|  | /* This is the Linux kernel elf-loading code, ported into user space */ | 
|  | #include "qemu/osdep.h" | 
|  | #include <sys/param.h> | 
|  |  | 
|  | #include <sys/prctl.h> | 
|  | #include <sys/resource.h> | 
|  | #include <sys/shm.h> | 
|  |  | 
|  | #include "qemu.h" | 
|  | #include "user/tswap-target.h" | 
|  | #include "exec/page-protection.h" | 
|  | #include "user/guest-base.h" | 
|  | #include "user-internals.h" | 
|  | #include "signal-common.h" | 
|  | #include "loader.h" | 
|  | #include "user-mmap.h" | 
|  | #include "disas/disas.h" | 
|  | #include "qemu/bitops.h" | 
|  | #include "qemu/path.h" | 
|  | #include "qemu/queue.h" | 
|  | #include "qemu/guest-random.h" | 
|  | #include "qemu/units.h" | 
|  | #include "qemu/selfmap.h" | 
|  | #include "qemu/lockable.h" | 
|  | #include "qapi/error.h" | 
|  | #include "qemu/error-report.h" | 
|  | #include "target_signal.h" | 
|  | #include "tcg/debuginfo.h" | 
|  |  | 
|  | #ifdef TARGET_ARM | 
|  | #include "target/arm/cpu-features.h" | 
|  | #endif | 
|  |  | 
|  | #ifdef _ARCH_PPC64 | 
|  | #undef ARCH_DLINFO | 
|  | #undef ELF_PLATFORM | 
|  | #undef ELF_HWCAP | 
|  | #undef ELF_HWCAP2 | 
|  | #undef ELF_CLASS | 
|  | #undef ELF_DATA | 
|  | #undef ELF_ARCH | 
|  | #endif | 
|  |  | 
|  | #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE | 
|  | #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0 | 
|  | #endif | 
|  |  | 
|  | typedef struct { | 
|  | const uint8_t *image; | 
|  | const uint32_t *relocs; | 
|  | unsigned image_size; | 
|  | unsigned reloc_count; | 
|  | unsigned sigreturn_ofs; | 
|  | unsigned rt_sigreturn_ofs; | 
|  | } VdsoImageInfo; | 
|  |  | 
|  | #define ELF_OSABI   ELFOSABI_SYSV | 
|  |  | 
|  | /* from personality.h */ | 
|  |  | 
|  | /* | 
|  | * Flags for bug emulation. | 
|  | * | 
|  | * These occupy the top three bytes. | 
|  | */ | 
|  | enum { | 
|  | ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */ | 
|  | FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to | 
|  | descriptors (signal handling) */ | 
|  | MMAP_PAGE_ZERO =    0x0100000, | 
|  | ADDR_COMPAT_LAYOUT = 0x0200000, | 
|  | READ_IMPLIES_EXEC = 0x0400000, | 
|  | ADDR_LIMIT_32BIT =  0x0800000, | 
|  | SHORT_INODE =       0x1000000, | 
|  | WHOLE_SECONDS =     0x2000000, | 
|  | STICKY_TIMEOUTS =   0x4000000, | 
|  | ADDR_LIMIT_3GB =    0x8000000, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Personality types. | 
|  | * | 
|  | * These go in the low byte.  Avoid using the top bit, it will | 
|  | * conflict with error returns. | 
|  | */ | 
|  | enum { | 
|  | PER_LINUX =         0x0000, | 
|  | PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT, | 
|  | PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS, | 
|  | PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | 
|  | PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE, | 
|  | PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, | 
|  | PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, | 
|  | PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE, | 
|  | PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS, | 
|  | PER_BSD =           0x0006, | 
|  | PER_SUNOS =         0x0006 | STICKY_TIMEOUTS, | 
|  | PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE, | 
|  | PER_LINUX32 =       0x0008, | 
|  | PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB, | 
|  | PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ | 
|  | PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ | 
|  | PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ | 
|  | PER_RISCOS =        0x000c, | 
|  | PER_SOLARIS =       0x000d | STICKY_TIMEOUTS, | 
|  | PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, | 
|  | PER_OSF4 =          0x000f,                  /* OSF/1 v4 */ | 
|  | PER_HPUX =          0x0010, | 
|  | PER_MASK =          0x00ff, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Return the base personality without flags. | 
|  | */ | 
|  | #define personality(pers)       (pers & PER_MASK) | 
|  |  | 
|  | int info_is_fdpic(struct image_info *info) | 
|  | { | 
|  | return info->personality == PER_LINUX_FDPIC; | 
|  | } | 
|  |  | 
|  | /* this flag is uneffective under linux too, should be deleted */ | 
|  | #ifndef MAP_DENYWRITE | 
|  | #define MAP_DENYWRITE 0 | 
|  | #endif | 
|  |  | 
|  | /* should probably go in elf.h */ | 
|  | #ifndef ELIBBAD | 
|  | #define ELIBBAD 80 | 
|  | #endif | 
|  |  | 
|  | #if TARGET_BIG_ENDIAN | 
|  | #define ELF_DATA        ELFDATA2MSB | 
|  | #else | 
|  | #define ELF_DATA        ELFDATA2LSB | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_ABI_MIPSN32 | 
|  | typedef abi_ullong      target_elf_greg_t; | 
|  | #define tswapreg(ptr)   tswap64(ptr) | 
|  | #else | 
|  | typedef abi_ulong       target_elf_greg_t; | 
|  | #define tswapreg(ptr)   tswapal(ptr) | 
|  | #endif | 
|  |  | 
|  | #ifdef USE_UID16 | 
|  | typedef abi_ushort      target_uid_t; | 
|  | typedef abi_ushort      target_gid_t; | 
|  | #else | 
|  | typedef abi_uint        target_uid_t; | 
|  | typedef abi_uint        target_gid_t; | 
|  | #endif | 
|  | typedef abi_int         target_pid_t; | 
|  |  | 
|  | #ifdef TARGET_I386 | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  |  | 
|  | static uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | X86CPU *cpu = X86_CPU(thread_cpu); | 
|  |  | 
|  | return cpu->env.features[FEAT_1_EDX]; | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_X86_64 | 
|  | #define ELF_CLASS      ELFCLASS64 | 
|  | #define ELF_ARCH       EM_X86_64 | 
|  |  | 
|  | #define ELF_PLATFORM   "x86_64" | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | 
|  | { | 
|  | regs->rax = 0; | 
|  | regs->rsp = infop->start_stack; | 
|  | regs->rip = infop->entry; | 
|  | } | 
|  |  | 
|  | #define ELF_NREG    27 | 
|  | typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | /* | 
|  | * Note that ELF_NREG should be 29 as there should be place for | 
|  | * TRAPNO and ERR "registers" as well but linux doesn't dump | 
|  | * those. | 
|  | * | 
|  | * See linux kernel: arch/x86/include/asm/elf.h | 
|  | */ | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) | 
|  | { | 
|  | (*regs)[0] = tswapreg(env->regs[15]); | 
|  | (*regs)[1] = tswapreg(env->regs[14]); | 
|  | (*regs)[2] = tswapreg(env->regs[13]); | 
|  | (*regs)[3] = tswapreg(env->regs[12]); | 
|  | (*regs)[4] = tswapreg(env->regs[R_EBP]); | 
|  | (*regs)[5] = tswapreg(env->regs[R_EBX]); | 
|  | (*regs)[6] = tswapreg(env->regs[11]); | 
|  | (*regs)[7] = tswapreg(env->regs[10]); | 
|  | (*regs)[8] = tswapreg(env->regs[9]); | 
|  | (*regs)[9] = tswapreg(env->regs[8]); | 
|  | (*regs)[10] = tswapreg(env->regs[R_EAX]); | 
|  | (*regs)[11] = tswapreg(env->regs[R_ECX]); | 
|  | (*regs)[12] = tswapreg(env->regs[R_EDX]); | 
|  | (*regs)[13] = tswapreg(env->regs[R_ESI]); | 
|  | (*regs)[14] = tswapreg(env->regs[R_EDI]); | 
|  | (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ | 
|  | (*regs)[16] = tswapreg(env->eip); | 
|  | (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); | 
|  | (*regs)[18] = tswapreg(env->eflags); | 
|  | (*regs)[19] = tswapreg(env->regs[R_ESP]); | 
|  | (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); | 
|  | (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); | 
|  | (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); | 
|  | (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); | 
|  | (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); | 
|  | (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); | 
|  | (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); | 
|  | } | 
|  |  | 
|  | #if ULONG_MAX > UINT32_MAX | 
|  | #define INIT_GUEST_COMMPAGE | 
|  | static bool init_guest_commpage(void) | 
|  | { | 
|  | /* | 
|  | * The vsyscall page is at a high negative address aka kernel space, | 
|  | * which means that we cannot actually allocate it with target_mmap. | 
|  | * We still should be able to use page_set_flags, unless the user | 
|  | * has specified -R reserved_va, which would trigger an assert(). | 
|  | */ | 
|  | if (reserved_va != 0 && | 
|  | TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) { | 
|  | error_report("Cannot allocate vsyscall page"); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | page_set_flags(TARGET_VSYSCALL_PAGE, | 
|  | TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK, | 
|  | PAGE_EXEC | PAGE_VALID); | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  | #else | 
|  |  | 
|  | /* | 
|  | * This is used to ensure we don't load something for the wrong architecture. | 
|  | */ | 
|  | #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) | 
|  |  | 
|  | /* | 
|  | * These are used to set parameters in the core dumps. | 
|  | */ | 
|  | #define ELF_CLASS       ELFCLASS32 | 
|  | #define ELF_ARCH        EM_386 | 
|  |  | 
|  | #define ELF_PLATFORM get_elf_platform() | 
|  | #define EXSTACK_DEFAULT true | 
|  |  | 
|  | static const char *get_elf_platform(void) | 
|  | { | 
|  | static char elf_platform[] = "i386"; | 
|  | int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); | 
|  | if (family > 6) { | 
|  | family = 6; | 
|  | } | 
|  | if (family >= 3) { | 
|  | elf_platform[1] = '0' + family; | 
|  | } | 
|  | return elf_platform; | 
|  | } | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->esp = infop->start_stack; | 
|  | regs->eip = infop->entry; | 
|  |  | 
|  | /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program | 
|  | starts %edx contains a pointer to a function which might be | 
|  | registered using `atexit'.  This provides a mean for the | 
|  | dynamic linker to call DT_FINI functions for shared libraries | 
|  | that have been loaded before the code runs. | 
|  |  | 
|  | A value of 0 tells we have no such handler.  */ | 
|  | regs->edx = 0; | 
|  | } | 
|  |  | 
|  | #define ELF_NREG    17 | 
|  | typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | /* | 
|  | * Note that ELF_NREG should be 19 as there should be place for | 
|  | * TRAPNO and ERR "registers" as well but linux doesn't dump | 
|  | * those. | 
|  | * | 
|  | * See linux kernel: arch/x86/include/asm/elf.h | 
|  | */ | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) | 
|  | { | 
|  | (*regs)[0] = tswapreg(env->regs[R_EBX]); | 
|  | (*regs)[1] = tswapreg(env->regs[R_ECX]); | 
|  | (*regs)[2] = tswapreg(env->regs[R_EDX]); | 
|  | (*regs)[3] = tswapreg(env->regs[R_ESI]); | 
|  | (*regs)[4] = tswapreg(env->regs[R_EDI]); | 
|  | (*regs)[5] = tswapreg(env->regs[R_EBP]); | 
|  | (*regs)[6] = tswapreg(env->regs[R_EAX]); | 
|  | (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); | 
|  | (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); | 
|  | (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); | 
|  | (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); | 
|  | (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ | 
|  | (*regs)[12] = tswapreg(env->eip); | 
|  | (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); | 
|  | (*regs)[14] = tswapreg(env->eflags); | 
|  | (*regs)[15] = tswapreg(env->regs[R_ESP]); | 
|  | (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * i386 is the only target which supplies AT_SYSINFO for the vdso. | 
|  | * All others only supply AT_SYSINFO_EHDR. | 
|  | */ | 
|  | #define DLINFO_ARCH_ITEMS (vdso_info != NULL) | 
|  | #define ARCH_DLINFO                                     \ | 
|  | do {                                                \ | 
|  | if (vdso_info) {                                \ | 
|  | NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry);  \ | 
|  | }                                               \ | 
|  | } while (0) | 
|  |  | 
|  | #endif /* TARGET_X86_64 */ | 
|  |  | 
|  | #define VDSO_HEADER "vdso.c.inc" | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE       4096 | 
|  |  | 
|  | #endif /* TARGET_I386 */ | 
|  |  | 
|  | #ifdef TARGET_ARM | 
|  |  | 
|  | #ifndef TARGET_AARCH64 | 
|  | /* 32 bit ARM definitions */ | 
|  |  | 
|  | #define ELF_ARCH        EM_ARM | 
|  | #define ELF_CLASS       ELFCLASS32 | 
|  | #define EXSTACK_DEFAULT true | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | abi_long stack = infop->start_stack; | 
|  | memset(regs, 0, sizeof(*regs)); | 
|  |  | 
|  | regs->uregs[16] = ARM_CPU_MODE_USR; | 
|  | if (infop->entry & 1) { | 
|  | regs->uregs[16] |= CPSR_T; | 
|  | } | 
|  | regs->uregs[15] = infop->entry & 0xfffffffe; | 
|  | regs->uregs[13] = infop->start_stack; | 
|  | /* FIXME - what to for failure of get_user()? */ | 
|  | get_user_ual(regs->uregs[2], stack + 8); /* envp */ | 
|  | get_user_ual(regs->uregs[1], stack + 4); /* envp */ | 
|  | /* XXX: it seems that r0 is zeroed after ! */ | 
|  | regs->uregs[0] = 0; | 
|  | /* For uClinux PIC binaries.  */ | 
|  | /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ | 
|  | regs->uregs[10] = infop->start_data; | 
|  |  | 
|  | /* Support ARM FDPIC.  */ | 
|  | if (info_is_fdpic(infop)) { | 
|  | /* As described in the ABI document, r7 points to the loadmap info | 
|  | * prepared by the kernel. If an interpreter is needed, r8 points | 
|  | * to the interpreter loadmap and r9 points to the interpreter | 
|  | * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and | 
|  | * r9 points to the main program PT_DYNAMIC info. | 
|  | */ | 
