discarded range as |
| * managed by a RamDiscardManager responsible for the mapped memory region of |
| * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. |
| * |
| * Discarded pages ("logically unplugged") have undefined content and must |
| * not get migrated, because even reading these pages for migration might |
| * result in undesired behavior. |
| * |
| * Returns the number of cleared bits in the RAMBlock dirty bitmap. |
| * |
| * Note: The result is only stable while migrating (precopy/postcopy). |
| */ |
| static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) |
| { |
| uint64_t cleared_bits = 0; |
| |
| if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { |
| RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); |
| MemoryRegionSection section = { |
| .mr = rb->mr, |
| .offset_within_region = 0, |
| .size = int128_make64(qemu_ram_get_used_length(rb)), |
| }; |
| |
| ram_discard_manager_replay_discarded(rdm, §ion, |
| dirty_bitmap_clear_section, |
| &cleared_bits); |
| } |
| return cleared_bits; |
| } |
| |
| /* |
| * Check if a host-page aligned page falls into a discarded range as managed by |
| * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. |
| * |
| * Note: The result is only stable while migrating (precopy/postcopy). |
| */ |
| bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) |
| { |
| if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { |
| RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); |
| MemoryRegionSection section = { |
| .mr = rb->mr, |
| .offset_within_region = start, |
| .size = int128_make64(qemu_ram_pagesize(rb)), |
| }; |
| |
| return !ram_discard_manager_is_populated(rdm, §ion); |
| } |
| return false; |
| } |
| |
| /* Called with RCU critical section */ |
| static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) |
| { |
| uint64_t new_dirty_pages = |
| cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); |
| |
| rs->migration_dirty_pages += new_dirty_pages; |
| rs->num_dirty_pages_period += new_dirty_pages; |
| } |
| |
| /** |
| * ram_pagesize_summary: calculate all the pagesizes of a VM |
| * |
| * Returns a summary bitmap of the page sizes of all RAMBlocks |
| * |
| * For VMs with just normal pages this is equivalent to the host page |
| * size. If it's got some huge pages then it's the OR of all the |
| * different page sizes. |
| */ |
| uint64_t ram_pagesize_summary(void) |
| { |
| RAMBlock *block; |
| uint64_t summary = 0; |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| summary |= block->page_size; |
| } |
| |
| return summary; |
| } |
| |
| uint64_t ram_get_total_transferred_pages(void) |
| { |
| return stat64_get(&ram_counters.normal_pages) + |
| stat64_get(&ram_counters.zero_pages) + |
| compression_counters.pages + xbzrle_counters.pages; |
| } |
| |
| static void migration_update_rates(RAMState *rs, int64_t end_time) |
| { |
| uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; |
| double compressed_size; |
| |
| /* calculate period counters */ |
| ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 |
| / (end_time - rs->time_last_bitmap_sync); |
| |
| if (!page_count) { |
| return; |
| } |
| |
| if (migrate_use_xbzrle()) { |
| double encoded_size, unencoded_size; |
| |
| xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - |
| rs->xbzrle_cache_miss_prev) / page_count; |
| rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; |
| unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * |
| TARGET_PAGE_SIZE; |
| encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; |
| if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { |
| xbzrle_counters.encoding_rate = 0; |
| } else { |
| xbzrle_counters.encoding_rate = unencoded_size / encoded_size; |
| } |
| rs->xbzrle_pages_prev = xbzrle_counters.pages; |
| rs->xbzrle_bytes_prev = xbzrle_counters.bytes; |
| } |
| |
| if (migrate_compress()) { |
| compression_counters.busy_rate = (double)(compression_counters.busy - |
| rs->compress_thread_busy_prev) / page_count; |
| rs->compress_thread_busy_prev = compression_counters.busy; |
| |
| compressed_size = compression_counters.compressed_size - |
| rs->compressed_size_prev; |
| if (compressed_size) { |
| double uncompressed_size = (compression_counters.pages - |
| rs->compress_pages_prev) * TARGET_PAGE_SIZE; |
| |
| /* Compression-Ratio = Uncompressed-size / Compressed-size */ |
| compression_counters.compression_rate = |
| uncompressed_size / compressed_size; |
| |
| rs->compress_pages_prev = compression_counters.pages; |
| rs->compressed_size_prev = compression_counters.compressed_size; |
| } |
| } |
| } |
| |
| static void migration_trigger_throttle(RAMState *rs) |
| { |
| MigrationState *s = migrate_get_current(); |
| uint64_t threshold = s->parameters.throttle_trigger_threshold; |
| uint64_t bytes_xfer_period = |
| stat64_get(&ram_counters.transferred) - rs->bytes_xfer_prev; |
| uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; |
| uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; |
| |
| /* During block migration the auto-converge logic incorrectly detects |
| * that ram migration makes no progress. Avoid this by disabling the |
| * throttling logic during the bulk phase of block migration. */ |
| if (migrate_auto_converge() && !blk_mig_bulk_active()) { |
| /* The following detection logic can be refined later. For now: |
| Check to see if the ratio between dirtied bytes and the approx. |
| amount of bytes that just got transferred since the last time |
| we were in this routine reaches the threshold. If that happens |
| twice, start or increase throttling. */ |
| |
| if ((bytes_dirty_period > bytes_dirty_threshold) && |
| (++rs->dirty_rate_high_cnt >= 2)) { |
| trace_migration_throttle(); |
| rs->dirty_rate_high_cnt = 0; |
| mig_throttle_guest_down(bytes_dirty_period, |
| bytes_dirty_threshold); |
| } |
| } |
| } |
| |
| static void migration_bitmap_sync(RAMState *rs) |
| { |
| RAMBlock *block; |
| int64_t end_time; |
| |
| stat64_add(&ram_counters.dirty_sync_count, 1); |
| |
| if (!rs->time_last_bitmap_sync) { |
| rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); |
| } |
| |
| trace_migration_bitmap_sync_start(); |
| memory_global_dirty_log_sync(); |
| |
| qemu_mutex_lock(&rs->bitmap_mutex); |
| WITH_RCU_READ_LOCK_GUARD() { |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| ramblock_sync_dirty_bitmap(rs, block); |
| } |
| ram_counters.remaining = ram_bytes_remaining(); |
| } |
| qemu_mutex_unlock(&rs->bitmap_mutex); |
| |
| memory_global_after_dirty_log_sync(); |
| trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); |
| |
| end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); |
| |
| /* more than 1 second = 1000 millisecons */ |
| if (end_time > rs->time_last_bitmap_sync + 1000) { |
| migration_trigger_throttle(rs); |
| |
| migration_update_rates(rs, end_time); |
| |
| rs->target_page_count_prev = rs->target_page_count; |
| |
| /* reset period counters */ |
| rs->time_last_bitmap_sync = end_time; |
| rs->num_dirty_pages_period = 0; |
| rs->bytes_xfer_prev = stat64_get(&ram_counters.transferred); |
| } |
| if (migrate_use_events()) { |
| uint64_t generation = stat64_get(&ram_counters.dirty_sync_count); |
| qapi_event_send_migration_pass(generation); |
| } |
| } |
| |
| static void migration_bitmap_sync_precopy(RAMState *rs) |
| { |
| Error *local_err = NULL; |
| |
| /* |
| * The current notifier usage is just an optimization to migration, so we |
| * don't stop the normal migration process in the error case. |
| */ |
| if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { |
| error_report_err(local_err); |
| local_err = NULL; |
| } |
| |
| migration_bitmap_sync(rs); |
| |
| if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { |
| error_report_err(local_err); |
| } |
| } |
| |
| void ram_release_page(const char *rbname, uint64_t offset) |
| { |
| if (!migrate_release_ram() || !migration_in_postcopy()) { |
| return; |
| } |
| |
| ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); |
| } |
| |
| /** |
| * save_zero_page_to_file: send the zero page to the file |
| * |
| * Returns the size of data written to the file, 0 means the page is not |
| * a zero page |
| * |
| * @pss: current PSS channel |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| */ |
| static int save_zero_page_to_file(PageSearchStatus *pss, QEMUFile *file, |
| RAMBlock *block, ram_addr_t offset) |
| { |
| uint8_t *p = block->host + offset; |
| int len = 0; |
| |
| if (buffer_is_zero(p, TARGET_PAGE_SIZE)) { |
| len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO); |
| qemu_put_byte(file, 0); |
| len += 1; |
| ram_release_page(block->idstr, offset); |
| } |
| return len; |
| } |
| |
| /** |
| * save_zero_page: send the zero page to the stream |
| * |
| * Returns the number of pages written. |
| * |
| * @pss: current PSS channel |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| */ |
| static int save_zero_page(PageSearchStatus *pss, QEMUFile *f, RAMBlock *block, |
| ram_addr_t offset) |
| { |
| int len = save_zero_page_to_file(pss, f, block, offset); |
| |
| if (len) { |
| stat64_add(&ram_counters.zero_pages, 1); |
| ram_transferred_add(len); |
| return 1; |
| } |
| return -1; |
| } |
| |
| /* |
| * @pages: the number of pages written by the control path, |
| * < 0 - error |
| * > 0 - number of pages written |
| * |
| * Return true if the pages has been saved, otherwise false is returned. |
| */ |
| static bool control_save_page(PageSearchStatus *pss, RAMBlock *block, |
| ram_addr_t offset, int *pages) |
| { |
| uint64_t bytes_xmit = 0; |
| int ret; |
| |
| *pages = -1; |
| ret = ram_control_save_page(pss->pss_channel, block->offset, offset, |
| TARGET_PAGE_SIZE, &bytes_xmit); |
| if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { |
| return false; |
| } |
| |
| if (bytes_xmit) { |
| ram_transferred_add(bytes_xmit); |
| *pages = 1; |
| } |
| |
| if (ret == RAM_SAVE_CONTROL_DELAYED) { |
| return true; |
| } |
| |
| if (bytes_xmit > 0) { |
| stat64_add(&ram_counters.normal_pages, 1); |
| } else if (bytes_xmit == 0) { |
| stat64_add(&ram_counters.zero_pages, 1); |
| } |
| |
| return true; |
| } |
| |
| /* |
| * directly send the page to the stream |
| * |
| * Returns the number of pages written. |
| * |
| * @pss: current PSS channel |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| * @buf: the page to be sent |
| * @async: send to page asyncly |
| */ |
| static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, |
| ram_addr_t offset, uint8_t *buf, bool async) |
| { |
| QEMUFile *file = pss->pss_channel; |
| |
| ram_transferred_add(save_page_header(pss, pss->pss_channel, block, |
| offset | RAM_SAVE_FLAG_PAGE)); |
| if (async) { |
| qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, |
| migrate_release_ram() && |
| migration_in_postcopy()); |
| } else { |
| qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); |
| } |
| ram_transferred_add(TARGET_PAGE_SIZE); |
| stat64_add(&ram_counters.normal_pages, 1); |
| return 1; |
| } |
| |
| /** |
| * ram_save_page: send the given page to the stream |
| * |
| * Returns the number of pages written. |
| * < 0 - error |
| * >=0 - Number of pages written - this might legally be 0 |
| * if xbzrle noticed the page was the same. |
| * |
| * @rs: current RAM state |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| */ |
| static int ram_save_page(RAMState *rs, PageSearchStatus *pss) |
| { |
| int pages = -1; |
| uint8_t *p; |
| bool send_async = true; |
| RAMBlock *block = pss->block; |
| ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; |
| ram_addr_t current_addr = block->offset + offset; |
| |
| p = block->host + offset; |
| trace_ram_save_page(block->idstr, (uint64_t)offset, p); |
| |
| XBZRLE_cache_lock(); |
| if (rs->xbzrle_enabled && !migration_in_postcopy()) { |
| pages = save_xbzrle_page(rs, pss, &p, current_addr, |
| block, offset); |
| if (!rs->last_stage) { |
| /* Can't send this cached data async, since the cache page |
| * might get updated before it gets to the wire |
| */ |
| send_async = false; |
| } |
| } |
| |
| /* XBZRLE overflow or normal page */ |
| if (pages == -1) { |
| pages = save_normal_page(pss, block, offset, p, send_async); |
| } |
| |
| XBZRLE_cache_unlock(); |
| |
| return pages; |
| } |
| |
| static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block, |
| ram_addr_t offset) |
| { |
| if (multifd_queue_page(file, block, offset) < 0) { |
| return -1; |
| } |
| stat64_add(&ram_counters.normal_pages, 1); |
| |
| return 1; |
| } |
| |
| static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, |
| ram_addr_t offset, uint8_t *source_buf) |
| { |
| RAMState *rs = ram_state; |
| PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; |
| uint8_t *p = block->host + offset; |
| int ret; |
| |
| if (save_zero_page_to_file(pss, f, block, offset)) { |
| return true; |
| } |
| |
| save_page_header(pss, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); |
| |
| /* |
| * copy it to a internal buffer to avoid it being modified by VM |
| * so that we can catch up the error during compression and |
| * decompression |
| */ |
| memcpy(source_buf, p, TARGET_PAGE_SIZE); |
| ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); |
| if (ret < 0) { |
| qemu_file_set_error(migrate_get_current()->to_dst_file, ret); |
| error_report("compressed data failed!"); |
| } |
| return false; |
| } |
| |
| static void |
| update_compress_thread_counts(const CompressParam *param, int bytes_xmit) |
| { |
| ram_transferred_add(bytes_xmit); |
| |
| if (param->zero_page) { |
| stat64_add(&ram_counters.zero_pages, 1); |
| return; |
| } |
| |
| /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ |
| compression_counters.compressed_size += bytes_xmit - 8; |
| compression_counters.pages++; |
| } |
| |
| static bool save_page_use_compression(RAMState *rs); |
| |
| static void flush_compressed_data(RAMState *rs) |
| { |
| MigrationState *ms = migrate_get_current(); |
| int idx, len, thread_count; |
| |
| if (!save_page_use_compression(rs)) { |
| return; |
| } |
| thread_count = migrate_compress_threads(); |
| |
| qemu_mutex_lock(&comp_done_lock); |
| for (idx = 0; idx < thread_count; idx++) { |
| while (!comp_param[idx].done) { |
| qemu_cond_wait(&comp_done_cond, &comp_done_lock); |
| } |
| } |
| qemu_mutex_unlock(&comp_done_lock); |
| |
| for (idx = 0; idx < thread_count; idx++) { |
| qemu_mutex_lock(&comp_param[idx].mutex); |
| if (!comp_param[idx].quit) { |
| len = qemu_put_qemu_file(ms->to_dst_file, comp_param[idx].file); |
| /* |
| * it's safe to fetch zero_page without holding comp_done_lock |
| * as there is no further request submitted to the thread, |
| * i.e, the thread should be waiting for a request at this point. |
| */ |
| update_compress_thread_counts(&comp_param[idx], len); |
| } |
| qemu_mutex_unlock(&comp_param[idx].mutex); |
| } |
| } |
| |
| static inline void set_compress_params(CompressParam *param, RAMBlock *block, |
| ram_addr_t offset) |
| { |
| param->block = block; |
| param->offset = offset; |
| } |
| |
| static int compress_page_with_multi_thread(RAMBlock *block, ram_addr_t offset) |
| { |
| int idx, thread_count, bytes_xmit = -1, pages = -1; |
| bool wait = migrate_compress_wait_thread(); |
| MigrationState *ms = migrate_get_current(); |
| |
| thread_count = migrate_compress_threads(); |
| qemu_mutex_lock(&comp_done_lock); |
| retry: |
| for (idx = 0; idx < thread_count; idx++) { |
| if (comp_param[idx].done) { |
| comp_param[idx].done = false; |
| bytes_xmit = qemu_put_qemu_file(ms->to_dst_file, |
| comp_param[idx].file); |
| qemu_mutex_lock(&comp_param[idx].mutex); |
| set_compress_params(&comp_param[idx], block, offset); |
| qemu_cond_signal(&comp_param[idx].cond); |
| qemu_mutex_unlock(&comp_param[idx].mutex); |
| pages = 1; |
| update_compress_thread_counts(&comp_param[idx], bytes_xmit); |
| break; |
| } |
| } |
| |
| /* |
| * wait for the free thread if the user specifies 'compress-wait-thread', |
| * otherwise we will post the page out in the main thread as normal page. |
| */ |
| if (pages < 0 && wait) { |
| qemu_cond_wait(&comp_done_cond, &comp_done_lock); |
| goto retry; |
| } |
| qemu_mutex_unlock(&comp_done_lock); |
| |
| return pages; |
| } |
| |
| #define PAGE_ALL_CLEAN 0 |
| #define PAGE_TRY_AGAIN 1 |
| #define PAGE_DIRTY_FOUND 2 |
| /** |
| * find_dirty_block: find the next dirty page and update any state |
| * associated with the search process. |
| * |
| * Returns: |
| * PAGE_ALL_CLEAN: no dirty page found, give up |
| * PAGE_TRY_AGAIN: no dirty page found, retry for next block |
| * PAGE_DIRTY_FOUND: dirty page found |
| * |
| * @rs: current RAM state |
| * @pss: data about the state of the current dirty page scan |
| * @again: set to false if the search has scanned the whole of RAM |
| */ |
| static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) |
| { |
| /* Update pss->page for the next dirty bit in ramblock */ |
| pss_find_next_dirty(pss); |
| |
| if (pss->complete_round && pss->block == rs->last_seen_block && |
| pss->page >= rs->last_page) { |
| /* |
| * We've been once around the RAM and haven't found anything. |
| * Give up. |
| */ |
| return PAGE_ALL_CLEAN; |
| } |
| if (!offset_in_ramblock(pss->block, |
| ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { |
| /* Didn't find anything in this RAM Block */ |
| pss->page = 0; |
| pss->block = QLIST_NEXT_RCU(pss->block, next); |
| if (!pss->block) { |
| /* |
| * If memory migration starts over, we will meet a dirtied page |
| * which may still exists in compression threads's ring, so we |
| * should flush the compressed data to make sure the new page |
| * is not overwritten by the old one in the destination. |
| * |
| * Also If xbzrle is on, stop using the data compression at this |
| * point. In theory, xbzrle can do better than compression. |
| */ |
| flush_compressed_data(rs); |
| |
| /* Hit the end of the list */ |
| pss->block = QLIST_FIRST_RCU(&ram_list.blocks); |
| /* Flag that we've looped */ |
| pss->complete_round = true; |
| /* After the first round, enable XBZRLE. */ |
| if (migrate_use_xbzrle()) { |
| rs->xbzrle_enabled = true; |
| } |
| } |
| /* Didn't find anything this time, but try again on the new block */ |
| return PAGE_TRY_AGAIN; |
| } else { |
| /* We've found something */ |
| return PAGE_DIRTY_FOUND; |
| } |
| } |
| |
| /** |
| * unqueue_page: gets a page of the queue |
| * |
| * Helper for 'get_queued_page' - gets a page off the queue |
| * |
| * Returns the block of the page (or NULL if none available) |
| * |
| * @rs: current RAM state |
| * @offset: used to return the offset within the RAMBlock |
| */ |
| static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) |
| { |
| struct RAMSrcPageRequest *entry; |
| RAMBlock *block = NULL; |
| |
| if (!postcopy_has_request(rs)) { |
| return NULL; |
| } |
| |
| QEMU_LOCK_GUARD(&rs->src_page_req_mutex); |
| |
| /* |
| * This should _never_ change even after we take the lock, because no one |
| * should be taking anything off the request list other than us. |
| */ |
| assert(postcopy_has_request(rs)); |
| |
| entry = QSIMPLEQ_FIRST(&rs->src_page_requests); |
| block = entry->rb; |
| *offset = entry->offset; |
| |
| if (entry->len > TARGET_PAGE_SIZE) { |
| entry->len -= TARGET_PAGE_SIZE; |
| entry->offset += TARGET_PAGE_SIZE; |
| } else { |
| memory_region_unref(block->mr); |
| QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); |
| g_free(entry); |
| migration_consume_urgent_request(); |
| } |
| |
| return block; |
| } |
| |
| #if defined(__linux__) |
| /** |
| * poll_fault_page: try to get next UFFD write fault page and, if pending fault |
| * is found, return RAM block pointer and page offset |
| * |
| * Returns pointer to the RAMBlock containing faulting page, |
| * NULL if no write faults are pending |
| * |
| * @rs: current RAM state |
| * @offset: page offset from the beginning of the block |
| */ |
| static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) |
| { |
| struct uffd_msg uffd_msg; |
| void *page_address; |
| RAMBlock *block; |
| int res; |
| |
| if (!migrate_background_snapshot()) { |
| return NULL; |
| } |
| |
| res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); |
| if (res <= 0) { |
| return NULL; |
| } |
| |
| page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; |
| block = qemu_ram_block_from_host(page_address, false, offset); |
| assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); |
| return block; |
| } |
| |
| /** |
| * ram_save_release_protection: release UFFD write protection after |
| * a range of pages has been saved |
| * |
| * @rs: current RAM state |
| * @pss: page-search-status structure |
| * @start_page: index of the first page in the range relative to pss->block |
| * |
| * Returns 0 on success, negative value in case of an error |
| */ |
| static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, |
| unsigned long start_page) |
| { |
| int res = 0; |
| |
| /* Check if page is from UFFD-managed region. */ |
| if (pss->block->flags & RAM_UF_WRITEPROTECT) { |
| void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); |
| uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; |
| |
| /* Flush async buffers before un-protect. */ |
| qemu_fflush(pss->pss_channel); |
| /* Un-protect memory range. */ |
| res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, |
| false, false); |
| } |
| |
| return res; |
| } |
| |
| /* ram_write_tracking_available: check if kernel supports required UFFD features |
| * |
| * Returns true if supports, false otherwise |
| */ |
| bool ram_write_tracking_available(void) |
| { |
| uint64_t uffd_features; |
| int res; |
| |
| res = uffd_query_features(&uffd_features); |
| return (res == 0 && |
| (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); |
| } |
| |
| /* ram_write_tracking_compatible: check if guest configuration is |
| * compatible with 'write-tracking' |
| * |
| * Returns true if compatible, false otherwise |
| */ |
| bool ram_write_tracking_compatible(void) |
| { |
| const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); |
| int uffd_fd; |
| RAMBlock *block; |
| bool ret = false; |
| |
| /* Open UFFD file descriptor */ |
| uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); |
| if (uffd_fd < 0) { |
| return false; |
| } |
| |
| RCU_READ_LOCK_GUARD(); |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| uint64_t uffd_ioctls; |
| |
| /* Nothing to do with read-only and MMIO-writable regions */ |
| if (block->mr->readonly || block->mr->rom_device) { |
| continue; |
| } |
| /* Try to register block memory via UFFD-IO to track writes */ |
| if (uffd_register_memory(uffd_fd, block->host, block->max_length, |
| UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { |
| goto out; |
| } |
| if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { |
| goto out; |
| } |
| } |
| ret = true; |
| |
| out: |
| uffd_close_fd(uffd_fd); |
| return ret; |
| } |
| |
| static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, |
| ram_addr_t size) |
| { |
| const ram_addr_t end = offset + size; |
| |
| /* |
| * We read one byte of each page; this will preallocate page tables if |
| * required and populate the shared zeropage on MAP_PRIVATE anonymous memory |
| * where no page was populated yet. This might require adaption when |
| * supporting other mappings, like shmem. |
| */ |
| for (; offset < end; offset += block->page_size) { |
| char tmp = *((char *)block->host + offset); |
| |
| /* Don't optimize the read out */ |
| asm volatile("" : "+r" (tmp)); |
| } |
| } |
| |
| static inline int populate_read_section(MemoryRegionSection *section, |
| void *opaque) |
| { |
| const hwaddr size = int128_get64(section->size); |
| hwaddr offset = section->offset_within_region; |
| RAMBlock *block = section->mr->ram_block; |
| |
| populate_read_range(block, offset, size); |
| return 0; |
| } |
| |
| /* |
| * ram_block_populate_read: preallocate page tables and populate pages in the |
| * RAM block by reading a byte of each page. |
| * |
| * Since it's solely used for userfault_fd WP feature, here we just |
| * hardcode page size to qemu_real_host_page_size. |
| * |
| * @block: RAM block to populate |
| */ |
| static void ram_block_populate_read(RAMBlock *rb) |
| { |
| /* |
| * Skip populating all pages that fall into a discarded range as managed by |
| * a RamDiscardManager responsible for the mapped memory region of the |
| * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock |
| * must not get populated automatically. We don't have to track |
| * modifications via userfaultfd WP reliably, because these pages will |
| * not be part of the migration stream either way -- see |
| * ramblock_dirty_bitmap_exclude_discarded_pages(). |
| * |
| * Note: The result is only stable while migrating (precopy/postcopy). |
| */ |
| if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { |
| RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); |
| MemoryRegionSection section = { |
| .mr = rb->mr, |
| .offset_within_region = 0, |
| .size = rb->mr->size, |
| }; |
| |
| ram_discard_manager_replay_populated(rdm, §ion, |
| populate_read_section, NULL); |
| } else { |
| populate_read_range(rb, 0, rb->used_length); |
| } |
| } |
| |
| /* |
| * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking |
| */ |
| void ram_write_tracking_prepare(void) |
| { |
| RAMBlock *block; |
| |
| RCU_READ_LOCK_GUARD(); |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| /* Nothing to do with read-only and MMIO-writable regions */ |
| if (block->mr->readonly || block->mr->rom_device) { |
| continue; |
| } |
| |
| /* |
| * Populate pages of the RAM block before enabling userfault_fd |
| * write protection. |
| * |
| * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with |
| * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip |
| * pages with pte_none() entries in page table. |
| */ |
| ram_block_populate_read(block); |
| } |
| } |
| |
| static inline int uffd_protect_section(MemoryRegionSection *section, |
| void *opaque) |
| { |
| const hwaddr size = int128_get64(section->size); |
| const hwaddr offset = section->offset_within_region; |
| RAMBlock *rb = section->mr->ram_block; |
| int uffd_fd = (uintptr_t)opaque; |
| |
| return uffd_change_protection(uffd_fd, rb->host + offset, size, true, |