|  | regs->uregs[7] = infop->loadmap_addr; | 
|  | if (infop->interpreter_loadmap_addr) { | 
|  | /* Executable is dynamically loaded.  */ | 
|  | regs->uregs[8] = infop->interpreter_loadmap_addr; | 
|  | regs->uregs[9] = infop->interpreter_pt_dynamic_addr; | 
|  | } else { | 
|  | regs->uregs[8] = 0; | 
|  | regs->uregs[9] = infop->pt_dynamic_addr; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define ELF_NREG    18 | 
|  | typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) | 
|  | { | 
|  | (*regs)[0] = tswapreg(env->regs[0]); | 
|  | (*regs)[1] = tswapreg(env->regs[1]); | 
|  | (*regs)[2] = tswapreg(env->regs[2]); | 
|  | (*regs)[3] = tswapreg(env->regs[3]); | 
|  | (*regs)[4] = tswapreg(env->regs[4]); | 
|  | (*regs)[5] = tswapreg(env->regs[5]); | 
|  | (*regs)[6] = tswapreg(env->regs[6]); | 
|  | (*regs)[7] = tswapreg(env->regs[7]); | 
|  | (*regs)[8] = tswapreg(env->regs[8]); | 
|  | (*regs)[9] = tswapreg(env->regs[9]); | 
|  | (*regs)[10] = tswapreg(env->regs[10]); | 
|  | (*regs)[11] = tswapreg(env->regs[11]); | 
|  | (*regs)[12] = tswapreg(env->regs[12]); | 
|  | (*regs)[13] = tswapreg(env->regs[13]); | 
|  | (*regs)[14] = tswapreg(env->regs[14]); | 
|  | (*regs)[15] = tswapreg(env->regs[15]); | 
|  |  | 
|  | (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); | 
|  | (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE       4096 | 
|  |  | 
|  | enum | 
|  | { | 
|  | ARM_HWCAP_ARM_SWP       = 1 << 0, | 
|  | ARM_HWCAP_ARM_HALF      = 1 << 1, | 
|  | ARM_HWCAP_ARM_THUMB     = 1 << 2, | 
|  | ARM_HWCAP_ARM_26BIT     = 1 << 3, | 
|  | ARM_HWCAP_ARM_FAST_MULT = 1 << 4, | 
|  | ARM_HWCAP_ARM_FPA       = 1 << 5, | 
|  | ARM_HWCAP_ARM_VFP       = 1 << 6, | 
|  | ARM_HWCAP_ARM_EDSP      = 1 << 7, | 
|  | ARM_HWCAP_ARM_JAVA      = 1 << 8, | 
|  | ARM_HWCAP_ARM_IWMMXT    = 1 << 9, | 
|  | ARM_HWCAP_ARM_CRUNCH    = 1 << 10, | 
|  | ARM_HWCAP_ARM_THUMBEE   = 1 << 11, | 
|  | ARM_HWCAP_ARM_NEON      = 1 << 12, | 
|  | ARM_HWCAP_ARM_VFPv3     = 1 << 13, | 
|  | ARM_HWCAP_ARM_VFPv3D16  = 1 << 14, | 
|  | ARM_HWCAP_ARM_TLS       = 1 << 15, | 
|  | ARM_HWCAP_ARM_VFPv4     = 1 << 16, | 
|  | ARM_HWCAP_ARM_IDIVA     = 1 << 17, | 
|  | ARM_HWCAP_ARM_IDIVT     = 1 << 18, | 
|  | ARM_HWCAP_ARM_VFPD32    = 1 << 19, | 
|  | ARM_HWCAP_ARM_LPAE      = 1 << 20, | 
|  | ARM_HWCAP_ARM_EVTSTRM   = 1 << 21, | 
|  | ARM_HWCAP_ARM_FPHP      = 1 << 22, | 
|  | ARM_HWCAP_ARM_ASIMDHP   = 1 << 23, | 
|  | ARM_HWCAP_ARM_ASIMDDP   = 1 << 24, | 
|  | ARM_HWCAP_ARM_ASIMDFHM  = 1 << 25, | 
|  | ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26, | 
|  | ARM_HWCAP_ARM_I8MM      = 1 << 27, | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | ARM_HWCAP2_ARM_AES      = 1 << 0, | 
|  | ARM_HWCAP2_ARM_PMULL    = 1 << 1, | 
|  | ARM_HWCAP2_ARM_SHA1     = 1 << 2, | 
|  | ARM_HWCAP2_ARM_SHA2     = 1 << 3, | 
|  | ARM_HWCAP2_ARM_CRC32    = 1 << 4, | 
|  | ARM_HWCAP2_ARM_SB       = 1 << 5, | 
|  | ARM_HWCAP2_ARM_SSBS     = 1 << 6, | 
|  | }; | 
|  |  | 
|  | /* The commpage only exists for 32 bit kernels */ | 
|  |  | 
|  | #define HI_COMMPAGE (intptr_t)0xffff0f00u | 
|  |  | 
|  | static bool init_guest_commpage(void) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(thread_cpu); | 
|  | int host_page_size = qemu_real_host_page_size(); | 
|  | abi_ptr commpage; | 
|  | void *want; | 
|  | void *addr; | 
|  |  | 
|  | /* | 
|  | * M-profile allocates maximum of 2GB address space, so can never | 
|  | * allocate the commpage.  Skip it. | 
|  | */ | 
|  | if (arm_feature(&cpu->env, ARM_FEATURE_M)) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | commpage = HI_COMMPAGE & -host_page_size; | 
|  | want = g2h_untagged(commpage); | 
|  | addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE, | 
|  | MAP_ANONYMOUS | MAP_PRIVATE | | 
|  | (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE), | 
|  | -1, 0); | 
|  |  | 
|  | if (addr == MAP_FAILED) { | 
|  | perror("Allocating guest commpage"); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | if (addr != want) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Set kernel helper versions; rest of page is 0.  */ | 
|  | __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); | 
|  |  | 
|  | if (mprotect(addr, host_page_size, PROT_READ)) { | 
|  | perror("Protecting guest commpage"); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  |  | 
|  | page_set_flags(commpage, commpage | (host_page_size - 1), | 
|  | PAGE_READ | PAGE_EXEC | PAGE_VALID); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  | #define ELF_HWCAP2 get_elf_hwcap2() | 
|  |  | 
|  | uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(thread_cpu); | 
|  | uint32_t hwcaps = 0; | 
|  |  | 
|  | hwcaps |= ARM_HWCAP_ARM_SWP; | 
|  | hwcaps |= ARM_HWCAP_ARM_HALF; | 
|  | hwcaps |= ARM_HWCAP_ARM_THUMB; | 
|  | hwcaps |= ARM_HWCAP_ARM_FAST_MULT; | 
|  |  | 
|  | /* probe for the extra features */ | 
|  | #define GET_FEATURE(feat, hwcap) \ | 
|  | do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) | 
|  |  | 
|  | #define GET_FEATURE_ID(feat, hwcap) \ | 
|  | do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) | 
|  |  | 
|  | /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ | 
|  | GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); | 
|  | GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); | 
|  | GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); | 
|  | GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); | 
|  | GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); | 
|  | GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); | 
|  | GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); | 
|  | GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); | 
|  | GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); | 
|  |  | 
|  | if (cpu_isar_feature(aa32_fpsp_v3, cpu) || | 
|  | cpu_isar_feature(aa32_fpdp_v3, cpu)) { | 
|  | hwcaps |= ARM_HWCAP_ARM_VFPv3; | 
|  | if (cpu_isar_feature(aa32_simd_r32, cpu)) { | 
|  | hwcaps |= ARM_HWCAP_ARM_VFPD32; | 
|  | } else { | 
|  | hwcaps |= ARM_HWCAP_ARM_VFPv3D16; | 
|  | } | 
|  | } | 
|  | GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); | 
|  | /* | 
|  | * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same | 
|  | * isar_feature function for both. The kernel reports them as two hwcaps. | 
|  | */ | 
|  | GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP); | 
|  | GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP); | 
|  | GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP); | 
|  | GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM); | 
|  | GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16); | 
|  | GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM); | 
|  |  | 
|  | return hwcaps; | 
|  | } | 
|  |  | 
|  | uint64_t get_elf_hwcap2(void) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(thread_cpu); | 
|  | uint64_t hwcaps = 0; | 
|  |  | 
|  | GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); | 
|  | GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); | 
|  | GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); | 
|  | GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); | 
|  | GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); | 
|  | GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB); | 
|  | GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS); | 
|  | return hwcaps; | 
|  | } | 
|  |  | 
|  | const char *elf_hwcap_str(uint32_t bit) | 
|  | { | 
|  | static const char *hwcap_str[] = { | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_FPHP     )] = "fphp", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP  )] = "asimdhp", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP  )] = "asimddp", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16", | 
|  | [__builtin_ctz(ARM_HWCAP_ARM_I8MM     )] = "i8mm", | 
|  | }; | 
|  |  | 
|  | return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; | 
|  | } | 
|  |  | 
|  | const char *elf_hwcap2_str(uint32_t bit) | 
|  | { | 
|  | static const char *hwcap_str[] = { | 
|  | [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes", | 
|  | [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull", | 
|  | [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1", | 
|  | [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2", | 
|  | [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32", | 
|  | [__builtin_ctz(ARM_HWCAP2_ARM_SB   )] = "sb", | 
|  | [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs", | 
|  | }; | 
|  |  | 
|  | return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; | 
|  | } | 
|  |  | 
|  | #undef GET_FEATURE | 
|  | #undef GET_FEATURE_ID | 
|  |  | 
|  | #define ELF_PLATFORM get_elf_platform() | 
|  |  | 
|  | static const char *get_elf_platform(void) | 
|  | { | 
|  | CPUARMState *env = cpu_env(thread_cpu); | 
|  |  | 
|  | #if TARGET_BIG_ENDIAN | 
|  | # define END  "b" | 
|  | #else | 
|  | # define END  "l" | 
|  | #endif | 
|  |  | 
|  | if (arm_feature(env, ARM_FEATURE_V8)) { | 
|  | return "v8" END; | 
|  | } else if (arm_feature(env, ARM_FEATURE_V7)) { | 
|  | if (arm_feature(env, ARM_FEATURE_M)) { | 
|  | return "v7m" END; | 
|  | } else { | 
|  | return "v7" END; | 
|  | } | 
|  | } else if (arm_feature(env, ARM_FEATURE_V6)) { | 
|  | return "v6" END; | 
|  | } else if (arm_feature(env, ARM_FEATURE_V5)) { | 
|  | return "v5" END; | 
|  | } else { | 
|  | return "v4" END; | 
|  | } | 
|  |  | 
|  | #undef END | 
|  | } | 
|  |  | 
|  | #else | 
|  | /* 64 bit ARM definitions */ | 
|  |  | 
|  | #define ELF_ARCH        EM_AARCH64 | 
|  | #define ELF_CLASS       ELFCLASS64 | 
|  | #if TARGET_BIG_ENDIAN | 
|  | # define ELF_PLATFORM    "aarch64_be" | 
|  | #else | 
|  | # define ELF_PLATFORM    "aarch64" | 
|  | #endif | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | abi_long stack = infop->start_stack; | 
|  | memset(regs, 0, sizeof(*regs)); | 
|  |  | 
|  | regs->pc = infop->entry & ~0x3ULL; | 
|  | regs->sp = stack; | 
|  | } | 
|  |  | 
|  | #define ELF_NREG    34 | 
|  | typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, | 
|  | const CPUARMState *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 32; i++) { | 
|  | (*regs)[i] = tswapreg(env->xregs[i]); | 
|  | } | 
|  | (*regs)[32] = tswapreg(env->pc); | 
|  | (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE       4096 | 
|  |  | 
|  | enum { | 
|  | ARM_HWCAP_A64_FP            = 1 << 0, | 
|  | ARM_HWCAP_A64_ASIMD         = 1 << 1, | 
|  | ARM_HWCAP_A64_EVTSTRM       = 1 << 2, | 
|  | ARM_HWCAP_A64_AES           = 1 << 3, | 
|  | ARM_HWCAP_A64_PMULL         = 1 << 4, | 
|  | ARM_HWCAP_A64_SHA1          = 1 << 5, | 
|  | ARM_HWCAP_A64_SHA2          = 1 << 6, | 
|  | ARM_HWCAP_A64_CRC32         = 1 << 7, | 
|  | ARM_HWCAP_A64_ATOMICS       = 1 << 8, | 
|  | ARM_HWCAP_A64_FPHP          = 1 << 9, | 
|  | ARM_HWCAP_A64_ASIMDHP       = 1 << 10, | 
|  | ARM_HWCAP_A64_CPUID         = 1 << 11, | 
|  | ARM_HWCAP_A64_ASIMDRDM      = 1 << 12, | 
|  | ARM_HWCAP_A64_JSCVT         = 1 << 13, | 
|  | ARM_HWCAP_A64_FCMA          = 1 << 14, | 
|  | ARM_HWCAP_A64_LRCPC         = 1 << 15, | 
|  | ARM_HWCAP_A64_DCPOP         = 1 << 16, | 
|  | ARM_HWCAP_A64_SHA3          = 1 << 17, | 
|  | ARM_HWCAP_A64_SM3           = 1 << 18, | 
|  | ARM_HWCAP_A64_SM4           = 1 << 19, | 
|  | ARM_HWCAP_A64_ASIMDDP       = 1 << 20, | 
|  | ARM_HWCAP_A64_SHA512        = 1 << 21, | 
|  | ARM_HWCAP_A64_SVE           = 1 << 22, | 
|  | ARM_HWCAP_A64_ASIMDFHM      = 1 << 23, | 
|  | ARM_HWCAP_A64_DIT           = 1 << 24, | 
|  | ARM_HWCAP_A64_USCAT         = 1 << 25, | 
|  | ARM_HWCAP_A64_ILRCPC        = 1 << 26, | 
|  | ARM_HWCAP_A64_FLAGM         = 1 << 27, | 
|  | ARM_HWCAP_A64_SSBS          = 1 << 28, | 
|  | ARM_HWCAP_A64_SB            = 1 << 29, | 
|  | ARM_HWCAP_A64_PACA          = 1 << 30, | 
|  | ARM_HWCAP_A64_PACG          = 1UL << 31, | 
|  |  | 
|  | ARM_HWCAP2_A64_DCPODP       = 1 << 0, | 
|  | ARM_HWCAP2_A64_SVE2         = 1 << 1, | 
|  | ARM_HWCAP2_A64_SVEAES       = 1 << 2, | 
|  | ARM_HWCAP2_A64_SVEPMULL     = 1 << 3, | 
|  | ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4, | 
|  | ARM_HWCAP2_A64_SVESHA3      = 1 << 5, | 
|  | ARM_HWCAP2_A64_SVESM4       = 1 << 6, | 
|  | ARM_HWCAP2_A64_FLAGM2       = 1 << 7, | 
|  | ARM_HWCAP2_A64_FRINT        = 1 << 8, | 
|  | ARM_HWCAP2_A64_SVEI8MM      = 1 << 9, | 
|  | ARM_HWCAP2_A64_SVEF32MM     = 1 << 10, | 
|  | ARM_HWCAP2_A64_SVEF64MM     = 1 << 11, | 
|  | ARM_HWCAP2_A64_SVEBF16      = 1 << 12, | 
|  | ARM_HWCAP2_A64_I8MM         = 1 << 13, | 
|  | ARM_HWCAP2_A64_BF16         = 1 << 14, | 
|  | ARM_HWCAP2_A64_DGH          = 1 << 15, | 
|  | ARM_HWCAP2_A64_RNG          = 1 << 16, | 
|  | ARM_HWCAP2_A64_BTI          = 1 << 17, | 
|  | ARM_HWCAP2_A64_MTE          = 1 << 18, | 
|  | ARM_HWCAP2_A64_ECV          = 1 << 19, | 
|  | ARM_HWCAP2_A64_AFP          = 1 << 20, | 
|  | ARM_HWCAP2_A64_RPRES        = 1 << 21, | 
|  | ARM_HWCAP2_A64_MTE3         = 1 << 22, | 
|  | ARM_HWCAP2_A64_SME          = 1 << 23, | 
|  | ARM_HWCAP2_A64_SME_I16I64   = 1 << 24, | 
|  | ARM_HWCAP2_A64_SME_F64F64   = 1 << 25, | 
|  | ARM_HWCAP2_A64_SME_I8I32    = 1 << 26, | 
|  | ARM_HWCAP2_A64_SME_F16F32   = 1 << 27, | 
|  | ARM_HWCAP2_A64_SME_B16F32   = 1 << 28, | 
|  | ARM_HWCAP2_A64_SME_F32F32   = 1 << 29, | 