| false); |
| } |
| |
| static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) |
| { |
| assert(rb->flags & RAM_UF_WRITEPROTECT); |
| |
| /* See ram_block_populate_read() */ |
| if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { |
| RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); |
| MemoryRegionSection section = { |
| .mr = rb->mr, |
| .offset_within_region = 0, |
| .size = rb->mr->size, |
| }; |
| |
| return ram_discard_manager_replay_populated(rdm, §ion, |
| uffd_protect_section, |
| (void *)(uintptr_t)uffd_fd); |
| } |
| return uffd_change_protection(uffd_fd, rb->host, |
| rb->used_length, true, false); |
| } |
| |
| /* |
| * ram_write_tracking_start: start UFFD-WP memory tracking |
| * |
| * Returns 0 for success or negative value in case of error |
| */ |
| int ram_write_tracking_start(void) |
| { |
| int uffd_fd; |
| RAMState *rs = ram_state; |
| RAMBlock *block; |
| |
| /* Open UFFD file descriptor */ |
| uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); |
| if (uffd_fd < 0) { |
| return uffd_fd; |
| } |
| rs->uffdio_fd = uffd_fd; |
| |
| RCU_READ_LOCK_GUARD(); |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| /* Nothing to do with read-only and MMIO-writable regions */ |
| if (block->mr->readonly || block->mr->rom_device) { |
| continue; |
| } |
| |
| /* Register block memory with UFFD to track writes */ |
| if (uffd_register_memory(rs->uffdio_fd, block->host, |
| block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { |
| goto fail; |
| } |
| block->flags |= RAM_UF_WRITEPROTECT; |
| memory_region_ref(block->mr); |
| |
| /* Apply UFFD write protection to the block memory range */ |
| if (ram_block_uffd_protect(block, uffd_fd)) { |
| goto fail; |
| } |
| |
| trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, |
| block->host, block->max_length); |
| } |
| |
| return 0; |
| |
| fail: |
| error_report("ram_write_tracking_start() failed: restoring initial memory state"); |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { |
| continue; |
| } |
| uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); |
| /* Cleanup flags and remove reference */ |
| block->flags &= ~RAM_UF_WRITEPROTECT; |
| memory_region_unref(block->mr); |
| } |
| |
| uffd_close_fd(uffd_fd); |
| rs->uffdio_fd = -1; |
| return -1; |
| } |
| |
| /** |
| * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection |
| */ |
| void ram_write_tracking_stop(void) |
| { |
| RAMState *rs = ram_state; |
| RAMBlock *block; |
| |
| RCU_READ_LOCK_GUARD(); |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { |
| continue; |
| } |
| uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); |
| |
| trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, |
| block->host, block->max_length); |
| |
| /* Cleanup flags and remove reference */ |
| block->flags &= ~RAM_UF_WRITEPROTECT; |
| memory_region_unref(block->mr); |
| } |
| |
| /* Finally close UFFD file descriptor */ |
| uffd_close_fd(rs->uffdio_fd); |
| rs->uffdio_fd = -1; |
| } |
| |
| #else |
| /* No target OS support, stubs just fail or ignore */ |
| |
| static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) |
| { |
| (void) rs; |
| (void) offset; |
| |
| return NULL; |
| } |
| |
| static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, |
| unsigned long start_page) |
| { |
| (void) rs; |
| (void) pss; |
| (void) start_page; |
| |
| return 0; |
| } |
| |
| bool ram_write_tracking_available(void) |
| { |
| return false; |
| } |
| |
| bool ram_write_tracking_compatible(void) |
| { |
| assert(0); |
| return false; |
| } |
| |
| int ram_write_tracking_start(void) |
| { |
| assert(0); |
| return -1; |
| } |
| |
| void ram_write_tracking_stop(void) |
| { |
| assert(0); |
| } |
| #endif /* defined(__linux__) */ |
| |
| /** |
| * get_queued_page: unqueue a page from the postcopy requests |
| * |
| * Skips pages that are already sent (!dirty) |
| * |
| * Returns true if a queued page is found |
| * |
| * @rs: current RAM state |
| * @pss: data about the state of the current dirty page scan |
| */ |
| static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) |
| { |
| RAMBlock *block; |
| ram_addr_t offset; |
| bool dirty; |
| |
| do { |
| block = unqueue_page(rs, &offset); |
| /* |
| * We're sending this page, and since it's postcopy nothing else |
| * will dirty it, and we must make sure it doesn't get sent again |
| * even if this queue request was received after the background |
| * search already sent it. |
| */ |
| if (block) { |
| unsigned long page; |
| |
| page = offset >> TARGET_PAGE_BITS; |
| dirty = test_bit(page, block->bmap); |
| if (!dirty) { |
| trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, |
| page); |
| } else { |
| trace_get_queued_page(block->idstr, (uint64_t)offset, page); |
| } |
| } |
| |
| } while (block && !dirty); |
| |
| if (!block) { |
| /* |
| * Poll write faults too if background snapshot is enabled; that's |
| * when we have vcpus got blocked by the write protected pages. |
| */ |
| block = poll_fault_page(rs, &offset); |
| } |
| |
| if (block) { |
| /* |
| * We want the background search to continue from the queued page |
| * since the guest is likely to want other pages near to the page |
| * it just requested. |
| */ |
| pss->block = block; |
| pss->page = offset >> TARGET_PAGE_BITS; |
| |
| /* |
| * This unqueued page would break the "one round" check, even is |
| * really rare. |
| */ |
| pss->complete_round = false; |
| } |
| |
| return !!block; |
| } |
| |
| /** |
| * migration_page_queue_free: drop any remaining pages in the ram |
| * request queue |
| * |
| * It should be empty at the end anyway, but in error cases there may |
| * be some left. in case that there is any page left, we drop it. |
| * |
| */ |
| static void migration_page_queue_free(RAMState *rs) |
| { |
| struct RAMSrcPageRequest *mspr, *next_mspr; |
| /* This queue generally should be empty - but in the case of a failed |
| * migration might have some droppings in. |
| */ |
| RCU_READ_LOCK_GUARD(); |
| QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { |
| memory_region_unref(mspr->rb->mr); |
| QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); |
| g_free(mspr); |
| } |
| } |
| |
| /** |
| * ram_save_queue_pages: queue the page for transmission |
| * |
| * A request from postcopy destination for example. |
| * |
| * Returns zero on success or negative on error |
| * |
| * @rbname: Name of the RAMBLock of the request. NULL means the |
| * same that last one. |
| * @start: starting address from the start of the RAMBlock |
| * @len: length (in bytes) to send |
| */ |
| int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) |
| { |
| RAMBlock *ramblock; |
| RAMState *rs = ram_state; |
| |
| stat64_add(&ram_counters.postcopy_requests, 1); |
| RCU_READ_LOCK_GUARD(); |
| |
| if (!rbname) { |
| /* Reuse last RAMBlock */ |
| ramblock = rs->last_req_rb; |
| |
| if (!ramblock) { |
| /* |
| * Shouldn't happen, we can't reuse the last RAMBlock if |
| * it's the 1st request. |
| */ |
| error_report("ram_save_queue_pages no previous block"); |
| return -1; |
| } |
| } else { |
| ramblock = qemu_ram_block_by_name(rbname); |
| |
| if (!ramblock) { |
| /* We shouldn't be asked for a non-existent RAMBlock */ |
| error_report("ram_save_queue_pages no block '%s'", rbname); |
| return -1; |
| } |
| rs->last_req_rb = ramblock; |
| } |
| trace_ram_save_queue_pages(ramblock->idstr, start, len); |
| if (!offset_in_ramblock(ramblock, start + len - 1)) { |
| error_report("%s request overrun start=" RAM_ADDR_FMT " len=" |
| RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, |
| __func__, start, len, ramblock->used_length); |
| return -1; |
| } |
| |
| /* |
| * When with postcopy preempt, we send back the page directly in the |
| * rp-return thread. |
| */ |
| if (postcopy_preempt_active()) { |
| ram_addr_t page_start = start >> TARGET_PAGE_BITS; |
| size_t page_size = qemu_ram_pagesize(ramblock); |
| PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; |
| int ret = 0; |
| |
| qemu_mutex_lock(&rs->bitmap_mutex); |
| |
| pss_init(pss, ramblock, page_start); |
| /* |
| * Always use the preempt channel, and make sure it's there. It's |
| * safe to access without lock, because when rp-thread is running |
| * we should be the only one who operates on the qemufile |
| */ |
| pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; |
| assert(pss->pss_channel); |
| |
| /* |
| * It must be either one or multiple of host page size. Just |
| * assert; if something wrong we're mostly split brain anyway. |
| */ |
| assert(len % page_size == 0); |
| while (len) { |
| if (ram_save_host_page_urgent(pss)) { |
| error_report("%s: ram_save_host_page_urgent() failed: " |
| "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, |
| __func__, ramblock->idstr, start); |
| ret = -1; |
| break; |
| } |
| /* |
| * NOTE: after ram_save_host_page_urgent() succeeded, pss->page |
| * will automatically be moved and point to the next host page |
| * we're going to send, so no need to update here. |
| * |
| * Normally QEMU never sends >1 host page in requests, so |
| * logically we don't even need that as the loop should only |
| * run once, but just to be consistent. |
| */ |
| len -= page_size; |
| }; |
| qemu_mutex_unlock(&rs->bitmap_mutex); |
| |
| return ret; |
| } |
| |
| struct RAMSrcPageRequest *new_entry = |
| g_new0(struct RAMSrcPageRequest, 1); |
| new_entry->rb = ramblock; |
| new_entry->offset = start; |
| new_entry->len = len; |
| |
| memory_region_ref(ramblock->mr); |
| qemu_mutex_lock(&rs->src_page_req_mutex); |
| QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); |
| migration_make_urgent_request(); |
| qemu_mutex_unlock(&rs->src_page_req_mutex); |
| |
| return 0; |
| } |
| |
| static bool save_page_use_compression(RAMState *rs) |
| { |
| if (!migrate_compress()) { |
| return false; |
| } |
| |
| /* |
| * If xbzrle is enabled (e.g., after first round of migration), stop |
| * using the data compression. In theory, xbzrle can do better than |
| * compression. |
| */ |
| if (rs->xbzrle_enabled) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* |
| * try to compress the page before posting it out, return true if the page |
| * has been properly handled by compression, otherwise needs other |
| * paths to handle it |
| */ |
| static bool save_compress_page(RAMState *rs, PageSearchStatus *pss, |
| RAMBlock *block, ram_addr_t offset) |
| { |
| if (!save_page_use_compression(rs)) { |
| return false; |
| } |
| |
| /* |
| * When starting the process of a new block, the first page of |
| * the block should be sent out before other pages in the same |
| * block, and all the pages in last block should have been sent |
| * out, keeping this order is important, because the 'cont' flag |
| * is used to avoid resending the block name. |
| * |
| * We post the fist page as normal page as compression will take |
| * much CPU resource. |
| */ |
| if (block != pss->last_sent_block) { |
| flush_compressed_data(rs); |
| return false; |
| } |
| |
| if (compress_page_with_multi_thread(block, offset) > 0) { |
| return true; |
| } |
| |
| compression_counters.busy++; |
| return false; |
| } |
| |
| /** |
| * ram_save_target_page_legacy: save one target page |
| * |
| * Returns the number of pages written |
| * |
| * @rs: current RAM state |
| * @pss: data about the page we want to send |
| */ |
| static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss) |
| { |
| RAMBlock *block = pss->block; |
| ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; |
| int res; |
| |
| if (control_save_page(pss, block, offset, &res)) { |
| return res; |
| } |
| |
| if (save_compress_page(rs, pss, block, offset)) { |
| return 1; |
| } |
| |
| res = save_zero_page(pss, pss->pss_channel, block, offset); |
| if (res > 0) { |
| /* Must let xbzrle know, otherwise a previous (now 0'd) cached |
| * page would be stale |
| */ |
| if (rs->xbzrle_enabled) { |
| XBZRLE_cache_lock(); |
| xbzrle_cache_zero_page(rs, block->offset + offset); |
| XBZRLE_cache_unlock(); |
| } |
| return res; |
| } |
| |
| /* |
| * Do not use multifd in postcopy as one whole host page should be |
| * placed. Meanwhile postcopy requires atomic update of pages, so even |
| * if host page size == guest page size the dest guest during run may |
| * still see partially copied pages which is data corruption. |
| */ |
| if (migrate_use_multifd() && !migration_in_postcopy()) { |
| return ram_save_multifd_page(pss->pss_channel, block, offset); |
| } |
| |
| return ram_save_page(rs, pss); |
| } |
| |
| /* Should be called before sending a host page */ |
| static void pss_host_page_prepare(PageSearchStatus *pss) |
| { |
| /* How many guest pages are there in one host page? */ |
| size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; |
| |
| pss->host_page_sending = true; |
| if (guest_pfns <= 1) { |
| /* |
| * This covers both when guest psize == host psize, or when guest |
| * has larger psize than the host (guest_pfns==0). |
| * |
| * For the latter, we always send one whole guest page per |
| * iteration of the host page (example: an Alpha VM on x86 host |
| * will have guest psize 8K while host psize 4K). |
| */ |
| pss->host_page_start = pss->page; |
| pss->host_page_end = pss->page + 1; |
| } else { |
| /* |
| * The host page spans over multiple guest pages, we send them |
| * within the same host page iteration. |
| */ |
| pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); |
| pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); |
| } |
| } |
| |
| /* |
| * Whether the page pointed by PSS is within the host page being sent. |
| * Must be called after a previous pss_host_page_prepare(). |
| */ |
| static bool pss_within_range(PageSearchStatus *pss) |
| { |
| ram_addr_t ram_addr; |
| |
| assert(pss->host_page_sending); |
| |
| /* Over host-page boundary? */ |
| if (pss->page >= pss->host_page_end) { |
| return false; |
| } |
| |
| ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; |
| |
| return offset_in_ramblock(pss->block, ram_addr); |
| } |
| |
| static void pss_host_page_finish(PageSearchStatus *pss) |
| { |
| pss->host_page_sending = false; |
| /* This is not needed, but just to reset it */ |
| pss->host_page_start = pss->host_page_end = 0; |
| } |
| |
| /* |
| * Send an urgent host page specified by `pss'. Need to be called with |
| * bitmap_mutex held. |
| * |
| * Returns 0 if save host page succeeded, false otherwise. |
| */ |
| static int ram_save_host_page_urgent(PageSearchStatus *pss) |
| { |
| bool page_dirty, sent = false; |
| RAMState *rs = ram_state; |
| int ret = 0; |
| |
| trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); |
| pss_host_page_prepare(pss); |
| |
| /* |
| * If precopy is sending the same page, let it be done in precopy, or |
| * we could send the same page in two channels and none of them will |
| * receive the whole page. |
| */ |
| if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { |
| trace_postcopy_preempt_hit(pss->block->idstr, |
| pss->page << TARGET_PAGE_BITS); |
| return 0; |
| } |
| |
| do { |
| page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); |
| |
| if (page_dirty) { |
| /* Be strict to return code; it must be 1, or what else? */ |
| if (migration_ops->ram_save_target_page(rs, pss) != 1) { |
| error_report_once("%s: ram_save_target_page failed", __func__); |
| ret = -1; |
| goto out; |
| } |
| sent = true; |
| } |
| pss_find_next_dirty(pss); |
| } while (pss_within_range(pss)); |
| out: |
| pss_host_page_finish(pss); |
| /* For urgent requests, flush immediately if sent */ |
| if (sent) { |
| qemu_fflush(pss->pss_channel); |
| } |
| return ret; |
| } |
| |
| /** |
| * ram_save_host_page: save a whole host page |
| * |
| * Starting at *offset send pages up to the end of the current host |
| * page. It's valid for the initial offset to point into the middle of |
| * a host page in which case the remainder of the hostpage is sent. |
| * Only dirty target pages are sent. Note that the host page size may |
| * be a huge page for this block. |
| * |
| * The saving stops at the boundary of the used_length of the block |
| * if the RAMBlock isn't a multiple of the host page size. |
| * |
| * The caller must be with ram_state.bitmap_mutex held to call this |
| * function. Note that this function can temporarily release the lock, but |
| * when the function is returned it'll make sure the lock is still held. |
| * |
| * Returns the number of pages written or negative on error |
| * |
| * @rs: current RAM state |
| * @pss: data about the page we want to send |
| */ |
| static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) |
| { |
| bool page_dirty, preempt_active = postcopy_preempt_active(); |
| int tmppages, pages = 0; |
| size_t pagesize_bits = |
| qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; |
| unsigned long start_page = pss->page; |
| int res; |
| |
| if (ramblock_is_ignored(pss->block)) { |
| error_report("block %s should not be migrated !", pss->block->idstr); |
| return 0; |
| } |
| |
| /* Update host page boundary information */ |
| pss_host_page_prepare(pss); |
| |
| do { |
| page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); |
| |
| /* Check the pages is dirty and if it is send it */ |
| if (page_dirty) { |
| /* |
| * Properly yield the lock only in postcopy preempt mode |
| * because both migration thread and rp-return thread can |
| * operate on the bitmaps. |
| */ |
| if (preempt_active) { |
| qemu_mutex_unlock(&rs->bitmap_mutex); |
| } |
| tmppages = migration_ops->ram_save_target_page(rs, pss); |
| if (tmppages >= 0) { |
| pages += tmppages; |
| /* |
| * Allow rate limiting to happen in the middle of huge pages if |
| * something is sent in the current iteration. |
| */ |
| if (pagesize_bits > 1 && tmppages > 0) { |
| migration_rate_limit(); |
| } |
| } |
| if (preempt_active) { |
| qemu_mutex_lock(&rs->bitmap_mutex); |
| } |
| } else { |
| tmppages = 0; |
| } |
| |
| if (tmppages < 0) { |
| pss_host_page_finish(pss); |
| return tmppages; |
| } |
| |
| pss_find_next_dirty(pss); |
| } while (pss_within_range(pss)); |
| |
| pss_host_page_finish(pss); |
| |
| res = ram_save_release_protection(rs, pss, start_page); |
| return (res < 0 ? res : pages); |
| } |
| |
| /** |
| * ram_find_and_save_block: finds a dirty page and sends it to f |
| * |
| * Called within an RCU critical section. |
| * |
| * Returns the number of pages written where zero means no dirty pages, |
| * or negative on error |
| * |
| * @rs: current RAM state |
| * |
| * On systems where host-page-size > target-page-size it will send all the |
| * pages in a host page that are dirty. |
| */ |
| static int ram_find_and_save_block(RAMState *rs) |
| { |
| PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; |
| int pages = 0; |
| |
| /* No dirty page as there is zero RAM */ |
| if (!rs->ram_bytes_total) { |
| return pages; |
| } |
| |
| /* |
| * Always keep last_seen_block/last_page valid during this procedure, |
| * because find_dirty_block() relies on these values (e.g., we compare |
| * last_seen_block with pss.block to see whether we searched all the |
| * ramblocks) to detect the completion of migration. Having NULL value |
| * of last_seen_block can conditionally cause below loop to run forever. |
| */ |
| if (!rs->last_seen_block) { |
| rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); |
| rs->last_page = 0; |
| } |
| |
| pss_init(pss, rs->last_seen_block, rs->last_page); |
| |
| while (true){ |
| if (!get_queued_page(rs, pss)) { |
| /* priority queue empty, so just search for something dirty */ |
| int res = find_dirty_block(rs, pss); |
| if (res != PAGE_DIRTY_FOUND) { |
| if (res == PAGE_ALL_CLEAN) { |
| break; |
| } else if (res == PAGE_TRY_AGAIN) { |
| continue; |
| } |
| } |
| } |
| pages = ram_save_host_page(rs, pss); |
| if (pages) { |
| break; |
| } |
| } |
| |
| rs->last_seen_block = pss->block; |
| rs->last_page = pss->page; |
| |
| return pages; |
| } |
| |
| void acct_update_position(QEMUFile *f, size_t size, bool zero) |
| { |
| uint64_t pages = size / TARGET_PAGE_SIZE; |
| |
| if (zero) { |
| stat64_add(&ram_counters.zero_pages, pages); |
| } else { |
| stat64_add(&ram_counters.normal_pages, pages); |
| ram_transferred_add(size); |
| qemu_file_credit_transfer(f, size); |
| } |
| } |
| |
| static uint64_t ram_bytes_total_with_ignored(void) |
| { |
| RAMBlock *block; |
| uint64_t total = 0; |
| |
| RCU_READ_LOCK_GUARD(); |
| |
| RAMBLOCK_FOREACH_MIGRATABLE(block) { |
| total += block->used_length; |
| } |
| return total; |
| } |
| |
| uint64_t ram_bytes_total(void) |
| { |
| RAMBlock *block; |
| uint64_t total = 0; |
| |
| RCU_READ_LOCK_GUARD(); |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| total += block->used_length; |
| } |
| return total; |
| } |
| |
| static void xbzrle_load_setup(void) |
| { |
| XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); |
| } |
| |
| static void xbzrle_load_cleanup(void) |
| { |
| g_free(XBZRLE.decoded_buf); |
| XBZRLE.decoded_buf = NULL; |
| } |
| |
| static void ram_state_cleanup(RAMState **rsp) |
| { |
| if (*rsp) { |
| migration_page_queue_free(*rsp); |
| qemu_mutex_destroy(&(*rsp)->bitmap_mutex); |
| qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); |
| g_free(*rsp); |
| *rsp = NULL; |
| } |
| } |
| |
| static void xbzrle_cleanup(void) |
| { |
| XBZRLE_cache_lock(); |
| if (XBZRLE.cache) { |
| cache_fini(XBZRLE.cache); |
| g_free(XBZRLE.encoded_buf); |
| g_free(XBZRLE.current_buf); |
| g_free(XBZRLE.zero_target_page); |
| XBZRLE.cache = NULL; |
| XBZRLE.encoded_buf = NULL; |
| XBZRLE.current_buf = NULL; |
| XBZRLE.zero_target_page = NULL; |
| } |
| XBZRLE_cache_unlock(); |
| } |
| |
| static void ram_save_cleanup(void *opaque) |
| { |
| RAMState **rsp = opaque; |
| RAMBlock *block; |
| |
| /* We don't use dirty log with background snapshots */ |
| if (!migrate_background_snapshot()) { |
| /* caller have hold iothread lock or is in a bh, so there is |
| * no writing race against the migration bitmap |
| */ |
| if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { |
| /* |
| * do not stop dirty log without starting it, since |
| * memory_global_dirty_log_stop will assert that |
| * memory_global_dirty_log_start/stop used in pairs |
| */ |
| memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); |
| } |
| } |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| g_free(block->clear_bmap); |
| block->clear_bmap = NULL; |
| g_free(block->bmap); |
| block->bmap = NULL; |
| } |
| |
| xbzrle_cleanup(); |
| compress_threads_save_cleanup(); |
| ram_state_cleanup(rsp); |
| g_free(migration_ops); |
| migration_ops = NULL; |
| } |
| |
| static void ram_state_reset(RAMState *rs) |
| { |
| int i; |
| |
| for (i = 0; i < RAM_CHANNEL_MAX; i++) { |
| rs->pss[i].last_sent_block = NULL; |
| } |
| |
| rs->last_seen_block = NULL; |
| rs->last_page = 0; |
| rs->last_version = ram_list.version; |
| rs->xbzrle_enabled = false; |
| } |
| |
| #define MAX_WAIT 50 /* ms, half buffered_file limit */ |
| |
| /* **** functions for postcopy ***** */ |
| |
| void ram_postcopy_migrated_memory_release(MigrationState *ms) |
| { |
| struct RAMBlock *block; |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| unsigned long *bitmap = block->bmap; |
| unsigned long range = block->used_length >> TARGET_PAGE_BITS; |
| unsigned long run_start = find_next_zero_bit(bitmap, range, 0); |
| |
| while (run_start < range) { |
| unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); |
| ram_discard_range(block->idstr, |
| ((ram_addr_t)run_start) << TARGET_PAGE_BITS, |
| ((ram_addr_t)(run_end - run_start)) |
| << TARGET_PAGE_BITS); |
| run_start = find_next_zero_bit(bitmap, range, run_end + 1); |
| } |
| } |
| } |
| |
| /** |
| * postcopy_send_discard_bm_ram: discard a RAMBlock |
| * |
| * Callback from postcopy_each_ram_send_discard for each RAMBlock |
| * |
| * @ms: current migration state |
| * @block: RAMBlock to discard |
| */ |
| static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) |
| { |
| unsigned long end = block->used_length >> TARGET_PAGE_BITS; |
| unsigned long current; |
| unsigned long *bitmap = block->bmap; |
| |
| for (current = 0; current < end; ) { |
| unsigned long one = find_next_bit(bitmap, end, current); |
| unsigned long zero, discard_length; |
| |
| if (one >= end) { |
| break; |
| } |
| |
| zero = find_next_zero_bit(bitmap, end, one + 1); |
| |
| if (zero >= end) { |
| discard_length = end - one; |
| } else { |
| discard_length = zero - one; |
| } |
| postcopy_discard_send_range(ms, one, discard_length); |
| current = one + discard_length; |
| } |
| } |
| |
| static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); |
| |
| /** |
| * postcopy_each_ram_send_discard: discard all RAMBlocks |
| * |
| * Utility for the outgoing postcopy code. |
| * Calls postcopy_send_discard_bm_ram for each RAMBlock |
| * passing it bitmap indexes and name. |
| * (qemu_ram_foreach_block ends up passing unscaled lengths |
| * which would mean postcopy code would have to deal with target page) |
| * |
| * @ms: current migration state |
| */ |
| static void postcopy_each_ram_send_discard(MigrationState *ms) |
| { |
| struct RAMBlock *block; |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| postcopy_discard_send_init(ms, block->idstr); |
| |
| /* |
| * Deal with TPS != HPS and huge pages. It discard any partially sent |
| * host-page size chunks, mark any partially dirty host-page size |
| * chunks as all dirty. In this case the host-page is the host-page |
| * for the particular RAMBlock, i.e. it might be a huge page. |
| */ |
| postcopy_chunk_hostpages_pass(ms, block); |
| |
| /* |
| * Postcopy sends chunks of bitmap over the wire, but it |
| * just needs indexes at this point, avoids it having |
| * target page specific code. |
| */ |
| postcopy_send_discard_bm_ram(ms, block); |
| postcopy_discard_send_finish(ms); |
| } |
| } |
| |
| /** |
| * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages |
| * |
| * Helper for postcopy_chunk_hostpages; it's called twice to |
| * canonicalize the two bitmaps, that are similar, but one is |
| * inverted. |
| * |
| * Postcopy requires that all target pages in a hostpage are dirty or |
| * clean, not a mix. This function canonicalizes the bitmaps. |
| * |