|  | ARM_HWCAP2_A64_SME_FA64     = 1 << 30, | 
|  | ARM_HWCAP2_A64_WFXT         = 1ULL << 31, | 
|  | ARM_HWCAP2_A64_EBF16        = 1ULL << 32, | 
|  | ARM_HWCAP2_A64_SVE_EBF16    = 1ULL << 33, | 
|  | ARM_HWCAP2_A64_CSSC         = 1ULL << 34, | 
|  | ARM_HWCAP2_A64_RPRFM        = 1ULL << 35, | 
|  | ARM_HWCAP2_A64_SVE2P1       = 1ULL << 36, | 
|  | ARM_HWCAP2_A64_SME2         = 1ULL << 37, | 
|  | ARM_HWCAP2_A64_SME2P1       = 1ULL << 38, | 
|  | ARM_HWCAP2_A64_SME_I16I32   = 1ULL << 39, | 
|  | ARM_HWCAP2_A64_SME_BI32I32  = 1ULL << 40, | 
|  | ARM_HWCAP2_A64_SME_B16B16   = 1ULL << 41, | 
|  | ARM_HWCAP2_A64_SME_F16F16   = 1ULL << 42, | 
|  | ARM_HWCAP2_A64_MOPS         = 1ULL << 43, | 
|  | ARM_HWCAP2_A64_HBC          = 1ULL << 44, | 
|  | }; | 
|  |  | 
|  | #define ELF_HWCAP   get_elf_hwcap() | 
|  | #define ELF_HWCAP2  get_elf_hwcap2() | 
|  |  | 
|  | #define GET_FEATURE_ID(feat, hwcap) \ | 
|  | do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) | 
|  |  | 
|  | uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(thread_cpu); | 
|  | uint32_t hwcaps = 0; | 
|  |  | 
|  | hwcaps |= ARM_HWCAP_A64_FP; | 
|  | hwcaps |= ARM_HWCAP_A64_ASIMD; | 
|  | hwcaps |= ARM_HWCAP_A64_CPUID; | 
|  |  | 
|  | /* probe for the extra features */ | 
|  |  | 
|  | GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); | 
|  | GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); | 
|  | GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); | 
|  | GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); | 
|  | GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); | 
|  | GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); | 
|  | GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); | 
|  | GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); | 
|  | GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); | 
|  | GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); | 
|  | GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); | 
|  | GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT); | 
|  | GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); | 
|  | GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); | 
|  | GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); | 
|  | GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); | 
|  | GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); | 
|  | GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); | 
|  | GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT); | 
|  | GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); | 
|  | GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); | 
|  | GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); | 
|  | GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); | 
|  | GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); | 
|  | GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); | 
|  |  | 
|  | return hwcaps; | 
|  | } | 
|  |  | 
|  | uint64_t get_elf_hwcap2(void) | 
|  | { | 
|  | ARMCPU *cpu = ARM_CPU(thread_cpu); | 
|  | uint64_t hwcaps = 0; | 
|  |  | 
|  | GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); | 
|  | GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); | 
|  | GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); | 
|  | GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); | 
|  | GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); | 
|  | GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); | 
|  | GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); | 
|  | GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); | 
|  | GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); | 
|  | GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); | 
|  | GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); | 
|  | GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); | 
|  | GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); | 
|  | GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); | 
|  | GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); | 
|  | GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); | 
|  | GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); | 
|  | GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); | 
|  | GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3); | 
|  | GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | | 
|  | ARM_HWCAP2_A64_SME_F32F32 | | 
|  | ARM_HWCAP2_A64_SME_B16F32 | | 
|  | ARM_HWCAP2_A64_SME_F16F32 | | 
|  | ARM_HWCAP2_A64_SME_I8I32)); | 
|  | GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); | 
|  | GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); | 
|  | GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); | 
|  | GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC); | 
|  | GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS); | 
|  |  | 
|  | return hwcaps; | 
|  | } | 
|  |  | 
|  | const char *elf_hwcap_str(uint32_t bit) | 
|  | { | 
|  | static const char *hwcap_str[] = { | 
|  | [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca", | 
|  | [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg", | 
|  | }; | 
|  |  | 
|  | return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; | 
|  | } | 
|  |  | 
|  | const char *elf_hwcap2_str(uint32_t bit) | 
|  | { | 
|  | static const char *hwcap_str[] = { | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "smei16i64", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "smef64f64", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "smei8i32", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "smef16f32", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "smeb16f32", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "smef32f32", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "smefa64", | 
|  | [__builtin_ctz(ARM_HWCAP2_A64_WFXT         )] = "wfxt", | 
|  | [__builtin_ctzll(ARM_HWCAP2_A64_EBF16      )] = "ebf16", | 
|  | [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16  )] = "sveebf16", | 
|  | [__builtin_ctzll(ARM_HWCAP2_A64_CSSC       )] = "cssc", | 
|  | [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM      )] = "rprfm", | 
|  | [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1     )] = "sve2p1", | 
|  | [__builtin_ctzll(ARM_HWCAP2_A64_SME2       )] = "sme2", | 
|  | [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1     )] = "sme2p1", | 
|  | [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32", | 
|  | [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32", | 
|  | [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16", | 
|  | [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16", | 
|  | [__builtin_ctzll(ARM_HWCAP2_A64_MOPS       )] = "mops", | 
|  | [__builtin_ctzll(ARM_HWCAP2_A64_HBC        )] = "hbc", | 
|  | }; | 
|  |  | 
|  | return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; | 
|  | } | 
|  |  | 
|  | #undef GET_FEATURE_ID | 
|  |  | 
|  | #endif /* not TARGET_AARCH64 */ | 
|  |  | 
|  | #if TARGET_BIG_ENDIAN | 
|  | # define VDSO_HEADER  "vdso-be.c.inc" | 
|  | #else | 
|  | # define VDSO_HEADER  "vdso-le.c.inc" | 
|  | #endif | 
|  |  | 
|  | #endif /* TARGET_ARM */ | 
|  |  | 
|  | #ifdef TARGET_SPARC | 
|  |  | 
|  | #ifndef TARGET_SPARC64 | 
|  | # define ELF_CLASS  ELFCLASS32 | 
|  | # define ELF_ARCH   EM_SPARC | 
|  | #elif defined(TARGET_ABI32) | 
|  | # define ELF_CLASS  ELFCLASS32 | 
|  | # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC) | 
|  | #else | 
|  | # define ELF_CLASS  ELFCLASS64 | 
|  | # define ELF_ARCH   EM_SPARCV9 | 
|  | #endif | 
|  |  | 
|  | #include "elf.h" | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  |  | 
|  | static uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | /* There are not many sparc32 hwcap bits -- we have all of them. */ | 
|  | uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | | 
|  | HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV; | 
|  |  | 
|  | #ifdef TARGET_SPARC64 | 
|  | CPUSPARCState *env = cpu_env(thread_cpu); | 
|  | uint32_t features = env->def.features; | 
|  |  | 
|  | r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS; | 
|  | /* 32x32 multiply and divide are efficient. */ | 
|  | r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32; | 
|  | /* We don't have an internal feature bit for this. */ | 
|  | r |= HWCAP_SPARC_POPC; | 
|  | r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0; | 
|  | r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0; | 
|  | r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0; | 
|  | r |= features & CPU_FEATURE_FMAF ? HWCAP_SPARC_FMAF : 0; | 
|  | r |= features & CPU_FEATURE_VIS3 ? HWCAP_SPARC_VIS3 : 0; | 
|  | r |= features & CPU_FEATURE_IMA ? HWCAP_SPARC_IMA : 0; | 
|  | #endif | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | /* Note that target_cpu_copy_regs does not read psr/tstate. */ | 
|  | regs->pc = infop->entry; | 
|  | regs->npc = regs->pc + 4; | 
|  | regs->y = 0; | 
|  | regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) | 
|  | - TARGET_STACK_BIAS); | 
|  | } | 
|  | #endif /* TARGET_SPARC */ | 
|  |  | 
|  | #ifdef TARGET_PPC | 
|  |  | 
|  | #define ELF_MACHINE    PPC_ELF_MACHINE | 
|  |  | 
|  | #if defined(TARGET_PPC64) | 
|  |  | 
|  | #define elf_check_arch(x) ( (x) == EM_PPC64 ) | 
|  |  | 
|  | #define ELF_CLASS       ELFCLASS64 | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define ELF_CLASS       ELFCLASS32 | 
|  | #define EXSTACK_DEFAULT true | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #define ELF_ARCH        EM_PPC | 
|  |  | 
|  | /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). | 
|  | See arch/powerpc/include/asm/cputable.h.  */ | 
|  | enum { | 
|  | QEMU_PPC_FEATURE_32 = 0x80000000, | 
|  | QEMU_PPC_FEATURE_64 = 0x40000000, | 
|  | QEMU_PPC_FEATURE_601_INSTR = 0x20000000, | 
|  | QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, | 
|  | QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, | 
|  | QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, | 
|  | QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, | 
|  | QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, | 
|  | QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, | 
|  | QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, | 
|  | QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, | 
|  | QEMU_PPC_FEATURE_NO_TB = 0x00100000, | 
|  | QEMU_PPC_FEATURE_POWER4 = 0x00080000, | 
|  | QEMU_PPC_FEATURE_POWER5 = 0x00040000, | 
|  | QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, | 
|  | QEMU_PPC_FEATURE_CELL = 0x00010000, | 
|  | QEMU_PPC_FEATURE_BOOKE = 0x00008000, | 
|  | QEMU_PPC_FEATURE_SMT = 0x00004000, | 
|  | QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, | 
|  | QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, | 
|  | QEMU_PPC_FEATURE_PA6T = 0x00000800, | 
|  | QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, | 
|  | QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, | 
|  | QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, | 
|  | QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, | 
|  | QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, | 
|  |  | 
|  | QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, | 
|  | QEMU_PPC_FEATURE_PPC_LE = 0x00000001, | 
|  |  | 
|  | /* Feature definitions in AT_HWCAP2.  */ | 
|  | QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ | 
|  | QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ | 
|  | QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ | 
|  | QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ | 
|  | QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ | 
|  | QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ | 
|  | QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, | 
|  | QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, | 
|  | QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ | 
|  | QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ | 
|  | QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ | 
|  | QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ | 
|  | QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ | 
|  | QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ | 
|  | QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ | 
|  | }; | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  |  | 
|  | static uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); | 
|  | uint32_t features = 0; | 
|  |  | 
|  | /* We don't have to be terribly complete here; the high points are | 
|  | Altivec/FP/SPE support.  Anything else is just a bonus.  */ | 
|  | #define GET_FEATURE(flag, feature)                                      \ | 
|  | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) | 
|  | #define GET_FEATURE2(flags, feature) \ | 
|  | do { \ | 
|  | if ((cpu->env.insns_flags2 & flags) == flags) { \ | 
|  | features |= feature; \ | 
|  | } \ | 
|  | } while (0) | 
|  | GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); | 
|  | GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); | 
|  | GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); | 
|  | GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); | 
|  | GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); | 
|  | GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); | 