| * @ms: current migration state |
| * @block: block that contains the page we want to canonicalize |
| */ |
| static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) |
| { |
| RAMState *rs = ram_state; |
| unsigned long *bitmap = block->bmap; |
| unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; |
| unsigned long pages = block->used_length >> TARGET_PAGE_BITS; |
| unsigned long run_start; |
| |
| if (block->page_size == TARGET_PAGE_SIZE) { |
| /* Easy case - TPS==HPS for a non-huge page RAMBlock */ |
| return; |
| } |
| |
| /* Find a dirty page */ |
| run_start = find_next_bit(bitmap, pages, 0); |
| |
| while (run_start < pages) { |
| |
| /* |
| * If the start of this run of pages is in the middle of a host |
| * page, then we need to fixup this host page. |
| */ |
| if (QEMU_IS_ALIGNED(run_start, host_ratio)) { |
| /* Find the end of this run */ |
| run_start = find_next_zero_bit(bitmap, pages, run_start + 1); |
| /* |
| * If the end isn't at the start of a host page, then the |
| * run doesn't finish at the end of a host page |
| * and we need to discard. |
| */ |
| } |
| |
| if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { |
| unsigned long page; |
| unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, |
| host_ratio); |
| run_start = QEMU_ALIGN_UP(run_start, host_ratio); |
| |
| /* Clean up the bitmap */ |
| for (page = fixup_start_addr; |
| page < fixup_start_addr + host_ratio; page++) { |
| /* |
| * Remark them as dirty, updating the count for any pages |
| * that weren't previously dirty. |
| */ |
| rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); |
| } |
| } |
| |
| /* Find the next dirty page for the next iteration */ |
| run_start = find_next_bit(bitmap, pages, run_start); |
| } |
| } |
| |
| /** |
| * ram_postcopy_send_discard_bitmap: transmit the discard bitmap |
| * |
| * Transmit the set of pages to be discarded after precopy to the target |
| * these are pages that: |
| * a) Have been previously transmitted but are now dirty again |
| * b) Pages that have never been transmitted, this ensures that |
| * any pages on the destination that have been mapped by background |
| * tasks get discarded (transparent huge pages is the specific concern) |
| * Hopefully this is pretty sparse |
| * |
| * @ms: current migration state |
| */ |
| void ram_postcopy_send_discard_bitmap(MigrationState *ms) |
| { |
| RAMState *rs = ram_state; |
| |
| RCU_READ_LOCK_GUARD(); |
| |
| /* This should be our last sync, the src is now paused */ |
| migration_bitmap_sync(rs); |
| |
| /* Easiest way to make sure we don't resume in the middle of a host-page */ |
| rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; |
| rs->last_seen_block = NULL; |
| rs->last_page = 0; |
| |
| postcopy_each_ram_send_discard(ms); |
| |
| trace_ram_postcopy_send_discard_bitmap(); |
| } |
| |
| /** |
| * ram_discard_range: discard dirtied pages at the beginning of postcopy |
| * |
| * Returns zero on success |
| * |
| * @rbname: name of the RAMBlock of the request. NULL means the |
| * same that last one. |
| * @start: RAMBlock starting page |
| * @length: RAMBlock size |
| */ |
| int ram_discard_range(const char *rbname, uint64_t start, size_t length) |
| { |
| trace_ram_discard_range(rbname, start, length); |
| |
| RCU_READ_LOCK_GUARD(); |
| RAMBlock *rb = qemu_ram_block_by_name(rbname); |
| |
| if (!rb) { |
| error_report("ram_discard_range: Failed to find block '%s'", rbname); |
| return -1; |
| } |
| |
| /* |
| * On source VM, we don't need to update the received bitmap since |
| * we don't even have one. |
| */ |
| if (rb->receivedmap) { |
| bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), |
| length >> qemu_target_page_bits()); |
| } |
| |
| return ram_block_discard_range(rb, start, length); |
| } |
| |
| /* |
| * For every allocation, we will try not to crash the VM if the |
| * allocation failed. |
| */ |
| static int xbzrle_init(void) |
| { |
| Error *local_err = NULL; |
| |
| if (!migrate_use_xbzrle()) { |
| return 0; |
| } |
| |
| XBZRLE_cache_lock(); |
| |
| XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); |
| if (!XBZRLE.zero_target_page) { |
| error_report("%s: Error allocating zero page", __func__); |
| goto err_out; |
| } |
| |
| XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), |
| TARGET_PAGE_SIZE, &local_err); |
| if (!XBZRLE.cache) { |
| error_report_err(local_err); |
| goto free_zero_page; |
| } |
| |
| XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); |
| if (!XBZRLE.encoded_buf) { |
| error_report("%s: Error allocating encoded_buf", __func__); |
| goto free_cache; |
| } |
| |
| XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); |
| if (!XBZRLE.current_buf) { |
| error_report("%s: Error allocating current_buf", __func__); |
| goto free_encoded_buf; |
| } |
| |
| /* We are all good */ |
| XBZRLE_cache_unlock(); |
| return 0; |
| |
| free_encoded_buf: |
| g_free(XBZRLE.encoded_buf); |
| XBZRLE.encoded_buf = NULL; |
| free_cache: |
| cache_fini(XBZRLE.cache); |
| XBZRLE.cache = NULL; |
| free_zero_page: |
| g_free(XBZRLE.zero_target_page); |
| XBZRLE.zero_target_page = NULL; |
| err_out: |
| XBZRLE_cache_unlock(); |
| return -ENOMEM; |
| } |
| |
| static int ram_state_init(RAMState **rsp) |
| { |
| *rsp = g_try_new0(RAMState, 1); |
| |
| if (!*rsp) { |
| error_report("%s: Init ramstate fail", __func__); |
| return -1; |
| } |
| |
| qemu_mutex_init(&(*rsp)->bitmap_mutex); |
| qemu_mutex_init(&(*rsp)->src_page_req_mutex); |
| QSIMPLEQ_INIT(&(*rsp)->src_page_requests); |
| (*rsp)->ram_bytes_total = ram_bytes_total(); |
| |
| /* |
| * Count the total number of pages used by ram blocks not including any |
| * gaps due to alignment or unplugs. |
| * This must match with the initial values of dirty bitmap. |
| */ |
| (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; |
| ram_state_reset(*rsp); |
| |
| return 0; |
| } |
| |
| static void ram_list_init_bitmaps(void) |
| { |
| MigrationState *ms = migrate_get_current(); |
| RAMBlock *block; |
| unsigned long pages; |
| uint8_t shift; |
| |
| /* Skip setting bitmap if there is no RAM */ |
| if (ram_bytes_total()) { |
| shift = ms->clear_bitmap_shift; |
| if (shift > CLEAR_BITMAP_SHIFT_MAX) { |
| error_report("clear_bitmap_shift (%u) too big, using " |
| "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); |
| shift = CLEAR_BITMAP_SHIFT_MAX; |
| } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { |
| error_report("clear_bitmap_shift (%u) too small, using " |
| "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); |
| shift = CLEAR_BITMAP_SHIFT_MIN; |
| } |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| pages = block->max_length >> TARGET_PAGE_BITS; |
| /* |
| * The initial dirty bitmap for migration must be set with all |
| * ones to make sure we'll migrate every guest RAM page to |
| * destination. |
| * Here we set RAMBlock.bmap all to 1 because when rebegin a |
| * new migration after a failed migration, ram_list. |
| * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole |
| * guest memory. |
| */ |
| block->bmap = bitmap_new(pages); |
| bitmap_set(block->bmap, 0, pages); |
| block->clear_bmap_shift = shift; |
| block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); |
| } |
| } |
| } |
| |
| static void migration_bitmap_clear_discarded_pages(RAMState *rs) |
| { |
| unsigned long pages; |
| RAMBlock *rb; |
| |
| RCU_READ_LOCK_GUARD(); |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
| pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); |
| rs->migration_dirty_pages -= pages; |
| } |
| } |
| |
| static void ram_init_bitmaps(RAMState *rs) |
| { |
| /* For memory_global_dirty_log_start below. */ |
| qemu_mutex_lock_iothread(); |
| qemu_mutex_lock_ramlist(); |
| |
| WITH_RCU_READ_LOCK_GUARD() { |
| ram_list_init_bitmaps(); |
| /* We don't use dirty log with background snapshots */ |
| if (!migrate_background_snapshot()) { |
| memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); |
| migration_bitmap_sync_precopy(rs); |
| } |
| } |
| qemu_mutex_unlock_ramlist(); |
| qemu_mutex_unlock_iothread(); |
| |
| /* |
| * After an eventual first bitmap sync, fixup the initial bitmap |
| * containing all 1s to exclude any discarded pages from migration. |
| */ |
| migration_bitmap_clear_discarded_pages(rs); |
| } |
| |
| static int ram_init_all(RAMState **rsp) |
| { |
| if (ram_state_init(rsp)) { |
| return -1; |
| } |
| |
| if (xbzrle_init()) { |
| ram_state_cleanup(rsp); |
| return -1; |
| } |
| |
| ram_init_bitmaps(*rsp); |
| |
| return 0; |
| } |
| |
| static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) |
| { |
| RAMBlock *block; |
| uint64_t pages = 0; |
| |
| /* |
| * Postcopy is not using xbzrle/compression, so no need for that. |
| * Also, since source are already halted, we don't need to care |
| * about dirty page logging as well. |
| */ |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| pages += bitmap_count_one(block->bmap, |
| block->used_length >> TARGET_PAGE_BITS); |
| } |
| |
| /* This may not be aligned with current bitmaps. Recalculate. */ |
| rs->migration_dirty_pages = pages; |
| |
| ram_state_reset(rs); |
| |
| /* Update RAMState cache of output QEMUFile */ |
| rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; |
| |
| trace_ram_state_resume_prepare(pages); |
| } |
| |
| /* |
| * This function clears bits of the free pages reported by the caller from the |
| * migration dirty bitmap. @addr is the host address corresponding to the |
| * start of the continuous guest free pages, and @len is the total bytes of |
| * those pages. |
| */ |
| void qemu_guest_free_page_hint(void *addr, size_t len) |
| { |
| RAMBlock *block; |
| ram_addr_t offset; |
| size_t used_len, start, npages; |
| MigrationState *s = migrate_get_current(); |
| |
| /* This function is currently expected to be used during live migration */ |
| if (!migration_is_setup_or_active(s->state)) { |
| return; |
| } |
| |
| for (; len > 0; len -= used_len, addr += used_len) { |
| block = qemu_ram_block_from_host(addr, false, &offset); |
| if (unlikely(!block || offset >= block->used_length)) { |
| /* |
| * The implementation might not support RAMBlock resize during |
| * live migration, but it could happen in theory with future |
| * updates. So we add a check here to capture that case. |
| */ |
| error_report_once("%s unexpected error", __func__); |
| return; |
| } |
| |
| if (len <= block->used_length - offset) { |
| used_len = len; |
| } else { |
| used_len = block->used_length - offset; |
| } |
| |
| start = offset >> TARGET_PAGE_BITS; |
| npages = used_len >> TARGET_PAGE_BITS; |
| |
| qemu_mutex_lock(&ram_state->bitmap_mutex); |
| /* |
| * The skipped free pages are equavalent to be sent from clear_bmap's |
| * perspective, so clear the bits from the memory region bitmap which |
| * are initially set. Otherwise those skipped pages will be sent in |
| * the next round after syncing from the memory region bitmap. |
| */ |
| migration_clear_memory_region_dirty_bitmap_range(block, start, npages); |
| ram_state->migration_dirty_pages -= |
| bitmap_count_one_with_offset(block->bmap, start, npages); |
| bitmap_clear(block->bmap, start, npages); |
| qemu_mutex_unlock(&ram_state->bitmap_mutex); |
| } |
| } |
| |
| /* |
| * Each of ram_save_setup, ram_save_iterate and ram_save_complete has |
| * long-running RCU critical section. When rcu-reclaims in the code |
| * start to become numerous it will be necessary to reduce the |
| * granularity of these critical sections. |
| */ |
| |
| /** |
| * ram_save_setup: Setup RAM for migration |
| * |
| * Returns zero to indicate success and negative for error |
| * |
| * @f: QEMUFile where to send the data |
| * @opaque: RAMState pointer |
| */ |
| static int ram_save_setup(QEMUFile *f, void *opaque) |
| { |
| RAMState **rsp = opaque; |
| RAMBlock *block; |
| int ret; |
| |
| if (compress_threads_save_setup()) { |
| return -1; |
| } |
| |
| /* migration has already setup the bitmap, reuse it. */ |
| if (!migration_in_colo_state()) { |
| if (ram_init_all(rsp) != 0) { |
| compress_threads_save_cleanup(); |
| return -1; |
| } |
| } |
| (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; |
| |
| WITH_RCU_READ_LOCK_GUARD() { |
| qemu_put_be64(f, ram_bytes_total_with_ignored() |
| | RAM_SAVE_FLAG_MEM_SIZE); |
| |
| RAMBLOCK_FOREACH_MIGRATABLE(block) { |
| qemu_put_byte(f, strlen(block->idstr)); |
| qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); |
| qemu_put_be64(f, block->used_length); |
| if (migrate_postcopy_ram() && block->page_size != |
| qemu_host_page_size) { |
| qemu_put_be64(f, block->page_size); |
| } |
| if (migrate_ignore_shared()) { |
| qemu_put_be64(f, block->mr->addr); |
| } |
| } |
| } |
| |
| ram_control_before_iterate(f, RAM_CONTROL_SETUP); |
| ram_control_after_iterate(f, RAM_CONTROL_SETUP); |
| |
| migration_ops = g_malloc0(sizeof(MigrationOps)); |
| migration_ops->ram_save_target_page = ram_save_target_page_legacy; |
| ret = multifd_send_sync_main(f); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
| qemu_fflush(f); |
| |
| return 0; |
| } |
| |
| /** |
| * ram_save_iterate: iterative stage for migration |