|  | GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); | 
|  | GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); | 
|  | GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); | 
|  | GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); | 
|  | GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | | 
|  | PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), | 
|  | QEMU_PPC_FEATURE_ARCH_2_06); | 
|  | #undef GET_FEATURE | 
|  | #undef GET_FEATURE2 | 
|  |  | 
|  | return features; | 
|  | } | 
|  |  | 
|  | #define ELF_HWCAP2 get_elf_hwcap2() | 
|  |  | 
|  | static uint32_t get_elf_hwcap2(void) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); | 
|  | uint32_t features = 0; | 
|  |  | 
|  | #define GET_FEATURE(flag, feature)                                      \ | 
|  | do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) | 
|  | #define GET_FEATURE2(flag, feature)                                      \ | 
|  | do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) | 
|  |  | 
|  | GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); | 
|  | GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); | 
|  | GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | | 
|  | PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | | 
|  | QEMU_PPC_FEATURE2_VEC_CRYPTO); | 
|  | GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | | 
|  | QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); | 
|  | GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | | 
|  | QEMU_PPC_FEATURE2_MMA); | 
|  |  | 
|  | #undef GET_FEATURE | 
|  | #undef GET_FEATURE2 | 
|  |  | 
|  | return features; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The requirements here are: | 
|  | * - keep the final alignment of sp (sp & 0xf) | 
|  | * - make sure the 32-bit value at the first 16 byte aligned position of | 
|  | *   AUXV is greater than 16 for glibc compatibility. | 
|  | *   AT_IGNOREPPC is used for that. | 
|  | * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, | 
|  | *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined. | 
|  | */ | 
|  | #define DLINFO_ARCH_ITEMS       5 | 
|  | #define ARCH_DLINFO                                     \ | 
|  | do {                                                \ | 
|  | PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \ | 
|  | /*                                              \ | 
|  | * Handle glibc compatibility: these magic entries must \ | 
|  | * be at the lowest addresses in the final auxv.        \ | 
|  | */                                             \ | 
|  | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \ | 
|  | NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \ | 
|  | NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ | 
|  | NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ | 
|  | NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \ | 
|  | } while (0) | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) | 
|  | { | 
|  | _regs->gpr[1] = infop->start_stack; | 
|  | #if defined(TARGET_PPC64) | 
|  | if (get_ppc64_abi(infop) < 2) { | 
|  | uint64_t val; | 
|  | get_user_u64(val, infop->entry + 8); | 
|  | _regs->gpr[2] = val + infop->load_bias; | 
|  | get_user_u64(val, infop->entry); | 
|  | infop->entry = val + infop->load_bias; | 
|  | } else { | 
|  | _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */ | 
|  | } | 
|  | #endif | 
|  | _regs->nip = infop->entry; | 
|  | } | 
|  |  | 
|  | /* See linux kernel: arch/powerpc/include/asm/elf.h.  */ | 
|  | #define ELF_NREG 48 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) | 
|  | { | 
|  | int i; | 
|  | target_ulong ccr = 0; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { | 
|  | (*regs)[i] = tswapreg(env->gpr[i]); | 
|  | } | 
|  |  | 
|  | (*regs)[32] = tswapreg(env->nip); | 
|  | (*regs)[33] = tswapreg(env->msr); | 
|  | (*regs)[35] = tswapreg(env->ctr); | 
|  | (*regs)[36] = tswapreg(env->lr); | 
|  | (*regs)[37] = tswapreg(cpu_read_xer(env)); | 
|  |  | 
|  | ccr = ppc_get_cr(env); | 
|  | (*regs)[38] = tswapreg(ccr); | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE       4096 | 
|  |  | 
|  | #ifndef TARGET_PPC64 | 
|  | # define VDSO_HEADER  "vdso-32.c.inc" | 
|  | #elif TARGET_BIG_ENDIAN | 
|  | # define VDSO_HEADER  "vdso-64.c.inc" | 
|  | #else | 
|  | # define VDSO_HEADER  "vdso-64le.c.inc" | 
|  | #endif | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_LOONGARCH64 | 
|  |  | 
|  | #define ELF_CLASS   ELFCLASS64 | 
|  | #define ELF_ARCH    EM_LOONGARCH | 
|  | #define EXSTACK_DEFAULT true | 
|  |  | 
|  | #define elf_check_arch(x) ((x) == EM_LOONGARCH) | 
|  |  | 
|  | #define VDSO_HEADER "vdso.c.inc" | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | /*Set crmd PG,DA = 1,0 */ | 
|  | regs->csr.crmd = 2 << 3; | 
|  | regs->csr.era = infop->entry; | 
|  | regs->regs[3] = infop->start_stack; | 
|  | } | 
|  |  | 
|  | /* See linux kernel: arch/loongarch/include/asm/elf.h */ | 
|  | #define ELF_NREG 45 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | enum { | 
|  | TARGET_EF_R0 = 0, | 
|  | TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, | 
|  | TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, | 
|  | }; | 
|  |  | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, | 
|  | const CPULoongArchState *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | (*regs)[TARGET_EF_R0] = 0; | 
|  |  | 
|  | for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { | 
|  | (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); | 
|  | } | 
|  |  | 
|  | (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); | 
|  | (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE        4096 | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  |  | 
|  | /* See arch/loongarch/include/uapi/asm/hwcap.h */ | 
|  | enum { | 
|  | HWCAP_LOONGARCH_CPUCFG   = (1 << 0), | 
|  | HWCAP_LOONGARCH_LAM      = (1 << 1), | 
|  | HWCAP_LOONGARCH_UAL      = (1 << 2), | 
|  | HWCAP_LOONGARCH_FPU      = (1 << 3), | 
|  | HWCAP_LOONGARCH_LSX      = (1 << 4), | 
|  | HWCAP_LOONGARCH_LASX     = (1 << 5), | 
|  | HWCAP_LOONGARCH_CRC32    = (1 << 6), | 
|  | HWCAP_LOONGARCH_COMPLEX  = (1 << 7), | 
|  | HWCAP_LOONGARCH_CRYPTO   = (1 << 8), | 
|  | HWCAP_LOONGARCH_LVZ      = (1 << 9), | 
|  | HWCAP_LOONGARCH_LBT_X86  = (1 << 10), | 
|  | HWCAP_LOONGARCH_LBT_ARM  = (1 << 11), | 
|  | HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), | 
|  | }; | 
|  |  | 
|  | static uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); | 
|  | uint32_t hwcaps = 0; | 
|  |  | 
|  | hwcaps |= HWCAP_LOONGARCH_CRC32; | 
|  |  | 
|  | if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { | 
|  | hwcaps |= HWCAP_LOONGARCH_UAL; | 
|  | } | 
|  |  | 
|  | if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { | 
|  | hwcaps |= HWCAP_LOONGARCH_FPU; | 
|  | } | 
|  |  | 
|  | if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { | 
|  | hwcaps |= HWCAP_LOONGARCH_LAM; | 
|  | } | 
|  |  | 
|  | if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) { | 
|  | hwcaps |= HWCAP_LOONGARCH_LSX; | 
|  | } | 
|  |  | 
|  | if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) { | 
|  | hwcaps |= HWCAP_LOONGARCH_LASX; | 
|  | } | 
|  |  | 
|  | return hwcaps; | 
|  | } | 
|  |  | 
|  | #define ELF_PLATFORM "loongarch" | 
|  |  | 
|  | #endif /* TARGET_LOONGARCH64 */ | 
|  |  | 
|  | #ifdef TARGET_MIPS | 
|  |  | 
|  | #ifdef TARGET_MIPS64 | 
|  | #define ELF_CLASS   ELFCLASS64 | 
|  | #else | 
|  | #define ELF_CLASS   ELFCLASS32 | 
|  | #endif | 
|  | #define ELF_ARCH    EM_MIPS | 
|  | #define EXSTACK_DEFAULT true | 
|  |  | 
|  | #ifdef TARGET_ABI_MIPSN32 | 
|  | #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) | 
|  | #else | 
|  | #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) | 
|  | #endif | 
|  |  | 
|  | #define ELF_BASE_PLATFORM get_elf_base_platform() | 
|  |  | 
|  | #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \ | 
|  | do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ | 
|  | { return _base_platform; } } while (0) | 
|  |  | 
|  | static const char *get_elf_base_platform(void) | 
|  | { | 
|  | MIPSCPU *cpu = MIPS_CPU(thread_cpu); | 
|  |  | 
|  | /* 64 bit ISAs goes first */ | 
|  | MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); | 
|  | MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); | 
|  | MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); | 
|  | MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); | 
|  | MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); | 
|  | MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); | 
|  | MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); | 
|  |  | 
|  | /* 32 bit ISAs */ | 
|  | MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); | 
|  | MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); | 
|  | MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); | 
|  | MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); | 
|  | MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); | 
|  |  | 
|  | /* Fallback */ | 
|  | return "mips"; | 
|  | } | 
|  | #undef MATCH_PLATFORM_INSN | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->cp0_status = 2 << CP0St_KSU; | 
|  | regs->cp0_epc = infop->entry; | 
|  | regs->regs[29] = infop->start_stack; | 
|  | } | 
|  |  | 
|  | /* See linux kernel: arch/mips/include/asm/elf.h.  */ | 
|  | #define ELF_NREG 45 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | /* See linux kernel: arch/mips/include/asm/reg.h.  */ | 
|  | enum { | 
|  | #ifdef TARGET_MIPS64 | 
|  | TARGET_EF_R0 = 0, | 
|  | #else | 
|  | TARGET_EF_R0 = 6, | 
|  | #endif | 
|  | TARGET_EF_R26 = TARGET_EF_R0 + 26, | 
|  | TARGET_EF_R27 = TARGET_EF_R0 + 27, | 
|  | TARGET_EF_LO = TARGET_EF_R0 + 32, | 
|  | TARGET_EF_HI = TARGET_EF_R0 + 33, | 
|  | TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, | 
|  | TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, | 
|  | TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, | 
|  | TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 | 
|  | }; | 
|  |  | 
|  | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */ | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < TARGET_EF_R0; i++) { | 
|  | (*regs)[i] = 0; | 
|  | } | 
|  | (*regs)[TARGET_EF_R0] = 0; | 
|  |  | 
|  | for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { | 
|  | (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); | 
|  | } | 
|  |  | 
|  | (*regs)[TARGET_EF_R26] = 0; | 
|  | (*regs)[TARGET_EF_R27] = 0; | 
|  | (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); | 
|  | (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); | 
|  | (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); | 
|  | (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); | 
|  | (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); | 
|  | (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE        4096 | 
|  |  | 
|  | /* See arch/mips/include/uapi/asm/hwcap.h.  */ | 
|  | enum { | 
|  | HWCAP_MIPS_R6           = (1 << 0), | 
|  | HWCAP_MIPS_MSA          = (1 << 1), | 
|  | HWCAP_MIPS_CRC32        = (1 << 2), | 
|  | HWCAP_MIPS_MIPS16       = (1 << 3), | 
|  | HWCAP_MIPS_MDMX         = (1 << 4), | 
|  | HWCAP_MIPS_MIPS3D       = (1 << 5), | 
|  | HWCAP_MIPS_SMARTMIPS    = (1 << 6), | 
|  | HWCAP_MIPS_DSP          = (1 << 7), | 
|  | HWCAP_MIPS_DSP2         = (1 << 8), | 
|  | HWCAP_MIPS_DSP3         = (1 << 9), | 
|  | HWCAP_MIPS_MIPS16E2     = (1 << 10), | 
|  | HWCAP_LOONGSON_MMI      = (1 << 11), | 
|  | HWCAP_LOONGSON_EXT      = (1 << 12), | 
|  | HWCAP_LOONGSON_EXT2     = (1 << 13), | 
|  | HWCAP_LOONGSON_CPUCFG   = (1 << 14), | 
|  | }; | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  |  | 
|  | #define GET_FEATURE_INSN(_flag, _hwcap) \ | 
|  | do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) | 
|  |  | 
|  | #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ | 
|  | do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) | 
|  |  | 
|  | #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ | 
|  | do { \ | 
|  | if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ | 
|  | hwcaps |= _hwcap; \ | 
|  | } \ | 
|  | } while (0) | 
|  |  | 
|  | static uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | MIPSCPU *cpu = MIPS_CPU(thread_cpu); | 
|  | uint32_t hwcaps = 0; | 
|  |  | 
|  | GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, | 
|  | 2, HWCAP_MIPS_R6); | 
|  | GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); | 
|  | GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); | 
|  | GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); | 
|  |  | 
|  | return hwcaps; | 
|  | } | 
|  |  | 
|  | #undef GET_FEATURE_REG_EQU | 
|  | #undef GET_FEATURE_REG_SET | 
|  | #undef GET_FEATURE_INSN | 
|  |  | 
|  | #endif /* TARGET_MIPS */ | 
|  |  | 
|  | #ifdef TARGET_MICROBLAZE | 
|  |  | 
|  | #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) | 
|  |  | 
|  | #define ELF_CLASS   ELFCLASS32 | 
|  | #define ELF_ARCH    EM_MICROBLAZE | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->pc = infop->entry; | 
|  | regs->r1 = infop->start_stack; | 
|  |  | 
|  | } | 
|  |  | 
|  | #define ELF_EXEC_PAGESIZE        4096 | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_NREG 38 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */ | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) | 