| * |
| * Returns zero to indicate success and negative for error |
| * |
| * @f: QEMUFile where to send the data |
| * @opaque: RAMState pointer |
| */ |
| static int ram_save_iterate(QEMUFile *f, void *opaque) |
| { |
| RAMState **temp = opaque; |
| RAMState *rs = *temp; |
| int ret = 0; |
| int i; |
| int64_t t0; |
| int done = 0; |
| |
| if (blk_mig_bulk_active()) { |
| /* Avoid transferring ram during bulk phase of block migration as |
| * the bulk phase will usually take a long time and transferring |
| * ram updates during that time is pointless. */ |
| goto out; |
| } |
| |
| /* |
| * We'll take this lock a little bit long, but it's okay for two reasons. |
| * Firstly, the only possible other thread to take it is who calls |
| * qemu_guest_free_page_hint(), which should be rare; secondly, see |
| * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which |
| * guarantees that we'll at least released it in a regular basis. |
| */ |
| qemu_mutex_lock(&rs->bitmap_mutex); |
| WITH_RCU_READ_LOCK_GUARD() { |
| if (ram_list.version != rs->last_version) { |
| ram_state_reset(rs); |
| } |
| |
| /* Read version before ram_list.blocks */ |
| smp_rmb(); |
| |
| ram_control_before_iterate(f, RAM_CONTROL_ROUND); |
| |
| t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
| i = 0; |
| while ((ret = qemu_file_rate_limit(f)) == 0 || |
| postcopy_has_request(rs)) { |
| int pages; |
| |
| if (qemu_file_get_error(f)) { |
| break; |
| } |
| |
| pages = ram_find_and_save_block(rs); |
| /* no more pages to sent */ |
| if (pages == 0) { |
| done = 1; |
| break; |
| } |
| |
| if (pages < 0) { |
| qemu_file_set_error(f, pages); |
| break; |
| } |
| |
| rs->target_page_count += pages; |
| |
| /* |
| * During postcopy, it is necessary to make sure one whole host |
| * page is sent in one chunk. |
| */ |
| if (migrate_postcopy_ram()) { |
| flush_compressed_data(rs); |
| } |
| |
| /* |
| * we want to check in the 1st loop, just in case it was the 1st |
| * time and we had to sync the dirty bitmap. |
| * qemu_clock_get_ns() is a bit expensive, so we only check each |
| * some iterations |
| */ |
| if ((i & 63) == 0) { |
| uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / |
| 1000000; |
| if (t1 > MAX_WAIT) { |
| trace_ram_save_iterate_big_wait(t1, i); |
| break; |
| } |
| } |
| i++; |
| } |
| } |
| qemu_mutex_unlock(&rs->bitmap_mutex); |
| |
| /* |
| * Must occur before EOS (or any QEMUFile operation) |
| * because of RDMA protocol. |
| */ |
| ram_control_after_iterate(f, RAM_CONTROL_ROUND); |
| |
| out: |
| if (ret >= 0 |
| && migration_is_setup_or_active(migrate_get_current()->state)) { |
| ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
| qemu_fflush(f); |
| ram_transferred_add(8); |
| |
| ret = qemu_file_get_error(f); |
| } |
| if (ret < 0) { |
| return ret; |
| } |
| |
| return done; |
| } |
| |
| /** |
| * ram_save_complete: function called to send the remaining amount of ram |
| * |
| * Returns zero to indicate success or negative on error |
| * |
| * Called with iothread lock |
| * |
| * @f: QEMUFile where to send the data |
| * @opaque: RAMState pointer |
| */ |
| static int ram_save_complete(QEMUFile *f, void *opaque) |
| { |
| RAMState **temp = opaque; |
| RAMState *rs = *temp; |
| int ret = 0; |
| |
| rs->last_stage = !migration_in_colo_state(); |
| |
| WITH_RCU_READ_LOCK_GUARD() { |
| if (!migration_in_postcopy()) { |
| migration_bitmap_sync_precopy(rs); |
| } |
| |
| ram_control_before_iterate(f, RAM_CONTROL_FINISH); |
| |
| /* try transferring iterative blocks of memory */ |
| |
| /* flush all remaining blocks regardless of rate limiting */ |
| qemu_mutex_lock(&rs->bitmap_mutex); |
| while (true) { |
| int pages; |
| |
| pages = ram_find_and_save_block(rs); |
| /* no more blocks to sent */ |
| if (pages == 0) { |
| break; |
| } |
| if (pages < 0) { |
| ret = pages; |
| break; |
| } |
| } |
| qemu_mutex_unlock(&rs->bitmap_mutex); |
| |
| flush_compressed_data(rs); |
| ram_control_after_iterate(f, RAM_CONTROL_FINISH); |
| } |
| |
| if (ret < 0) { |
| return ret; |
| } |
| |
| ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
| qemu_fflush(f); |
| |
| return 0; |
| } |
| |
| static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, |
| uint64_t *can_postcopy) |
| { |
| RAMState **temp = opaque; |
| RAMState *rs = *temp; |
| |
| uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; |
| |
| if (migrate_postcopy_ram()) { |
| /* We can do postcopy, and all the data is postcopiable */ |
| *can_postcopy += remaining_size; |
| } else { |
| *must_precopy += remaining_size; |
| } |
| } |
| |
| static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, |
| uint64_t *can_postcopy) |
| { |
| MigrationState *s = migrate_get_current(); |
| RAMState **temp = opaque; |
| RAMState *rs = *temp; |
| |
| uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; |
| |
| if (!migration_in_postcopy() && remaining_size < s->threshold_size) { |
| qemu_mutex_lock_iothread(); |
| WITH_RCU_READ_LOCK_GUARD() { |
| migration_bitmap_sync_precopy(rs); |
| } |
| qemu_mutex_unlock_iothread(); |
| remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; |
| } |
| |
| if (migrate_postcopy_ram()) { |
| /* We can do postcopy, and all the data is postcopiable */ |
| *can_postcopy += remaining_size; |
| } else { |
| *must_precopy += remaining_size; |
| } |
| } |
| |
| static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) |
| { |
| unsigned int xh_len; |
| int xh_flags; |
| uint8_t *loaded_data; |
| |
| /* extract RLE header */ |
| xh_flags = qemu_get_byte(f); |
| xh_len = qemu_get_be16(f); |
| |
| if (xh_flags != ENCODING_FLAG_XBZRLE) { |
| error_report("Failed to load XBZRLE page - wrong compression!"); |
| return -1; |
| } |
| |
| if (xh_len > TARGET_PAGE_SIZE) { |
| error_report("Failed to load XBZRLE page - len overflow!"); |
| return -1; |
| } |
| loaded_data = XBZRLE.decoded_buf; |
| /* load data and decode */ |
| /* it can change loaded_data to point to an internal buffer */ |
| qemu_get_buffer_in_place(f, &loaded_data, xh_len); |
| |
| /* decode RLE */ |
| if (xbzrle_decode_buffer(loaded_data, xh_len, host, |
| TARGET_PAGE_SIZE) == -1) { |
| error_report("Failed to load XBZRLE page - decode error!"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ram_block_from_stream: read a RAMBlock id from the migration stream |
| * |
| * Must be called from within a rcu critical section. |
| * |
| * Returns a pointer from within the RCU-protected ram_list. |
| * |
| * @mis: the migration incoming state pointer |
| * @f: QEMUFile where to read the data from |
| * @flags: Page flags (mostly to see if it's a continuation of previous block) |
| * @channel: the channel we're using |
| */ |
| static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, |
| QEMUFile *f, int flags, |
| int channel) |
| { |
| RAMBlock *block = mis->last_recv_block[channel]; |
| char id[256]; |
| uint8_t len; |
| |
| if (flags & RAM_SAVE_FLAG_CONTINUE) { |
| if (!block) { |
| error_report("Ack, bad migration stream!"); |
| return NULL; |
| } |
| return block; |
| } |
| |
| len = qemu_get_byte(f); |
| qemu_get_buffer(f, (uint8_t *)id, len); |
| id[len] = 0; |
| |
| block = qemu_ram_block_by_name(id); |
| if (!block) { |
| error_report("Can't find block %s", id); |
| return NULL; |
| } |
| |
| if (ramblock_is_ignored(block)) { |
| error_report("block %s should not be migrated !", id); |
| return NULL; |
| } |
| |
| mis->last_recv_block[channel] = block; |
| |
| return block; |
| } |
| |
| static inline void *host_from_ram_block_offset(RAMBlock *block, |
| ram_addr_t offset) |
| { |
| if (!offset_in_ramblock(block, offset)) { |
| return NULL; |
| } |
| |
| return block->host + offset; |
| } |
| |
| static void *host_page_from_ram_block_offset(RAMBlock *block, |
| ram_addr_t offset) |
| { |
| /* Note: Explicitly no check against offset_in_ramblock(). */ |
| return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), |
| block->page_size); |
| } |
| |
| static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, |
| ram_addr_t offset) |
| { |
| return ((uintptr_t)block->host + offset) & (block->page_size - 1); |
| } |
| |
| static inline void *colo_cache_from_block_offset(RAMBlock *block, |
| ram_addr_t offset, bool record_bitmap) |
| { |
| if (!offset_in_ramblock(block, offset)) { |
| return NULL; |
| } |
| if (!block->colo_cache) { |
| error_report("%s: colo_cache is NULL in block :%s", |
| __func__, block->idstr); |
| return NULL; |
| } |
| |
| /* |
| * During colo checkpoint, we need bitmap of these migrated pages. |
| * It help us to decide which pages in ram cache should be flushed |
| * into VM's RAM later. |
| */ |
| if (record_bitmap && |
| !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { |
| ram_state->migration_dirty_pages++; |
| } |
| return block->colo_cache + offset; |
| } |
| |
| /** |
| * ram_handle_compressed: handle the zero page case |
| * |
| * If a page (or a whole RDMA chunk) has been |
| * determined to be zero, then zap it. |
| * |
| * @host: host address for the zero page |
| * @ch: what the page is filled from. We only support zero |
| * @size: size of the zero page |
| */ |
| void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) |
| { |
| if (ch != 0 || !buffer_is_zero(host, size)) { |
| memset(host, ch, size); |
| } |
| } |
| |
| /* return the size after decompression, or negative value on error */ |
| static int |
| qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, |
| const uint8_t *source, size_t source_len) |
| { |
| int err; |
| |
| err = inflateReset(stream); |
| if (err != Z_OK) { |
| return -1; |
| } |
| |
| stream->avail_in = source_len; |
| stream->next_in = (uint8_t *)source; |
| stream->avail_out = dest_len; |
| stream->next_out = dest; |
| |
| err = inflate(stream, Z_NO_FLUSH); |
| if (err != Z_STREAM_END) { |
| return -1; |
| } |
| |
| return stream->total_out; |
| } |
| |
| static void *do_data_decompress(void *opaque) |
| { |
| DecompressParam *param = opaque; |
| unsigned long pagesize; |
| uint8_t *des; |
| int len, ret; |
| |
| qemu_mutex_lock(¶m->mutex); |
| while (!param->quit) { |
| if (param->des) { |
| des = param->des; |
| len = param->len; |
| param->des = 0; |
| qemu_mutex_unlock(¶m->mutex); |
| |
| pagesize = TARGET_PAGE_SIZE; |
| |
| ret = qemu_uncompress_data(¶m->stream, des, pagesize, |
| param->compbuf, len); |
| if (ret < 0 && migrate_get_current()->decompress_error_check) { |
| error_report("decompress data failed"); |
| qemu_file_set_error(decomp_file, ret); |
| } |
| |
| qemu_mutex_lock(&decomp_done_lock); |
| param->done = true; |
| qemu_cond_signal(&decomp_done_cond); |
| qemu_mutex_unlock(&decomp_done_lock); |
| |
| qemu_mutex_lock(¶m->mutex); |
| } else { |
| qemu_cond_wait(¶m->cond, ¶m->mutex); |
| } |
| } |
| qemu_mutex_unlock(¶m->mutex); |
| |
| return NULL; |
| } |
| |
| static int wait_for_decompress_done(void) |
| { |
| int idx, thread_count; |
| |
| if (!migrate_compress()) { |
| return 0; |
| } |
| |
| thread_count = migrate_decompress_threads(); |
| qemu_mutex_lock(&decomp_done_lock); |
| for (idx = 0; idx < thread_count; idx++) { |
| while (!decomp_param[idx].done) { |
| qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); |
| } |
| } |
| qemu_mutex_unlock(&decomp_done_lock); |
| return qemu_file_get_error(decomp_file); |
| } |
| |
| static void compress_threads_load_cleanup(void) |
| { |
| int i, thread_count; |
| |
| if (!migrate_compress()) { |
| return; |
| } |
| thread_count = migrate_decompress_threads(); |
| for (i = 0; i < thread_count; i++) { |
| /* |
| * we use it as a indicator which shows if the thread is |
| * properly init'd or not |
| */ |
| if (!decomp_param[i].compbuf) { |
| break; |
| } |
| |
| qemu_mutex_lock(&decomp_param[i].mutex); |
| decomp_param[i].quit = true; |
| qemu_cond_signal(&decomp_param[i].cond); |
| qemu_mutex_unlock(&decomp_param[i].mutex); |
| } |
| for (i = 0; i < thread_count; i++) { |
| if (!decomp_param[i].compbuf) { |
| break; |
| } |
| |
| qemu_thread_join(decompress_threads + i); |
| qemu_mutex_destroy(&decomp_param[i].mutex); |
| qemu_cond_destroy(&decomp_param[i].cond); |
| inflateEnd(&decomp_param[i].stream); |
| g_free(decomp_param[i].compbuf); |
| decomp_param[i].compbuf = NULL; |
| } |
| g_free(decompress_threads); |
| g_free(decomp_param); |
| decompress_threads = NULL; |
| decomp_param = NULL; |
| decomp_file = NULL; |
| } |
| |
| static int compress_threads_load_setup(QEMUFile *f) |
| { |
| int i, thread_count; |
| |
| if (!migrate_compress()) { |
| return 0; |
| } |
| |
| thread_count = migrate_decompress_threads(); |
| decompress_threads = g_new0(QemuThread, thread_count); |
| decomp_param = g_new0(DecompressParam, thread_count); |
| qemu_mutex_init(&decomp_done_lock); |
| qemu_cond_init(&decomp_done_cond); |
| decomp_file = f; |
| for (i = 0; i < thread_count; i++) { |
| if (inflateInit(&decomp_param[i].stream) != Z_OK) { |
| goto exit; |
| } |
| |
| decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); |
| qemu_mutex_init(&decomp_param[i].mutex); |
| qemu_cond_init(&decomp_param[i].cond); |
| decomp_param[i].done = true; |
| decomp_param[i].quit = false; |