|  | { | 
|  | int i, pos = 0; | 
|  |  | 
|  | for (i = 0; i < 32; i++) { | 
|  | (*regs)[pos++] = tswapreg(env->regs[i]); | 
|  | } | 
|  |  | 
|  | (*regs)[pos++] = tswapreg(env->pc); | 
|  | (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); | 
|  | (*regs)[pos++] = 0; | 
|  | (*regs)[pos++] = tswapreg(env->ear); | 
|  | (*regs)[pos++] = 0; | 
|  | (*regs)[pos++] = tswapreg(env->esr); | 
|  | } | 
|  |  | 
|  | #endif /* TARGET_MICROBLAZE */ | 
|  |  | 
|  | #ifdef TARGET_OPENRISC | 
|  |  | 
|  | #define ELF_ARCH EM_OPENRISC | 
|  | #define ELF_CLASS ELFCLASS32 | 
|  | #define ELF_DATA  ELFDATA2MSB | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->pc = infop->entry; | 
|  | regs->gpr[1] = infop->start_stack; | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE 8192 | 
|  |  | 
|  | /* See linux kernel arch/openrisc/include/asm/elf.h.  */ | 
|  | #define ELF_NREG 34 /* gprs and pc, sr */ | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, | 
|  | const CPUOpenRISCState *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 32; i++) { | 
|  | (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); | 
|  | } | 
|  | (*regs)[32] = tswapreg(env->pc); | 
|  | (*regs)[33] = tswapreg(cpu_get_sr(env)); | 
|  | } | 
|  | #define ELF_HWCAP 0 | 
|  | #define ELF_PLATFORM NULL | 
|  |  | 
|  | #endif /* TARGET_OPENRISC */ | 
|  |  | 
|  | #ifdef TARGET_SH4 | 
|  |  | 
|  | #define ELF_CLASS ELFCLASS32 | 
|  | #define ELF_ARCH  EM_SH | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | /* Check other registers XXXXX */ | 
|  | regs->pc = infop->entry; | 
|  | regs->regs[15] = infop->start_stack; | 
|  | } | 
|  |  | 
|  | /* See linux kernel: arch/sh/include/asm/elf.h.  */ | 
|  | #define ELF_NREG 23 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | /* See linux kernel: arch/sh/include/asm/ptrace.h.  */ | 
|  | enum { | 
|  | TARGET_REG_PC = 16, | 
|  | TARGET_REG_PR = 17, | 
|  | TARGET_REG_SR = 18, | 
|  | TARGET_REG_GBR = 19, | 
|  | TARGET_REG_MACH = 20, | 
|  | TARGET_REG_MACL = 21, | 
|  | TARGET_REG_SYSCALL = 22 | 
|  | }; | 
|  |  | 
|  | static inline void elf_core_copy_regs(target_elf_gregset_t *regs, | 
|  | const CPUSH4State *env) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | (*regs)[i] = tswapreg(env->gregs[i]); | 
|  | } | 
|  |  | 
|  | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); | 
|  | (*regs)[TARGET_REG_PR] = tswapreg(env->pr); | 
|  | (*regs)[TARGET_REG_SR] = tswapreg(env->sr); | 
|  | (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); | 
|  | (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); | 
|  | (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); | 
|  | (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE        4096 | 
|  |  | 
|  | enum { | 
|  | SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */ | 
|  | SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */ | 
|  | SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ | 
|  | SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */ | 
|  | SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */ | 
|  | SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */ | 
|  | SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */ | 
|  | SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */ | 
|  | SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */ | 
|  | SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */ | 
|  | }; | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  |  | 
|  | static uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | SuperHCPU *cpu = SUPERH_CPU(thread_cpu); | 
|  | uint32_t hwcap = 0; | 
|  |  | 
|  | hwcap |= SH_CPU_HAS_FPU; | 
|  |  | 
|  | if (cpu->env.features & SH_FEATURE_SH4A) { | 
|  | hwcap |= SH_CPU_HAS_LLSC; | 
|  | } | 
|  |  | 
|  | return hwcap; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_CRIS | 
|  |  | 
|  | #define ELF_CLASS ELFCLASS32 | 
|  | #define ELF_ARCH  EM_CRIS | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->erp = infop->entry; | 
|  | } | 
|  |  | 
|  | #define ELF_EXEC_PAGESIZE        8192 | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_M68K | 
|  |  | 
|  | #define ELF_CLASS       ELFCLASS32 | 
|  | #define ELF_ARCH        EM_68K | 
|  |  | 
|  | /* ??? Does this need to do anything? | 
|  | #define ELF_PLAT_INIT(_r) */ | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->usp = infop->start_stack; | 
|  | regs->sr = 0; | 
|  | regs->pc = infop->entry; | 
|  | } | 
|  |  | 
|  | /* See linux kernel: arch/m68k/include/asm/elf.h.  */ | 
|  | #define ELF_NREG 20 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) | 
|  | { | 
|  | (*regs)[0] = tswapreg(env->dregs[1]); | 
|  | (*regs)[1] = tswapreg(env->dregs[2]); | 
|  | (*regs)[2] = tswapreg(env->dregs[3]); | 
|  | (*regs)[3] = tswapreg(env->dregs[4]); | 
|  | (*regs)[4] = tswapreg(env->dregs[5]); | 
|  | (*regs)[5] = tswapreg(env->dregs[6]); | 
|  | (*regs)[6] = tswapreg(env->dregs[7]); | 
|  | (*regs)[7] = tswapreg(env->aregs[0]); | 
|  | (*regs)[8] = tswapreg(env->aregs[1]); | 
|  | (*regs)[9] = tswapreg(env->aregs[2]); | 
|  | (*regs)[10] = tswapreg(env->aregs[3]); | 
|  | (*regs)[11] = tswapreg(env->aregs[4]); | 
|  | (*regs)[12] = tswapreg(env->aregs[5]); | 
|  | (*regs)[13] = tswapreg(env->aregs[6]); | 
|  | (*regs)[14] = tswapreg(env->dregs[0]); | 
|  | (*regs)[15] = tswapreg(env->aregs[7]); | 
|  | (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ | 
|  | (*regs)[17] = tswapreg(env->sr); | 
|  | (*regs)[18] = tswapreg(env->pc); | 
|  | (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */ | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE       8192 | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_ALPHA | 
|  |  | 
|  | #define ELF_CLASS      ELFCLASS64 | 
|  | #define ELF_ARCH       EM_ALPHA | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->pc = infop->entry; | 
|  | regs->ps = 8; | 
|  | regs->usp = infop->start_stack; | 
|  | } | 
|  |  | 
|  | #define ELF_EXEC_PAGESIZE        8192 | 
|  |  | 
|  | #endif /* TARGET_ALPHA */ | 
|  |  | 
|  | #ifdef TARGET_S390X | 
|  |  | 
|  | #define ELF_CLASS	ELFCLASS64 | 
|  | #define ELF_DATA	ELFDATA2MSB | 
|  | #define ELF_ARCH	EM_S390 | 
|  |  | 
|  | #include "elf.h" | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  |  | 
|  | #define GET_FEATURE(_feat, _hwcap) \ | 
|  | do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) | 
|  |  | 
|  | uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | /* | 
|  | * Let's assume we always have esan3 and zarch. | 
|  | * 31-bit processes can use 64-bit registers (high gprs). | 
|  | */ | 
|  | uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; | 
|  |  | 
|  | GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); | 
|  | GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); | 
|  | GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); | 
|  | GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); | 
|  | if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && | 
|  | s390_has_feat(S390_FEAT_ETF3_ENH)) { | 
|  | hwcap |= HWCAP_S390_ETF3EH; | 
|  | } | 
|  | GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); | 
|  | GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); | 
|  | GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2); | 
|  |  | 
|  | return hwcap; | 
|  | } | 
|  |  | 
|  | const char *elf_hwcap_str(uint32_t bit) | 
|  | { | 
|  | static const char *hwcap_str[] = { | 
|  | [HWCAP_S390_NR_ESAN3]     = "esan3", | 
|  | [HWCAP_S390_NR_ZARCH]     = "zarch", | 
|  | [HWCAP_S390_NR_STFLE]     = "stfle", | 
|  | [HWCAP_S390_NR_MSA]       = "msa", | 
|  | [HWCAP_S390_NR_LDISP]     = "ldisp", | 
|  | [HWCAP_S390_NR_EIMM]      = "eimm", | 
|  | [HWCAP_S390_NR_DFP]       = "dfp", | 
|  | [HWCAP_S390_NR_HPAGE]     = "edat", | 
|  | [HWCAP_S390_NR_ETF3EH]    = "etf3eh", | 
|  | [HWCAP_S390_NR_HIGH_GPRS] = "highgprs", | 
|  | [HWCAP_S390_NR_TE]        = "te", | 
|  | [HWCAP_S390_NR_VXRS]      = "vx", | 
|  | [HWCAP_S390_NR_VXRS_BCD]  = "vxd", | 
|  | [HWCAP_S390_NR_VXRS_EXT]  = "vxe", | 
|  | [HWCAP_S390_NR_GS]        = "gs", | 
|  | [HWCAP_S390_NR_VXRS_EXT2] = "vxe2", | 
|  | [HWCAP_S390_NR_VXRS_PDE]  = "vxp", | 
|  | [HWCAP_S390_NR_SORT]      = "sort", | 
|  | [HWCAP_S390_NR_DFLT]      = "dflt", | 
|  | [HWCAP_S390_NR_NNPA]      = "nnpa", | 
|  | [HWCAP_S390_NR_PCI_MIO]   = "pcimio", | 
|  | [HWCAP_S390_NR_SIE]       = "sie", | 
|  | }; | 
|  |  | 
|  | return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; | 
|  | } | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) | 
|  | { | 
|  | regs->psw.addr = infop->entry; | 
|  | regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \ | 
|  | PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \ | 
|  | PSW_MASK_32; | 
|  | regs->gprs[15] = infop->start_stack; | 
|  | } | 
|  |  | 
|  | /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */ | 
|  | #define ELF_NREG 27 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | enum { | 
|  | TARGET_REG_PSWM = 0, | 
|  | TARGET_REG_PSWA = 1, | 
|  | TARGET_REG_GPRS = 2, | 
|  | TARGET_REG_ARS = 18, | 
|  | TARGET_REG_ORIG_R2 = 26, | 
|  | }; | 
|  |  | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, | 
|  | const CPUS390XState *env) | 
|  | { | 
|  | int i; | 
|  | uint32_t *aregs; | 
|  |  | 
|  | (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); | 
|  | (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); | 
|  | for (i = 0; i < 16; i++) { | 
|  | (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); | 
|  | } | 
|  | aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); | 
|  | for (i = 0; i < 16; i++) { | 
|  | aregs[i] = tswap32(env->aregs[i]); | 
|  | } | 
|  | (*regs)[TARGET_REG_ORIG_R2] = 0; | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE 4096 | 
|  |  | 
|  | #define VDSO_HEADER "vdso.c.inc" | 
|  |  | 
|  | #endif /* TARGET_S390X */ | 
|  |  | 
|  | #ifdef TARGET_RISCV | 
|  |  | 
|  | #define ELF_ARCH  EM_RISCV | 
|  |  | 
|  | #ifdef TARGET_RISCV32 | 
|  | #define ELF_CLASS ELFCLASS32 | 
|  | #define VDSO_HEADER "vdso-32.c.inc" | 
|  | #else | 
|  | #define ELF_CLASS ELFCLASS64 | 
|  | #define VDSO_HEADER "vdso-64.c.inc" | 
|  | #endif | 
|  |  | 
|  | #define ELF_HWCAP get_elf_hwcap() | 
|  |  | 
|  | static uint32_t get_elf_hwcap(void) | 
|  | { | 
|  | #define MISA_BIT(EXT) (1 << (EXT - 'A')) | 
|  | RISCVCPU *cpu = RISCV_CPU(thread_cpu); | 
|  | uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') | 
|  | | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C') | 
|  | | MISA_BIT('V'); | 
|  |  | 
|  | return cpu->env.misa_ext & mask; | 
|  | #undef MISA_BIT | 
|  | } | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->sepc = infop->entry; | 
|  | regs->sp = infop->start_stack; | 
|  | } | 
|  |  | 
|  | #define ELF_EXEC_PAGESIZE 4096 | 
|  |  | 
|  | #endif /* TARGET_RISCV */ | 
|  |  | 
|  | #ifdef TARGET_HPPA | 
|  |  | 
|  | #define ELF_CLASS       ELFCLASS32 | 
|  | #define ELF_ARCH        EM_PARISC | 
|  | #define ELF_PLATFORM    "PARISC" | 
|  | #define STACK_GROWS_DOWN 0 | 
|  | #define STACK_ALIGNMENT  64 | 
|  |  | 
|  | #define VDSO_HEADER "vdso.c.inc" | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->iaoq[0] = infop->entry | PRIV_USER; | 
|  | regs->iaoq[1] = regs->iaoq[0] + 4; | 
|  | regs->gr[23] = 0; | 
|  | regs->gr[24] = infop->argv; | 
|  | regs->gr[25] = infop->argc; | 
|  | /* The top-of-stack contains a linkage buffer.  */ | 
|  | regs->gr[30] = infop->start_stack + 64; | 
|  | regs->gr[31] = infop->entry; | 
|  | } | 
|  |  | 
|  | #define LO_COMMPAGE  0 | 
|  |  | 
|  | static bool init_guest_commpage(void) | 
|  | { | 
|  | /* If reserved_va, then we have already mapped 0 page on the host. */ | 
|  | if (!reserved_va) { | 
|  | void *want, *addr; | 
|  |  | 
|  | want = g2h_untagged(LO_COMMPAGE); | 
|  | addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE, | 
|  | MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0); | 
|  | if (addr == MAP_FAILED) { | 
|  | perror("Allocating guest commpage"); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | if (addr != want) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On Linux, page zero is normally marked execute only + gateway. | 
|  | * Normal read or write is supposed to fail (thus PROT_NONE above), | 
|  | * but specific offsets have kernel code mapped to raise permissions | 
|  | * and implement syscalls.  Here, simply mark the page executable. | 
|  | * Special case the entry points during translation (see do_page_zero). | 
|  | */ | 
|  | page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, | 
|  | PAGE_EXEC | PAGE_VALID); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #endif /* TARGET_HPPA */ | 
|  |  | 
|  | #ifdef TARGET_XTENSA | 
|  |  | 
|  | #define ELF_CLASS       ELFCLASS32 | 
|  | #define ELF_ARCH        EM_XTENSA | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->windowbase = 0; | 
|  | regs->windowstart = 1; | 
|  | regs->areg[1] = infop->start_stack; | 
|  | regs->pc = infop->entry; | 
|  | if (info_is_fdpic(infop)) { | 
|  | regs->areg[4] = infop->loadmap_addr; | 
|  | regs->areg[5] = infop->interpreter_loadmap_addr; | 
|  | if (infop->interpreter_loadmap_addr) { | 
|  | regs->areg[6] = infop->interpreter_pt_dynamic_addr; | 
|  | } else { | 
|  | regs->areg[6] = infop->pt_dynamic_addr; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* See linux kernel: arch/xtensa/include/asm/elf.h.  */ | 
|  | #define ELF_NREG 128 | 
|  | typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  |  | 
|  | enum { | 
|  | TARGET_REG_PC, | 
|  | TARGET_REG_PS, | 
|  | TARGET_REG_LBEG, | 
|  | TARGET_REG_LEND, | 
|  | TARGET_REG_LCOUNT, | 
|  | TARGET_REG_SAR, | 
|  | TARGET_REG_WINDOWSTART, | 
|  | TARGET_REG_WINDOWBASE, | 
|  | TARGET_REG_THREADPTR, | 
|  | TARGET_REG_AR0 = 64, | 
|  | }; | 
|  |  | 
|  | static void elf_core_copy_regs(target_elf_gregset_t *regs, | 
|  | const CPUXtensaState *env) | 
|  | { | 
|  | unsigned i; | 
|  |  | 
|  | (*regs)[TARGET_REG_PC] = tswapreg(env->pc); | 
|  | (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); | 
|  | (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); | 
|  | (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); | 
|  | (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); | 
|  | (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); | 
|  | (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); | 
|  | (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); | 
|  | (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); | 
|  | xtensa_sync_phys_from_window((CPUXtensaState *)env); | 
|  | for (i = 0; i < env->config->nareg; ++i) { | 
|  | (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define USE_ELF_CORE_DUMP | 
|  | #define ELF_EXEC_PAGESIZE       4096 | 
|  |  | 
|  | #endif /* TARGET_XTENSA */ | 
|  |  | 
|  | #ifdef TARGET_HEXAGON | 
|  |  | 
|  | #define ELF_CLASS       ELFCLASS32 | 
|  | #define ELF_ARCH        EM_HEXAGON | 
|  |  | 
|  | static inline void init_thread(struct target_pt_regs *regs, | 
|  | struct image_info *infop) | 
|  | { | 
|  | regs->sepc = infop->entry; | 
|  | regs->sp = infop->start_stack; | 
|  | } | 
|  |  | 
|  | #endif /* TARGET_HEXAGON */ | 
|  |  | 
|  | #ifndef ELF_BASE_PLATFORM | 
|  | #define ELF_BASE_PLATFORM (NULL) | 
|  | #endif | 
|  |  | 
|  | #ifndef ELF_PLATFORM | 
|  | #define ELF_PLATFORM (NULL) | 
|  | #endif | 
|  |  | 
|  | #ifndef ELF_MACHINE | 
|  | #define ELF_MACHINE ELF_ARCH | 
|  | #endif | 
|  |  | 
|  | #ifndef elf_check_arch | 
|  | #define elf_check_arch(x) ((x) == ELF_ARCH) | 
|  | #endif | 
|  |  | 
|  | #ifndef elf_check_abi | 
|  | #define elf_check_abi(x) (1) | 
|  | #endif | 
|  |  | 
|  | #ifndef ELF_HWCAP | 
|  | #define ELF_HWCAP 0 | 
|  | #endif | 
|  |  | 
|  | #ifndef STACK_GROWS_DOWN | 
|  | #define STACK_GROWS_DOWN 1 | 
|  | #endif | 
|  |  | 
|  | #ifndef STACK_ALIGNMENT | 
|  | #define STACK_ALIGNMENT 16 | 
|  | #endif | 
|  |  | 
|  | #ifdef TARGET_ABI32 | 
|  | #undef ELF_CLASS | 
|  | #define ELF_CLASS ELFCLASS32 | 
|  | #undef bswaptls | 
|  | #define bswaptls(ptr) bswap32s(ptr) | 
|  | #endif | 
|  |  | 
|  | #ifndef EXSTACK_DEFAULT | 
|  | #define EXSTACK_DEFAULT false | 
|  | #endif | 
|  |  | 
|  | #include "elf.h" | 
|  |  | 
|  | /* We must delay the following stanzas until after "elf.h". */ | 
|  | #if defined(TARGET_AARCH64) | 
|  |  | 
|  | static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, | 
|  | const uint32_t *data, | 
|  | struct image_info *info, | 
|  | Error **errp) | 
|  | { | 
|  | if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { | 
|  | if (pr_datasz != sizeof(uint32_t)) { | 
|  | error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); | 
|  | return false; | 
|  | } | 
|  | /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ | 
|  | info->note_flags = *data; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | #define ARCH_USE_GNU_PROPERTY 1 | 
|  |  | 
|  | #else | 
|  |  | 
|  | static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, | 
|  | const uint32_t *data, | 
|  | struct image_info *info, | 
|  | Error **errp) | 
|  | { | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | #define ARCH_USE_GNU_PROPERTY 0 | 
|  |  | 
|  | #endif | 
|  |  | 
|  | struct exec | 
|  | { | 
|  | unsigned int a_info;   /* Use macros N_MAGIC, etc for access */ | 
|  | unsigned int a_text;   /* length of text, in bytes */ | 
|  | unsigned int a_data;   /* length of data, in bytes */ | 
|  | unsigned int a_bss;    /* length of uninitialized data area, in bytes */ | 
|  | unsigned int a_syms;   /* length of symbol table data in file, in bytes */ | 
|  | unsigned int a_entry;  /* start address */ | 
|  | unsigned int a_trsize; /* length of relocation info for text, in bytes */ | 
|  | unsigned int a_drsize; /* length of relocation info for data, in bytes */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | #define N_MAGIC(exec) ((exec).a_info & 0xffff) | 
|  | #define OMAGIC 0407 | 
|  | #define NMAGIC 0410 | 
|  | #define ZMAGIC 0413 | 
|  | #define QMAGIC 0314 | 
|  |  | 
|  | #define DLINFO_ITEMS 16 | 
|  |  | 
|  | static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) | 
|  | { | 
|  | memcpy(to, from, n); | 
|  | } | 
|  |  | 
|  | #ifdef BSWAP_NEEDED | 
|  | static void bswap_ehdr(struct elfhdr *ehdr) | 
|  | { | 
|  | bswap16s(&ehdr->e_type);            /* Object file type */ | 
|  | bswap16s(&ehdr->e_machine);         /* Architecture */ | 
|  | bswap32s(&ehdr->e_version);         /* Object file version */ | 
|  | bswaptls(&ehdr->e_entry);           /* Entry point virtual address */ | 
|  | bswaptls(&ehdr->e_phoff);           /* Program header table file offset */ | 
|  | bswaptls(&ehdr->e_shoff);           /* Section header table file offset */ | 
|  | bswap32s(&ehdr->e_flags);           /* Processor-specific flags */ | 
|  | bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */ | 
|  | bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */ | 
|  | bswap16s(&ehdr->e_phnum);           /* Program header table entry count */ | 
|  | bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */ | 
|  | bswap16s(&ehdr->e_shnum);           /* Section header table entry count */ | 
|  | bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */ | 
|  | } | 
|  |  | 
|  | static void bswap_phdr(struct elf_phdr *phdr, int phnum) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < phnum; ++i, ++phdr) { | 
|  | bswap32s(&phdr->p_type);        /* Segment type */ | 
|  | bswap32s(&phdr->p_flags);       /* Segment flags */ | 
|  | bswaptls(&phdr->p_offset);      /* Segment file offset */ | 
|  | bswaptls(&phdr->p_vaddr);       /* Segment virtual address */ | 
|  | bswaptls(&phdr->p_paddr);       /* Segment physical address */ | 
|  | bswaptls(&phdr->p_filesz);      /* Segment size in file */ | 
|  | bswaptls(&phdr->p_memsz);       /* Segment size in memory */ | 
|  | bswaptls(&phdr->p_align);       /* Segment alignment */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bswap_shdr(struct elf_shdr *shdr, int shnum) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < shnum; ++i, ++shdr) { | 
|  | bswap32s(&shdr->sh_name); | 
|  | bswap32s(&shdr->sh_type); | 
|  | bswaptls(&shdr->sh_flags); | 
|  | bswaptls(&shdr->sh_addr); | 
|  | bswaptls(&shdr->sh_offset); | 
|  | bswaptls(&shdr->sh_size); | 
|  | bswap32s(&shdr->sh_link); | 
|  | bswap32s(&shdr->sh_info); | 
|  | bswaptls(&shdr->sh_addralign); | 
|  | bswaptls(&shdr->sh_entsize); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bswap_sym(struct elf_sym *sym) | 
|  | { | 
|  | bswap32s(&sym->st_name); | 
|  | bswaptls(&sym->st_value); | 
|  | bswaptls(&sym->st_size); | 
|  | bswap16s(&sym->st_shndx); | 
|  | } | 
|  |  | 
|  | #ifdef TARGET_MIPS | 
|  | static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) | 
|  | { | 
|  | bswap16s(&abiflags->version); | 
|  | bswap32s(&abiflags->ases); | 
|  | bswap32s(&abiflags->isa_ext); | 
|  | bswap32s(&abiflags->flags1); | 
|  | bswap32s(&abiflags->flags2); | 
|  | } | 
|  | #endif | 
|  | #else | 
|  | static inline void bswap_ehdr(struct elfhdr *ehdr) { } | 
|  | static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } | 
|  | static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } | 
|  | static inline void bswap_sym(struct elf_sym *sym) { } | 
|  | #ifdef TARGET_MIPS | 
|  | static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #ifdef USE_ELF_CORE_DUMP | 
|  | static int elf_core_dump(int, const CPUArchState *); | 
|  | #endif /* USE_ELF_CORE_DUMP */ | 
|  | static void load_symbols(struct elfhdr *hdr, const ImageSource *src, | 
|  | abi_ulong load_bias); | 
|  |  | 
|  | /* Verify the portions of EHDR within E_IDENT for the target. | 
|  | This can be performed before bswapping the entire header.  */ | 
|  | static bool elf_check_ident(struct elfhdr *ehdr) | 
|  | { | 
|  | return (ehdr->e_ident[EI_MAG0] == ELFMAG0 | 
|  | && ehdr->e_ident[EI_MAG1] == ELFMAG1 | 
|  | && ehdr->e_ident[EI_MAG2] == ELFMAG2 | 
|  | && ehdr->e_ident[EI_MAG3] == ELFMAG3 | 
|  | && ehdr->e_ident[EI_CLASS] == ELF_CLASS | 
|  | && ehdr->e_ident[EI_DATA] == ELF_DATA | 
|  | && ehdr->e_ident[EI_VERSION] == EV_CURRENT); | 
|  | } | 
|  |  | 
|  | /* Verify the portions of EHDR outside of E_IDENT for the target. | 
|  | This has to wait until after bswapping the header.  */ | 
|  | static bool elf_check_ehdr(struct elfhdr *ehdr) | 
|  | { | 
|  | return (elf_check_arch(ehdr->e_machine) | 
|  | && elf_check_abi(ehdr->e_flags) | 
|  | && ehdr->e_ehsize == sizeof(struct elfhdr) | 
|  | && ehdr->e_phentsize == sizeof(struct elf_phdr) | 
|  | && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 'copy_elf_strings()' copies argument/envelope strings from user | 
|  | * memory to free pages in kernel mem. These are in a format ready | 
|  | * to be put directly into the top of new user memory. | 
|  | * | 
|  | */ | 
|  | static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, | 
|  | abi_ulong p, abi_ulong stack_limit) | 
|  | { | 
|  | char *tmp; | 
|  | int len, i; | 
|  | abi_ulong top = p; | 
|  |  | 
|  | if (!p) { | 
|  | return 0;       /* bullet-proofing */ | 
|  | } | 
|  |  | 
|  | if (STACK_GROWS_DOWN) { | 
|  | int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; | 
|  | for (i = argc - 1; i >= 0; --i) { | 
|  | tmp = argv[i]; | 
|  | if (!tmp) { | 
|  | fprintf(stderr, "VFS: argc is wrong"); | 
|  | exit(-1); | 
|  | } | 
|  | len = strlen(tmp) + 1; | 
|  | tmp += len; | 
|  |  | 
|  | if (len > (p - stack_limit)) { | 
|  | return 0; | 
|  | } | 
|  | while (len) { | 
|  | int bytes_to_copy = (len > offset) ? offset : len; | 
|  | tmp -= bytes_to_copy; | 
|  | p -= bytes_to_copy; | 
|  | offset -= bytes_to_copy; | 
|  | len -= bytes_to_copy; | 
|  |  | 
|  | memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); | 
|  |  | 
|  | if (offset == 0) { | 
|  | memcpy_to_target(p, scratch, top - p); | 
|  | top = p; | 
|  | offset = TARGET_PAGE_SIZE; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (p != top) { | 
|  | memcpy_to_target(p, scratch + offset, top - p); | 
|  | } | 
|  | } else { | 
|  | int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); | 
|  | for (i = 0; i < argc; ++i) { | 
|  | tmp = argv[i]; | 
|  | if (!tmp) { | 
|  | fprintf(stderr, "VFS: argc is wrong"); | 
|  | exit(-1); | 
|  | } | 
|  | len = strlen(tmp) + 1; | 
|  | if (len > (stack_limit - p)) { | 
|  | return 0; | 
|  | } | 
|  | while (len) { | 
|  | int bytes_to_copy = (len > remaining) ? remaining : len; | 
|  |  | 
|  | memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); | 
|  |  | 
|  | tmp += bytes_to_copy; | 
|  | remaining -= bytes_to_copy; | 
|  | p += bytes_to_copy; | 
|  | len -= bytes_to_copy; | 
|  |  | 
|  | if (remaining == 0) { | 
|  | memcpy_to_target(top, scratch, p - top); | 
|  | top = p; | 
|  | remaining = TARGET_PAGE_SIZE; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (p != top) { | 
|  | memcpy_to_target(top, scratch, p - top); | 
|  | } | 
|  | } | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of | 
|  | * argument/environment space. Newer kernels (>2.6.33) allow more, | 
|  | * dependent on stack size, but guarantee at least 32 pages for | 
|  | * backwards compatibility. | 
|  | */ | 
|  | #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) | 
|  |  | 
|  | static abi_ulong setup_arg_pages(struct linux_binprm *bprm, | 
|  | struct image_info *info) | 
|  | { | 
|  | abi_ulong size, error, guard; | 
|  | int prot; | 
|  |  | 
|  | size = guest_stack_size; | 
|  | if (size < STACK_LOWER_LIMIT) { | 
|  | size = STACK_LOWER_LIMIT; | 
|  | } | 
|  |  | 
|  | if (STACK_GROWS_DOWN) { | 
|  | guard = TARGET_PAGE_SIZE; | 
|  | if (guard < qemu_real_host_page_size()) { | 
|  | guard = qemu_real_host_page_size(); | 
|  | } | 
|  | } else { | 
|  | /* no guard page for hppa target where stack grows upwards. */ | 
|  | guard = 0; | 
|  | } | 
|  |  | 
|  | prot = PROT_READ | PROT_WRITE; | 
|  | if (info->exec_stack) { | 
|  | prot |= PROT_EXEC; | 
|  | } | 
|  | error = target_mmap(0, size + guard, prot, | 
|  | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | 
|  | if (error == -1) { | 
|  | perror("mmap stack"); | 
|  | exit(-1); | 
|  | } | 
|  |  | 
|  | /* We reserve one extra page at the top of the stack as guard.  */ | 
|  | if (STACK_GROWS_DOWN) { | 
|  | target_mprotect(error, guard, PROT_NONE); | 
|  | info->stack_limit = error + guard; | 
|  | return info->stack_limit + size - sizeof(void *); | 
|  | } else { | 
|  | info->stack_limit = error + size; | 