| qemu_thread_create(decompress_threads + i, "decompress", |
| do_data_decompress, decomp_param + i, |
| QEMU_THREAD_JOINABLE); |
| } |
| return 0; |
| exit: |
| compress_threads_load_cleanup(); |
| return -1; |
| } |
| |
| static void decompress_data_with_multi_threads(QEMUFile *f, |
| void *host, int len) |
| { |
| int idx, thread_count; |
| |
| thread_count = migrate_decompress_threads(); |
| QEMU_LOCK_GUARD(&decomp_done_lock); |
| while (true) { |
| for (idx = 0; idx < thread_count; idx++) { |
| if (decomp_param[idx].done) { |
| decomp_param[idx].done = false; |
| qemu_mutex_lock(&decomp_param[idx].mutex); |
| qemu_get_buffer(f, decomp_param[idx].compbuf, len); |
| decomp_param[idx].des = host; |
| decomp_param[idx].len = len; |
| qemu_cond_signal(&decomp_param[idx].cond); |
| qemu_mutex_unlock(&decomp_param[idx].mutex); |
| break; |
| } |
| } |
| if (idx < thread_count) { |
| break; |
| } else { |
| qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); |
| } |
| } |
| } |
| |
| static void colo_init_ram_state(void) |
| { |
| ram_state_init(&ram_state); |
| } |
| |
| /* |
| * colo cache: this is for secondary VM, we cache the whole |
| * memory of the secondary VM, it is need to hold the global lock |
| * to call this helper. |
| */ |
| int colo_init_ram_cache(void) |
| { |
| RAMBlock *block; |
| |
| WITH_RCU_READ_LOCK_GUARD() { |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| block->colo_cache = qemu_anon_ram_alloc(block->used_length, |
| NULL, false, false); |
| if (!block->colo_cache) { |
| error_report("%s: Can't alloc memory for COLO cache of block %s," |
| "size 0x" RAM_ADDR_FMT, __func__, block->idstr, |
| block->used_length); |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| if (block->colo_cache) { |
| qemu_anon_ram_free(block->colo_cache, block->used_length); |
| block->colo_cache = NULL; |
| } |
| } |
| return -errno; |
| } |
| if (!machine_dump_guest_core(current_machine)) { |
| qemu_madvise(block->colo_cache, block->used_length, |
| QEMU_MADV_DONTDUMP); |
| } |
| } |
| } |
| |
| /* |
| * Record the dirty pages that sent by PVM, we use this dirty bitmap together |
| * with to decide which page in cache should be flushed into SVM's RAM. Here |
| * we use the same name 'ram_bitmap' as for migration. |
| */ |
| if (ram_bytes_total()) { |
| RAMBlock *block; |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| unsigned long pages = block->max_length >> TARGET_PAGE_BITS; |
| block->bmap = bitmap_new(pages); |
| } |
| } |
| |
| colo_init_ram_state(); |
| return 0; |
| } |
| |
| /* TODO: duplicated with ram_init_bitmaps */ |
| void colo_incoming_start_dirty_log(void) |
| { |
| RAMBlock *block = NULL; |
| /* For memory_global_dirty_log_start below. */ |
| qemu_mutex_lock_iothread(); |
| qemu_mutex_lock_ramlist(); |
| |
| memory_global_dirty_log_sync(); |
| WITH_RCU_READ_LOCK_GUARD() { |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| ramblock_sync_dirty_bitmap(ram_state, block); |
| /* Discard this dirty bitmap record */ |
| bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); |
| } |
| memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); |
| } |
| ram_state->migration_dirty_pages = 0; |
| qemu_mutex_unlock_ramlist(); |
| qemu_mutex_unlock_iothread(); |
| } |
| |
| /* It is need to hold the global lock to call this helper */ |
| void colo_release_ram_cache(void) |
| { |
| RAMBlock *block; |
| |
| memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| g_free(block->bmap); |
| block->bmap = NULL; |
| } |
| |
| WITH_RCU_READ_LOCK_GUARD() { |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| if (block->colo_cache) { |
| qemu_anon_ram_free(block->colo_cache, block->used_length); |
| block->colo_cache = NULL; |
| } |
| } |
| } |
| ram_state_cleanup(&ram_state); |
| } |
| |
| /** |
| * ram_load_setup: Setup RAM for migration incoming side |
| * |
| * Returns zero to indicate success and negative for error |
| * |
| * @f: QEMUFile where to receive the data |
| * @opaque: RAMState pointer |
| */ |
| static int ram_load_setup(QEMUFile *f, void *opaque) |
| { |
| if (compress_threads_load_setup(f)) { |
| return -1; |
| } |
| |
| xbzrle_load_setup(); |
| ramblock_recv_map_init(); |
| |
| return 0; |
| } |
| |
| static int ram_load_cleanup(void *opaque) |
| { |
| RAMBlock *rb; |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
| qemu_ram_block_writeback(rb); |
| } |
| |
| xbzrle_load_cleanup(); |
| compress_threads_load_cleanup(); |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
| g_free(rb->receivedmap); |
| rb->receivedmap = NULL; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ram_postcopy_incoming_init: allocate postcopy data structures |
| * |
| * Returns 0 for success and negative if there was one error |
| * |
| * @mis: current migration incoming state |
| * |
| * Allocate data structures etc needed by incoming migration with |
| * postcopy-ram. postcopy-ram's similarly names |
| * postcopy_ram_incoming_init does the work. |
| */ |
| int ram_postcopy_incoming_init(MigrationIncomingState *mis) |
| { |
| return postcopy_ram_incoming_init(mis); |
| } |
| |
| /** |
| * ram_load_postcopy: load a page in postcopy case |
| * |
| * Returns 0 for success or -errno in case of error |
| * |
| * Called in postcopy mode by ram_load(). |
| * rcu_read_lock is taken prior to this being called. |
| * |
| * @f: QEMUFile where to send the data |
| * @channel: the channel to use for loading |
| */ |
| int ram_load_postcopy(QEMUFile *f, int channel) |
| { |
| int flags = 0, ret = 0; |
| bool place_needed = false; |
| bool matches_target_page_size = false; |
| MigrationIncomingState *mis = migration_incoming_get_current(); |
| PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; |
| |
| while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { |
| ram_addr_t addr; |
| void *page_buffer = NULL; |
| void *place_source = NULL; |
| RAMBlock *block = NULL; |
| uint8_t ch; |
| int len; |
| |
| addr = qemu_get_be64(f); |
| |
| /* |
| * If qemu file error, we should stop here, and then "addr" |
| * may be invalid |
| */ |
| ret = qemu_file_get_error(f); |
| if (ret) { |
| break; |
| } |
| |
| flags = addr & ~TARGET_PAGE_MASK; |
| addr &= TARGET_PAGE_MASK; |
| |
| trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); |
| if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | |
| RAM_SAVE_FLAG_COMPRESS_PAGE)) { |
| block = ram_block_from_stream(mis, f, flags, channel); |
| if (!block) { |
| ret = -EINVAL; |
| break; |
| } |
| |
| /* |
| * Relying on used_length is racy and can result in false positives. |
| * We might place pages beyond used_length in case RAM was shrunk |
| * while in postcopy, which is fine - trying to place via |
| * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. |
| */ |
| if (!block->host || addr >= block->postcopy_length) { |
| error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); |
| ret = -EINVAL; |
| break; |
| } |
| tmp_page->target_pages++; |
| matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; |
| /* |
| * Postcopy requires that we place whole host pages atomically; |
| * these may be huge pages for RAMBlocks that are backed by |
| * hugetlbfs. |
| * To make it atomic, the data is read into a temporary page |
| * that's moved into place later. |
| * The migration protocol uses, possibly smaller, target-pages |
| * however the source ensures it always sends all the components |
| * of a host page in one chunk. |
| */ |
| page_buffer = tmp_page->tmp_huge_page + |
| host_page_offset_from_ram_block_offset(block, addr); |
| /* If all TP are zero then we can optimise the place */ |
| if (tmp_page->target_pages == 1) { |
| tmp_page->host_addr = |
| host_page_from_ram_block_offset(block, addr); |
| } else if (tmp_page->host_addr != |
| host_page_from_ram_block_offset(block, addr)) { |
| /* not the 1st TP within the HP */ |
| error_report("Non-same host page detected on channel %d: " |
| "Target host page %p, received host page %p " |
| "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", |
| channel, tmp_page->host_addr, |
| host_page_from_ram_block_offset(block, addr), |
| block->idstr, addr, tmp_page->target_pages); |
| ret = -EINVAL; |
| break; |
| } |
| |
| /* |
| * If it's the last part of a host page then we place the host |
| * page |
| */ |
| if (tmp_page->target_pages == |
| (block->page_size / TARGET_PAGE_SIZE)) { |
| place_needed = true; |
| } |
| place_source = tmp_page->tmp_huge_page; |
| } |
| |
| switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { |
| case RAM_SAVE_FLAG_ZERO: |
| ch = qemu_get_byte(f); |
| /* |
| * Can skip to set page_buffer when |
| * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). |
| */ |
| if (ch || !matches_target_page_size) { |
| memset(page_buffer, ch, TARGET_PAGE_SIZE); |
| } |
| if (ch) { |
| tmp_page->all_zero = false; |
| } |
| break; |
| |
| case RAM_SAVE_FLAG_PAGE: |
| tmp_page->all_zero = false; |
| if (!matches_target_page_size) { |
| /* For huge pages, we always use temporary buffer */ |
| qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); |
| } else { |
| /* |
| * For small pages that matches target page size, we |
| * avoid the qemu_file copy. Instead we directly use |
| * the buffer of QEMUFile to place the page. Note: we |
| * cannot do any QEMUFile operation before using that |
| * buffer to make sure the buffer is valid when |
| * placing the page. |
| */ |
| qemu_get_buffer_in_place(f, (uint8_t **)&place_source, |
| TARGET_PAGE_SIZE); |
| } |
| break; |
| case RAM_SAVE_FLAG_COMPRESS_PAGE: |
| tmp_page->all_zero = false; |
| len = qemu_get_be32(f); |
| if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { |
| error_report("Invalid compressed data length: %d", len); |
| ret = -EINVAL; |
| break; |
| } |
| decompress_data_with_multi_threads(f, page_buffer, len); |
| break; |
| |
| case RAM_SAVE_FLAG_EOS: |
| /* normal exit */ |
| multifd_recv_sync_main(); |
| break; |
| default: |
| error_report("Unknown combination of migration flags: 0x%x" |
| " (postcopy mode)", flags); |
| ret = -EINVAL; |
| break; |
| } |
| |
| /* Got the whole host page, wait for decompress before placing. */ |
| if (place_needed) { |
| ret |= wait_for_decompress_done(); |
| } |
| |
| /* Detect for any possible file errors */ |
| if (!ret && qemu_file_get_error(f)) { |
| ret = qemu_file_get_error(f); |
| } |
| |
| if (!ret && place_needed) { |
| if (tmp_page->all_zero) { |
| ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); |
| } else { |
| ret = postcopy_place_page(mis, tmp_page->host_addr, |
| place_source, block); |
| } |
| place_needed = false; |
| postcopy_temp_page_reset(tmp_page); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static bool postcopy_is_running(void) |
| { |
| PostcopyState ps = postcopy_state_get(); |
| return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; |
| } |
| |
| /* |
| * Flush content of RAM cache into SVM's memory. |
| * Only flush the pages that be dirtied by PVM or SVM or both. |
| */ |
| void colo_flush_ram_cache(void) |
| { |
| RAMBlock *block = NULL; |
| void *dst_host; |
| void *src_host; |
| unsigned long offset = 0; |
| |
| memory_global_dirty_log_sync(); |
| WITH_RCU_READ_LOCK_GUARD() { |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| ramblock_sync_dirty_bitmap(ram_state, block); |
| } |
| } |
| |
| trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); |
| WITH_RCU_READ_LOCK_GUARD() { |
| block = QLIST_FIRST_RCU(&ram_list.blocks); |
| |
| while (block) { |
| unsigned long num = 0; |
| |
| offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); |
| if (!offset_in_ramblock(block, |
| ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { |
| offset = 0; |
| num = 0; |
| block = QLIST_NEXT_RCU(block, next); |
| } else { |
| unsigned long i = 0; |
| |
| for (i = 0; i < num; i++) { |
| migration_bitmap_clear_dirty(ram_state, block, offset + i); |
| } |
| dst_host = block->host |
| + (((ram_addr_t)offset) << TARGET_PAGE_BITS); |
| src_host = block->colo_cache |
| + (((ram_addr_t)offset) << TARGET_PAGE_BITS); |
| memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); |
| offset += num; |
| } |
| } |
| } |
| trace_colo_flush_ram_cache_end(); |
| } |
| |
| /** |
| * ram_load_precopy: load pages in precopy case |
| * |
| * Returns 0 for success or -errno in case of error |
| * |
| * Called in precopy mode by ram_load(). |
| * rcu_read_lock is taken prior to this being called. |
| * |
| * @f: QEMUFile where to send the data |
| */ |
| static int ram_load_precopy(QEMUFile *f) |
| { |
| MigrationIncomingState *mis = migration_incoming_get_current(); |
| int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; |
| /* ADVISE is earlier, it shows the source has the postcopy capability on */ |
| bool postcopy_advised = migration_incoming_postcopy_advised(); |
| if (!migrate_compress()) { |
| invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; |
| } |
| |
| while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { |
| ram_addr_t addr, total_ram_bytes; |
| void *host = NULL, *host_bak = NULL; |
| uint8_t ch; |
| |
| /* |
| * Yield periodically to let main loop run, but an iteration of |