|  | return error; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * zero_bss: | 
|  | * | 
|  | * Map and zero the bss.  We need to explicitly zero any fractional pages | 
|  | * after the data section (i.e. bss).  Return false on mapping failure. | 
|  | */ | 
|  | static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, | 
|  | int prot, Error **errp) | 
|  | { | 
|  | abi_ulong align_bss; | 
|  |  | 
|  | /* We only expect writable bss; the code segment shouldn't need this. */ | 
|  | if (!(prot & PROT_WRITE)) { | 
|  | error_setg(errp, "PT_LOAD with non-writable bss"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | align_bss = TARGET_PAGE_ALIGN(start_bss); | 
|  | end_bss = TARGET_PAGE_ALIGN(end_bss); | 
|  |  | 
|  | if (start_bss < align_bss) { | 
|  | int flags = page_get_flags(start_bss); | 
|  |  | 
|  | if (!(flags & PAGE_RWX)) { | 
|  | /* | 
|  | * The whole address space of the executable was reserved | 
|  | * at the start, therefore all pages will be VALID. | 
|  | * But assuming there are no PROT_NONE PT_LOAD segments, | 
|  | * a PROT_NONE page means no data all bss, and we can | 
|  | * simply extend the new anon mapping back to the start | 
|  | * of the page of bss. | 
|  | */ | 
|  | align_bss -= TARGET_PAGE_SIZE; | 
|  | } else { | 
|  | /* | 
|  | * The start of the bss shares a page with something. | 
|  | * The only thing that we expect is the data section, | 
|  | * which would already be marked writable. | 
|  | * Overlapping the RX code segment seems malformed. | 
|  | */ | 
|  | if (!(flags & PAGE_WRITE)) { | 
|  | error_setg(errp, "PT_LOAD with bss overlapping " | 
|  | "non-writable page"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* The page is already mapped and writable. */ | 
|  | memset(g2h_untagged(start_bss), 0, align_bss - start_bss); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (align_bss < end_bss && | 
|  | target_mmap(align_bss, end_bss - align_bss, prot, | 
|  | MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) { | 
|  | error_setg_errno(errp, errno, "Error mapping bss"); | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if defined(TARGET_ARM) | 
|  | static int elf_is_fdpic(struct elfhdr *exec) | 
|  | { | 
|  | return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; | 
|  | } | 
|  | #elif defined(TARGET_XTENSA) | 
|  | static int elf_is_fdpic(struct elfhdr *exec) | 
|  | { | 
|  | return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC; | 
|  | } | 
|  | #else | 
|  | /* Default implementation, always false.  */ | 
|  | static int elf_is_fdpic(struct elfhdr *exec) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) | 
|  | { | 
|  | uint16_t n; | 
|  | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; | 
|  |  | 
|  | /* elf32_fdpic_loadseg */ | 
|  | n = info->nsegs; | 
|  | while (n--) { | 
|  | sp -= 12; | 
|  | put_user_u32(loadsegs[n].addr, sp+0); | 
|  | put_user_u32(loadsegs[n].p_vaddr, sp+4); | 
|  | put_user_u32(loadsegs[n].p_memsz, sp+8); | 
|  | } | 
|  |  | 
|  | /* elf32_fdpic_loadmap */ | 
|  | sp -= 4; | 
|  | put_user_u16(0, sp+0); /* version */ | 
|  | put_user_u16(info->nsegs, sp+2); /* nsegs */ | 
|  |  | 
|  | info->personality = PER_LINUX_FDPIC; | 
|  | info->loadmap_addr = sp; | 
|  |  | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, | 
|  | struct elfhdr *exec, | 
|  | struct image_info *info, | 
|  | struct image_info *interp_info, | 
|  | struct image_info *vdso_info) | 
|  | { | 
|  | abi_ulong sp; | 
|  | abi_ulong u_argc, u_argv, u_envp, u_auxv; | 
|  | int size; | 
|  | int i; | 
|  | abi_ulong u_rand_bytes; | 
|  | uint8_t k_rand_bytes[16]; | 
|  | abi_ulong u_platform, u_base_platform; | 
|  | const char *k_platform, *k_base_platform; | 
|  | const int n = sizeof(elf_addr_t); | 
|  |  | 
|  | sp = p; | 
|  |  | 
|  | /* Needs to be before we load the env/argc/... */ | 
|  | if (elf_is_fdpic(exec)) { | 
|  | /* Need 4 byte alignment for these structs */ | 
|  | sp &= ~3; | 
|  | sp = loader_build_fdpic_loadmap(info, sp); | 
|  | info->other_info = interp_info; | 
|  | if (interp_info) { | 
|  | interp_info->other_info = info; | 
|  | sp = loader_build_fdpic_loadmap(interp_info, sp); | 
|  | info->interpreter_loadmap_addr = interp_info->loadmap_addr; | 
|  | info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; | 
|  | } else { | 
|  | info->interpreter_loadmap_addr = 0; | 
|  | info->interpreter_pt_dynamic_addr = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | u_base_platform = 0; | 
|  | k_base_platform = ELF_BASE_PLATFORM; | 
|  | if (k_base_platform) { | 
|  | size_t len = strlen(k_base_platform) + 1; | 
|  | if (STACK_GROWS_DOWN) { | 
|  | sp -= (len + n - 1) & ~(n - 1); | 
|  | u_base_platform = sp; | 
|  | /* FIXME - check return value of memcpy_to_target() for failure */ | 
|  | memcpy_to_target(sp, k_base_platform, len); | 
|  | } else { | 
|  | memcpy_to_target(sp, k_base_platform, len); | 
|  | u_base_platform = sp; | 
|  | sp += len + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | u_platform = 0; | 
|  | k_platform = ELF_PLATFORM; | 
|  | if (k_platform) { | 
|  | size_t len = strlen(k_platform) + 1; | 
|  | if (STACK_GROWS_DOWN) { | 
|  | sp -= (len + n - 1) & ~(n - 1); | 
|  | u_platform = sp; | 
|  | /* FIXME - check return value of memcpy_to_target() for failure */ | 
|  | memcpy_to_target(sp, k_platform, len); | 
|  | } else { | 
|  | memcpy_to_target(sp, k_platform, len); | 
|  | u_platform = sp; | 
|  | sp += len + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Provide 16 byte alignment for the PRNG, and basic alignment for | 
|  | * the argv and envp pointers. | 
|  | */ | 
|  | if (STACK_GROWS_DOWN) { | 
|  | sp = QEMU_ALIGN_DOWN(sp, 16); | 
|  | } else { | 
|  | sp = QEMU_ALIGN_UP(sp, 16); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate 16 random bytes for userspace PRNG seeding. | 
|  | */ | 
|  | qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); | 
|  | if (STACK_GROWS_DOWN) { | 
|  | sp -= 16; | 
|  | u_rand_bytes = sp; | 
|  | /* FIXME - check return value of memcpy_to_target() for failure */ | 
|  | memcpy_to_target(sp, k_rand_bytes, 16); | 
|  | } else { | 
|  | memcpy_to_target(sp, k_rand_bytes, 16); | 
|  | u_rand_bytes = sp; | 
|  | sp += 16; | 
|  | } | 
|  |  | 
|  | size = (DLINFO_ITEMS + 1) * 2; | 
|  | if (k_base_platform) { | 
|  | size += 2; | 
|  | } | 
|  | if (k_platform) { | 
|  | size += 2; | 
|  | } | 
|  | if (vdso_info) { | 
|  | size += 2; | 
|  | } | 
|  | #ifdef DLINFO_ARCH_ITEMS | 
|  | size += DLINFO_ARCH_ITEMS * 2; | 
|  | #endif | 
|  | #ifdef ELF_HWCAP2 | 
|  | size += 2; | 
|  | #endif | 
|  | info->auxv_len = size * n; | 
|  |  | 
|  | size += envc + argc + 2; | 
|  | size += 1;  /* argc itself */ | 
|  | size *= n; | 
|  |  | 
|  | /* Allocate space and finalize stack alignment for entry now.  */ | 
|  | if (STACK_GROWS_DOWN) { | 
|  | u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); | 
|  | sp = u_argc; | 
|  | } else { | 
|  | u_argc = sp; | 
|  | sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); | 
|  | } | 
|  |  | 
|  | u_argv = u_argc + n; | 
|  | u_envp = u_argv + (argc + 1) * n; | 
|  | u_auxv = u_envp + (envc + 1) * n; | 
|  | info->saved_auxv = u_auxv; | 
|  | info->argc = argc; | 
|  | info->envc = envc; | 
|  | info->argv = u_argv; | 
|  | info->envp = u_envp; | 
|  |  | 
|  | /* This is correct because Linux defines | 
|  | * elf_addr_t as Elf32_Off / Elf64_Off | 
|  | */ | 
|  | #define NEW_AUX_ENT(id, val) do {               \ | 
|  | put_user_ual(id, u_auxv);  u_auxv += n; \ | 
|  | put_user_ual(val, u_auxv); u_auxv += n; \ | 
|  | } while(0) | 
|  |  | 
|  | #ifdef ARCH_DLINFO | 
|  | /* | 
|  | * ARCH_DLINFO must come first so platform specific code can enforce | 
|  | * special alignment requirements on the AUXV if necessary (eg. PPC). | 
|  | */ | 
|  | ARCH_DLINFO; | 
|  | #endif | 
|  | /* There must be exactly DLINFO_ITEMS entries here, or the assert | 
|  | * on info->auxv_len will trigger. | 
|  | */ | 
|  | NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); | 
|  | NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); | 
|  | NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); | 
|  | NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); | 
|  | NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); | 
|  | NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); | 
|  | NEW_AUX_ENT(AT_ENTRY, info->entry); | 
|  | NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); | 
|  | NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); | 
|  | NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); | 
|  | NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); | 
|  | NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); | 
|  | NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); | 
|  | NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); | 
|  | NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); | 
|  | NEW_AUX_ENT(AT_EXECFN, info->file_string); | 
|  |  | 
|  | #ifdef ELF_HWCAP2 | 
|  | NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); | 
|  | #endif | 
|  |  | 
|  | if (u_base_platform) { | 
|  | NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); | 
|  | } | 
|  | if (u_platform) { | 
|  | NEW_AUX_ENT(AT_PLATFORM, u_platform); | 
|  | } | 
|  | if (vdso_info) { | 
|  | NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr); | 
|  | } | 
|  | NEW_AUX_ENT (AT_NULL, 0); | 
|  | #undef NEW_AUX_ENT | 
|  |  | 
|  | /* Check that our initial calculation of the auxv length matches how much | 
|  | * we actually put into it. | 
|  | */ | 
|  | assert(info->auxv_len == u_auxv - info->saved_auxv); | 
|  |  | 
|  | put_user_ual(argc, u_argc); | 
|  |  | 
|  | p = info->arg_strings; | 
|  | for (i = 0; i < argc; ++i) { | 
|  | put_user_ual(p, u_argv); | 
|  | u_argv += n; | 
|  | p += target_strlen(p) + 1; | 
|  | } | 
|  | put_user_ual(0, u_argv); | 
|  |  | 
|  | p = info->env_strings; | 
|  | for (i = 0; i < envc; ++i) { | 
|  | put_user_ual(p, u_envp); | 
|  | u_envp += n; | 
|  | p += target_strlen(p) + 1; | 
|  | } | 
|  | put_user_ual(0, u_envp); | 
|  |  | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | #if defined(HI_COMMPAGE) | 
|  | #define LO_COMMPAGE -1 | 
|  | #elif defined(LO_COMMPAGE) | 
|  | #define HI_COMMPAGE 0 | 
|  | #else | 
|  | #define HI_COMMPAGE 0 | 
|  | #define LO_COMMPAGE -1 | 
|  | #ifndef INIT_GUEST_COMMPAGE | 
|  | #define init_guest_commpage() true | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * pgb_try_mmap: | 
|  | * @addr: host start address | 
|  | * @addr_last: host last address | 
|  | * @keep: do not unmap the probe region | 
|  | * | 
|  | * Return 1 if [@addr, @addr_last] is not mapped in the host, | 
|  | * return 0 if it is not available to map, and -1 on mmap error. | 
|  | * If @keep, the region is left mapped on success, otherwise unmapped. | 
|  | */ | 
|  | static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep) | 
|  | { | 
|  | size_t size = addr_last - addr + 1; | 
|  | void *p = mmap((void *)addr, size, PROT_NONE, | 
|  | MAP_ANONYMOUS | MAP_PRIVATE | | 
|  | MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0); | 
|  | int ret; | 
|  |  | 
|  | if (p == MAP_FAILED) { | 
|  | return errno == EEXIST ? 0 : -1; | 
|  | } | 
|  | ret = p == (void *)addr; | 
|  | if (!keep || !ret) { | 
|  | munmap(p, size); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk) | 
|  | * @addr: host address | 
|  | * @addr_last: host last address | 
|  | * @brk: host brk | 
|  | * | 
|  | * Like pgb_try_mmap, but additionally reserve some memory following brk. | 
|  | */ | 
|  | static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last, | 
|  | uintptr_t brk, bool keep) | 
|  | { | 
|  | uintptr_t brk_last = brk + 16 * MiB - 1; | 
|  |  | 
|  | /* Do not map anything close to the host brk. */ | 
|  | if (addr <= brk_last && brk <= addr_last) { | 
|  | return 0; | 
|  | } | 
|  | return pgb_try_mmap(addr, addr_last, keep); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pgb_try_mmap_set: | 
|  | * @ga: set of guest addrs | 
|  | * @base: guest_base | 
|  | * @brk: host brk | 
|  | * | 
|  | * Return true if all @ga can be mapped by the host at @base. | 
|  | * On success, retain the mapping at index 0 for reserved_va. | 
|  | */ | 
|  |  | 
|  | typedef struct PGBAddrs { | 
|  | uintptr_t bounds[3][2]; /* start/last pairs */ | 
|  | int nbounds; | 
|  | } PGBAddrs; | 
|  |  | 
|  | static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk) | 
|  | { | 
|  | for (int i = ga->nbounds - 1; i >= 0; --i) { | 
|  | if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base, | 
|  | ga->bounds[i][1] + base, | 
|  | brk, i == 0 && reserved_va) <= 0) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pgb_addr_set: | 
|  | * @ga: output set of guest addrs | 
|  | * @guest_loaddr: guest image low address | 
|  | * @guest_loaddr: guest image high address | 
|  | * @identity: create for identity mapping | 
|  | * | 
|  | * Fill in @ga with the image, COMMPAGE and NULL page. | 
|  | */ | 
|  | static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr, | 
|  | abi_ulong guest_hiaddr, bool try_identity) | 
|  | { | 
|  | int n; | 
|  |  | 
|  | /* | 
|  | * With a low commpage, or a guest mapped very low, | 