| * the main loop is expensive, so do it each some iterations |
| */ |
| if ((i & 32767) == 0 && qemu_in_coroutine()) { |
| aio_co_schedule(qemu_get_current_aio_context(), |
| qemu_coroutine_self()); |
| qemu_coroutine_yield(); |
| } |
| i++; |
| |
| addr = qemu_get_be64(f); |
| flags = addr & ~TARGET_PAGE_MASK; |
| addr &= TARGET_PAGE_MASK; |
| |
| if (flags & invalid_flags) { |
| if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { |
| error_report("Received an unexpected compressed page"); |
| } |
| |
| ret = -EINVAL; |
| break; |
| } |
| |
| if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | |
| RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { |
| RAMBlock *block = ram_block_from_stream(mis, f, flags, |
| RAM_CHANNEL_PRECOPY); |
| |
| host = host_from_ram_block_offset(block, addr); |
| /* |
| * After going into COLO stage, we should not load the page |
| * into SVM's memory directly, we put them into colo_cache firstly. |
| * NOTE: We need to keep a copy of SVM's ram in colo_cache. |
| * Previously, we copied all these memory in preparing stage of COLO |
| * while we need to stop VM, which is a time-consuming process. |
| * Here we optimize it by a trick, back-up every page while in |
| * migration process while COLO is enabled, though it affects the |
| * speed of the migration, but it obviously reduce the downtime of |
| * back-up all SVM'S memory in COLO preparing stage. |
| */ |
| if (migration_incoming_colo_enabled()) { |
| if (migration_incoming_in_colo_state()) { |
| /* In COLO stage, put all pages into cache temporarily */ |
| host = colo_cache_from_block_offset(block, addr, true); |
| } else { |
| /* |
| * In migration stage but before COLO stage, |
| * Put all pages into both cache and SVM's memory. |
| */ |
| host_bak = colo_cache_from_block_offset(block, addr, false); |
| } |
| } |
| if (!host) { |
| error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); |
| ret = -EINVAL; |
| break; |
| } |
| if (!migration_incoming_in_colo_state()) { |
| ramblock_recv_bitmap_set(block, host); |
| } |
| |
| trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); |
| } |
| |
| switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { |
| case RAM_SAVE_FLAG_MEM_SIZE: |
| /* Synchronize RAM block list */ |
| total_ram_bytes = addr; |
| while (!ret && total_ram_bytes) { |
| RAMBlock *block; |
| char id[256]; |
| ram_addr_t length; |
| |
| len = qemu_get_byte(f); |
| qemu_get_buffer(f, (uint8_t *)id, len); |
| id[len] = 0; |
| length = qemu_get_be64(f); |
| |
| block = qemu_ram_block_by_name(id); |
| if (block && !qemu_ram_is_migratable(block)) { |
| error_report("block %s should not be migrated !", id); |
| ret = -EINVAL; |
| } else if (block) { |
| if (length != block->used_length) { |
| Error *local_err = NULL; |
| |
| ret = qemu_ram_resize(block, length, |
| &local_err); |
| if (local_err) { |
| error_report_err(local_err); |
| } |
| } |
| /* For postcopy we need to check hugepage sizes match */ |
| if (postcopy_advised && migrate_postcopy_ram() && |
| block->page_size != qemu_host_page_size) { |
| uint64_t remote_page_size = qemu_get_be64(f); |
| if (remote_page_size != block->page_size) { |
| error_report("Mismatched RAM page size %s " |
| "(local) %zd != %" PRId64, |
| id, block->page_size, |
| remote_page_size); |
| ret = -EINVAL; |
| } |
| } |
| if (migrate_ignore_shared()) { |
| hwaddr addr = qemu_get_be64(f); |
| if (ramblock_is_ignored(block) && |
| block->mr->addr != addr) { |
| error_report("Mismatched GPAs for block %s " |
| "%" PRId64 "!= %" PRId64, |
| id, (uint64_t)addr, |
| (uint64_t)block->mr->addr); |
| ret = -EINVAL; |
| } |
| } |
| ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, |
| block->idstr); |
| } else { |
| error_report("Unknown ramblock \"%s\", cannot " |
| "accept migration", id); |
| ret = -EINVAL; |
| } |
| |
| total_ram_bytes -= length; |
| } |
| break; |
| |
| case RAM_SAVE_FLAG_ZERO: |
| ch = qemu_get_byte(f); |
| ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); |
| break; |
| |
| case RAM_SAVE_FLAG_PAGE: |
| qemu_get_buffer(f, host, TARGET_PAGE_SIZE); |
| break; |
| |
| case RAM_SAVE_FLAG_COMPRESS_PAGE: |
| len = qemu_get_be32(f); |
| if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { |
| error_report("Invalid compressed data length: %d", len); |
| ret = -EINVAL; |
| break; |
| } |
| decompress_data_with_multi_threads(f, host, len); |
| break; |
| |
| case RAM_SAVE_FLAG_XBZRLE: |
| if (load_xbzrle(f, addr, host) < 0) { |
| error_report("Failed to decompress XBZRLE page at " |
| RAM_ADDR_FMT, addr); |
| ret = -EINVAL; |
| break; |
| } |
| break; |
| case RAM_SAVE_FLAG_EOS: |
| /* normal exit */ |
| multifd_recv_sync_main(); |
| break; |
| default: |
| if (flags & RAM_SAVE_FLAG_HOOK) { |
| ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); |
| } else { |
| error_report("Unknown combination of migration flags: 0x%x", |
| flags); |
| ret = -EINVAL; |
| } |
| } |
| if (!ret) { |
| ret = qemu_file_get_error(f); |
| } |
| if (!ret && host_bak) { |
| memcpy(host_bak, host, TARGET_PAGE_SIZE); |
| } |
| } |
| |
| ret |= wait_for_decompress_done(); |
| return ret; |
| } |
| |
| static int ram_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| int ret = 0; |
| static uint64_t seq_iter; |
| /* |
| * If system is running in postcopy mode, page inserts to host memory must |
| * be atomic |
| */ |
| bool postcopy_running = postcopy_is_running(); |
| |
| seq_iter++; |
| |
| if (version_id != 4) { |
| return -EINVAL; |
| } |
| |
| /* |
| * This RCU critical section can be very long running. |
| * When RCU reclaims in the code start to become numerous, |
| * it will be necessary to reduce the granularity of this |
| * critical section. |
| */ |
| WITH_RCU_READ_LOCK_GUARD() { |
| if (postcopy_running) { |
| /* |
| * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of |
| * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to |
| * service fast page faults. |
| */ |
| ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); |
| } else { |
| ret = ram_load_precopy(f); |
| } |
| } |
| trace_ram_load_complete(ret, seq_iter); |
| |
| return ret; |
| } |
| |
| static bool ram_has_postcopy(void *opaque) |
| { |
| RAMBlock *rb; |
| RAMBLOCK_FOREACH_NOT_IGNORED(rb) { |
| if (ramblock_is_pmem(rb)) { |
| info_report("Block: %s, host: %p is a nvdimm memory, postcopy" |
| "is not supported now!", rb->idstr, rb->host); |
| return false; |
| } |
| } |
| |
| return migrate_postcopy_ram(); |
| } |
| |
| /* Sync all the dirty bitmap with destination VM. */ |
| static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) |
| { |
| RAMBlock *block; |
| QEMUFile *file = s->to_dst_file; |
| int ramblock_count = 0; |
| |
| trace_ram_dirty_bitmap_sync_start(); |
| |
| RAMBLOCK_FOREACH_NOT_IGNORED(block) { |
| qemu_savevm_send_recv_bitmap(file, block->idstr); |
| trace_ram_dirty_bitmap_request(block->idstr); |
| ramblock_count++; |
| } |
| |
| trace_ram_dirty_bitmap_sync_wait(); |
| |
| /* Wait until all the ramblocks' dirty bitmap synced */ |
| while (ramblock_count--) { |
| qemu_sem_wait(&s->rp_state.rp_sem); |
| } |
| |
| trace_ram_dirty_bitmap_sync_complete(); |
| |
| return 0; |
| } |
| |
| static void ram_dirty_bitmap_reload_notify(MigrationState *s) |
| { |
| qemu_sem_post(&s->rp_state.rp_sem); |
| } |
| |
| /* |
| * Read the received bitmap, revert it as the initial dirty bitmap. |
| * This is only used when the postcopy migration is paused but wants |
| * to resume from a middle point. |
| */ |
| int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) |
| { |
| int ret = -EINVAL; |
| /* from_dst_file is always valid because we're within rp_thread */ |
| QEMUFile *file = s->rp_state.from_dst_file; |
| unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; |
| uint64_t local_size = DIV_ROUND_UP(nbits, 8); |
| uint64_t size, end_mark; |
| |
| trace_ram_dirty_bitmap_reload_begin(block->idstr); |
| |
| if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { |
| error_report("%s: incorrect state %s", __func__, |
| MigrationStatus_str(s->state)); |
| return -EINVAL; |
| } |
| |
| /* |
| * Note: see comments in ramblock_recv_bitmap_send() on why we |
| * need the endianness conversion, and the paddings. |
| */ |
| local_size = ROUND_UP(local_size, 8); |
| |
| /* Add paddings */ |
| le_bitmap = bitmap_new(nbits + BITS_PER_LONG); |
| |
| size = qemu_get_be64(file); |
| |
| /* The size of the bitmap should match with our ramblock */ |
| if (size != local_size) { |
| error_report("%s: ramblock '%s' bitmap size mismatch " |
| "(0x%"PRIx64" != 0x%"PRIx64")", __func__, |
| block->idstr, size, local_size); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); |
| end_mark = qemu_get_be64(file); |
| |
| ret = qemu_file_get_error(file); |
| if (ret || size != local_size) { |
| error_report("%s: read bitmap failed for ramblock '%s': %d" |
| " (size 0x%"PRIx64", got: 0x%"PRIx64")", |
| __func__, block->idstr, ret, local_size, size); |
| ret = -EIO; |
| goto out; |
| } |
| |
| if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { |
| error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64, |
| __func__, block->idstr, end_mark); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* |
| * Endianness conversion. We are during postcopy (though paused). |
| * The dirty bitmap won't change. We can directly modify it. |
| */ |
| bitmap_from_le(block->bmap, le_bitmap, nbits); |
| |
| /* |
| * What we received is "received bitmap". Revert it as the initial |
| * dirty bitmap for this ramblock. |
| */ |
| bitmap_complement(block->bmap, block->bmap, nbits); |
| |
| /* Clear dirty bits of discarded ranges that we don't want to migrate. */ |
| ramblock_dirty_bitmap_clear_discarded_pages(block); |
| |
| /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ |
| trace_ram_dirty_bitmap_reload_complete(block->idstr); |
| |
| /* |
| * We succeeded to sync bitmap for current ramblock. If this is |
| * the last one to sync, we need to notify the main send thread. |
| */ |
| ram_dirty_bitmap_reload_notify(s); |
| |
| ret = 0; |
| out: |
| g_free(le_bitmap); |
| return ret; |
| } |
| |
| static int ram_resume_prepare(MigrationState *s, void *opaque) |
| { |
| RAMState *rs = *(RAMState **)opaque; |
| int ret; |
| |
| ret = ram_dirty_bitmap_sync_all(s, rs); |
| if (ret) { |
| return ret; |
| } |
| |
| ram_state_resume_prepare(rs, s->to_dst_file); |
| |
| return 0; |
| } |
| |
| void postcopy_preempt_shutdown_file(MigrationState *s) |
| { |
| qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); |
| qemu_fflush(s->postcopy_qemufile_src); |
| } |
| |
| static SaveVMHandlers savevm_ram_handlers = { |
| .save_setup = ram_save_setup, |
| .save_live_iterate = ram_save_iterate, |
| .save_live_complete_postcopy = ram_save_complete, |
| .save_live_complete_precopy = ram_save_complete, |
| .has_postcopy = ram_has_postcopy, |
| .state_pending_exact = ram_state_pending_exact, |
| .state_pending_estimate = ram_state_pending_estimate, |
| .load_state = ram_load, |
| .save_cleanup = ram_save_cleanup, |
| .load_setup = ram_load_setup, |
| .load_cleanup = ram_load_cleanup, |
| .resume_prepare = ram_resume_prepare, |
| }; |
| |
| static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, |
| size_t old_size, size_t new_size) |
| { |
| PostcopyState ps = postcopy_state_get(); |
| ram_addr_t offset; |
| RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); |
| Error *err = NULL; |
| |
| if (ramblock_is_ignored(rb)) { |
| return; |
| } |
| |
| if (!migration_is_idle()) { |
| /* |
| * Precopy code on the source cannot deal with the size of RAM blocks |
| * changing at random points in time - especially after sending the |
| * RAM block sizes in the migration stream, they must no longer change. |
| * Abort and indicate a proper reason. |
| */ |
| error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); |
| migration_cancel(err); |
| error_free(err); |
| } |
| |
| switch (ps) { |
| case POSTCOPY_INCOMING_ADVISE: |
| /* |
| * Update what ram_postcopy_incoming_init()->init_range() does at the |
| * time postcopy was advised. Syncing RAM blocks with the source will |
| * result in RAM resizes. |
| */ |
| if (old_size < new_size) { |
| if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { |
| error_report("RAM block '%s' discard of resized RAM failed", |
| rb->idstr); |
| } |
| } |
| rb->postcopy_length = new_size; |
| break; |
| case POSTCOPY_INCOMING_NONE: |
| case POSTCOPY_INCOMING_RUNNING: |
| case POSTCOPY_INCOMING_END: |
| /* |
| * Once our guest is running, postcopy does no longer care about |
| * resizes. When growing, the new memory was not available on the |
| * source, no handler needed. |
| */ |
| break; |
| default: |
| error_report("RAM block '%s' resized during postcopy state: %d", |
| rb->idstr, ps); |
| exit(-1); |
| } |
| } |
| |
| static RAMBlockNotifier ram_mig_ram_notifier = { |
| .ram_block_resized = ram_mig_ram_block_resized, |
| }; |
| |
| void ram_mig_init(void) |
| { |
| qemu_mutex_init(&XBZRLE.lock); |
| register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); |
| ram_block_notifier_add(&ram_mig_ram_notifier); |
| } |