|  | * we may not be able to use the identity map. | 
|  | */ | 
|  | if (try_identity) { | 
|  | if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) { | 
|  | return false; | 
|  | } | 
|  | if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | memset(ga, 0, sizeof(*ga)); | 
|  | n = 0; | 
|  |  | 
|  | if (reserved_va) { | 
|  | ga->bounds[n][0] = try_identity ? mmap_min_addr : 0; | 
|  | ga->bounds[n][1] = reserved_va; | 
|  | n++; | 
|  | /* LO_COMMPAGE and NULL handled by reserving from 0. */ | 
|  | } else { | 
|  | /* Add any LO_COMMPAGE or NULL page. */ | 
|  | if (LO_COMMPAGE != -1) { | 
|  | ga->bounds[n][0] = 0; | 
|  | ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1; | 
|  | n++; | 
|  | } else if (!try_identity) { | 
|  | ga->bounds[n][0] = 0; | 
|  | ga->bounds[n][1] = TARGET_PAGE_SIZE - 1; | 
|  | n++; | 
|  | } | 
|  |  | 
|  | /* Add the guest image for ET_EXEC. */ | 
|  | if (guest_loaddr) { | 
|  | ga->bounds[n][0] = guest_loaddr; | 
|  | ga->bounds[n][1] = guest_hiaddr; | 
|  | n++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Temporarily disable | 
|  | *   "comparison is always false due to limited range of data type" | 
|  | * due to comparison between unsigned and (possible) 0. | 
|  | */ | 
|  | #pragma GCC diagnostic push | 
|  | #pragma GCC diagnostic ignored "-Wtype-limits" | 
|  |  | 
|  | /* Add any HI_COMMPAGE not covered by reserved_va. */ | 
|  | if (reserved_va < HI_COMMPAGE) { | 
|  | ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask(); | 
|  | ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1; | 
|  | n++; | 
|  | } | 
|  |  | 
|  | #pragma GCC diagnostic pop | 
|  |  | 
|  | ga->nbounds = n; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void pgb_fail_in_use(const char *image_name) | 
|  | { | 
|  | error_report("%s: requires virtual address space that is in use " | 
|  | "(omit the -B option or choose a different value)", | 
|  | image_name); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  |  | 
|  | static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr, | 
|  | uintptr_t guest_hiaddr, uintptr_t align) | 
|  | { | 
|  | PGBAddrs ga; | 
|  | uintptr_t brk = (uintptr_t)sbrk(0); | 
|  |  | 
|  | if (!QEMU_IS_ALIGNED(guest_base, align)) { | 
|  | fprintf(stderr, "Requested guest base %p does not satisfy " | 
|  | "host minimum alignment (0x%" PRIxPTR ")\n", | 
|  | (void *)guest_base, align); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  |  | 
|  | if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base) | 
|  | || !pgb_try_mmap_set(&ga, guest_base, brk)) { | 
|  | pgb_fail_in_use(image_name); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * pgb_find_fallback: | 
|  | * | 
|  | * This is a fallback method for finding holes in the host address space | 
|  | * if we don't have the benefit of being able to access /proc/self/map. | 
|  | * It can potentially take a very long time as we can only dumbly iterate | 
|  | * up the host address space seeing if the allocation would work. | 
|  | */ | 
|  | static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align, | 
|  | uintptr_t brk) | 
|  | { | 
|  | /* TODO: come up with a better estimate of how much to skip. */ | 
|  | uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB; | 
|  |  | 
|  | for (uintptr_t base = skip; ; base += skip) { | 
|  | base = ROUND_UP(base, align); | 
|  | if (pgb_try_mmap_set(ga, base, brk)) { | 
|  | return base; | 
|  | } | 
|  | if (base >= -skip) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base, | 
|  | IntervalTreeRoot *root) | 
|  | { | 
|  | for (int i = ga->nbounds - 1; i >= 0; --i) { | 
|  | uintptr_t s = base + ga->bounds[i][0]; | 
|  | uintptr_t l = base + ga->bounds[i][1]; | 
|  | IntervalTreeNode *n; | 
|  |  | 
|  | if (l < s) { | 
|  | /* Wraparound. Skip to advance S to mmap_min_addr. */ | 
|  | return mmap_min_addr - s; | 
|  | } | 
|  |  | 
|  | n = interval_tree_iter_first(root, s, l); | 
|  | if (n != NULL) { | 
|  | /* Conflict.  Skip to advance S to LAST + 1. */ | 
|  | return n->last - s + 1; | 
|  | } | 
|  | } | 
|  | return 0;  /* success */ | 
|  | } | 
|  |  | 
|  | static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root, | 
|  | uintptr_t align, uintptr_t brk) | 
|  | { | 
|  | uintptr_t last = mmap_min_addr; | 
|  | uintptr_t base, skip; | 
|  |  | 
|  | while (true) { | 
|  | base = ROUND_UP(last, align); | 
|  | if (base < last) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | skip = pgb_try_itree(ga, base, root); | 
|  | if (skip == 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | last = base + skip; | 
|  | if (last < base) { | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We've chosen 'base' based on holes in the interval tree, | 
|  | * but we don't yet know if it is a valid host address. | 
|  | * Because it is the first matching hole, if the host addresses | 
|  | * are invalid we know there are no further matches. | 
|  | */ | 
|  | return pgb_try_mmap_set(ga, base, brk) ? base : -1; | 
|  | } | 
|  |  | 
|  | static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr, | 
|  | uintptr_t guest_hiaddr, uintptr_t align) | 
|  | { | 
|  | IntervalTreeRoot *root; | 
|  | uintptr_t brk, ret; | 
|  | PGBAddrs ga; | 
|  |  | 
|  | /* Try the identity map first. */ | 
|  | if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) { | 
|  | brk = (uintptr_t)sbrk(0); | 
|  | if (pgb_try_mmap_set(&ga, 0, brk)) { | 
|  | guest_base = 0; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Rebuild the address set for non-identity map. | 
|  | * This differs in the mapping of the guest NULL page. | 
|  | */ | 
|  | pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false); | 
|  |  | 
|  | root = read_self_maps(); | 
|  |  | 
|  | /* Read brk after we've read the maps, which will malloc. */ | 
|  | brk = (uintptr_t)sbrk(0); | 
|  |  | 
|  | if (!root) { | 
|  | ret = pgb_find_fallback(&ga, align, brk); | 
|  | } else { | 
|  | /* | 
|  | * Reserve the area close to the host brk. | 
|  | * This will be freed with the rest of the tree. | 
|  | */ | 
|  | IntervalTreeNode *b = g_new0(IntervalTreeNode, 1); | 
|  | b->start = brk; | 
|  | b->last = brk + 16 * MiB - 1; | 
|  | interval_tree_insert(b, root); | 
|  |  | 
|  | ret = pgb_find_itree(&ga, root, align, brk); | 
|  | free_self_maps(root); | 
|  | } | 
|  |  | 
|  | if (ret == -1) { | 
|  | int w = TARGET_LONG_BITS / 4; | 
|  |  | 
|  | error_report("%s: Unable to find a guest_base to satisfy all " | 
|  | "guest address mapping requirements", image_name); | 
|  |  | 
|  | for (int i = 0; i < ga.nbounds; ++i) { | 
|  | error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n", | 
|  | w, (uint64_t)ga.bounds[i][0], | 
|  | w, (uint64_t)ga.bounds[i][1]); | 
|  | } | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | guest_base = ret; | 
|  | } | 
|  |  | 
|  | void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, | 
|  | abi_ulong guest_hiaddr) | 
|  | { | 
|  | /* In order to use host shmat, we must be able to honor SHMLBA.  */ | 
|  | uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE); | 
|  |  | 
|  | /* Sanity check the guest binary. */ | 
|  | if (reserved_va) { | 
|  | if (guest_hiaddr > reserved_va) { | 
|  | error_report("%s: requires more than reserved virtual " | 
|  | "address space (0x%" PRIx64 " > 0x%lx)", | 
|  | image_name, (uint64_t)guest_hiaddr, reserved_va); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | } else { | 
|  | if (guest_hiaddr != (uintptr_t)guest_hiaddr) { | 
|  | error_report("%s: requires more virtual address space " | 
|  | "than the host can provide (0x%" PRIx64 ")", | 
|  | image_name, (uint64_t)guest_hiaddr + 1); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (have_guest_base) { | 
|  | pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align); | 
|  | } else { | 
|  | pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align); | 
|  | } | 
|  |  | 
|  | /* Reserve and initialize the commpage. */ | 
|  | if (!init_guest_commpage()) { | 
|  | /* We have already probed for the commpage being free. */ | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | assert(QEMU_IS_ALIGNED(guest_base, align)); | 
|  | qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " | 
|  | "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); | 
|  | } | 
|  |  | 
|  | enum { | 
|  | /* The string "GNU\0" as a magic number. */ | 
|  | GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), | 
|  | NOTE_DATA_SZ = 1 * KiB, | 
|  | NOTE_NAME_SZ = 4, | 
|  | ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Process a single gnu_property entry. | 
|  | * Return false for error. | 
|  | */ | 
|  | static bool parse_elf_property(const uint32_t *data, int *off, int datasz, | 
|  | struct image_info *info, bool have_prev_type, | 
|  | uint32_t *prev_type, Error **errp) | 
|  | { | 
|  | uint32_t pr_type, pr_datasz, step; | 
|  |  | 
|  | if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { | 
|  | goto error_data; | 
|  | } | 
|  | datasz -= *off; | 
|  | data += *off / sizeof(uint32_t); | 
|  |  | 
|  | if (datasz < 2 * sizeof(uint32_t)) { | 
|  | goto error_data; | 
|  | } | 
|  | pr_type = data[0]; | 
|  | pr_datasz = data[1]; | 
|  | data += 2; | 
|  | datasz -= 2 * sizeof(uint32_t); | 
|  | step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); | 
|  | if (step > datasz) { | 
|  | goto error_data; | 
|  | } | 
|  |  | 
|  | /* Properties are supposed to be unique and sorted on pr_type. */ | 
|  | if (have_prev_type && pr_type <= *prev_type) { | 
|  | if (pr_type == *prev_type) { | 
|  | error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); | 
|  | } else { | 
|  | error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | *prev_type = pr_type; | 
|  |  | 
|  | if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *off += 2 * sizeof(uint32_t) + step; | 
|  | return true; | 
|  |  | 
|  | error_data: | 
|  | error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Process NT_GNU_PROPERTY_TYPE_0. */ | 
|  | static bool parse_elf_properties(const ImageSource *src, | 
|  | struct image_info *info, | 
|  | const struct elf_phdr *phdr, | 
|  | Error **errp) | 
|  | { | 
|  | union { | 
|  | struct elf_note nhdr; | 
|  | uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; | 
|  | } note; | 
|  |  | 
|  | int n, off, datasz; | 
|  | bool have_prev_type; | 
|  | uint32_t prev_type; | 
|  |  | 
|  | /* Unless the arch requires properties, ignore them. */ | 
|  | if (!ARCH_USE_GNU_PROPERTY) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* If the properties are crazy large, that's too bad. */ | 
|  | n = phdr->p_filesz; | 
|  | if (n > sizeof(note)) { | 
|  | error_setg(errp, "PT_GNU_PROPERTY too large"); | 
|  | return false; | 
|  | } | 
|  | if (n < sizeof(note.nhdr)) { | 
|  | error_setg(errp, "PT_GNU_PROPERTY too small"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!imgsrc_read(¬e, phdr->p_offset, n, src, errp)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The contents of a valid PT_GNU_PROPERTY is a sequence | 
|  | * of uint32_t -- swap them all now. | 
|  | */ | 
|  | #ifdef BSWAP_NEEDED | 
|  | for (int i = 0; i < n / 4; i++) { | 
|  | bswap32s(note.data + i); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Note that nhdr is 3 words, and that the "name" described by namesz | 
|  | * immediately follows nhdr and is thus at the 4th word.  Further, all | 
|  | * of the inputs to the kernel's round_up are multiples of 4. | 
|  | */ | 
|  | if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || | 
|  | note.nhdr.n_namesz != NOTE_NAME_SZ || | 
|  | note.data[3] != GNU0_MAGIC) { | 
|  | error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); | 
|  | return false; | 
|  | } | 
|  | off = sizeof(note.nhdr) + NOTE_NAME_SZ; | 
|  |  | 
|  | datasz = note.nhdr.n_descsz + off; | 
|  | if (datasz > n) { | 
|  | error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | have_prev_type = false; | 
|  | prev_type = 0; | 
|  | while (1) { | 
|  | if (off == datasz) { | 
|  | return true;  /* end, exit ok */ | 
|  | } | 
|  | if (!parse_elf_property(note.data, &off, datasz, info, | 
|  | have_prev_type, &prev_type, errp)) { | 
|  | return false; | 
|  | } | 
|  | have_prev_type = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * load_elf_image: Load an ELF image into the address space. | 
|  | * @image_name: the filename of the image, to use in error messages. | 
|  | * @src: the ImageSource from which to read. | 
|  | * @info: info collected from the loaded image. | 
|  | * @ehdr: the ELF header, not yet bswapped. | 
|  | * @pinterp_name: record any PT_INTERP string found. | 
|  | * | 
|  | * On return: @info values will be filled in, as necessary or available. | 
|  | */ | 
|  |  | 
|  | static void load_elf_image(const char *image_name, const ImageSource *src, | 
|  | struct image_info *info, struct elfhdr *ehdr, | 
|  | char **pinterp_name) | 
|  | { | 
|  | g_autofree struct elf_phdr *phdr = NULL; | 
|  | abi_ulong load_addr, load_bias, loaddr, hiaddr, error; | 
|  | int i, prot_exec; | 
|  | Error *err = NULL; | 
|  |  | 
|  | /* | 
|  | * First of all, some simple consistency checks. | 
|  | * Note that we rely on the bswapped ehdr staying in bprm_buf, | 
|  | * for later use by load_elf_binary and create_elf_tables. | 
|  | */ | 
|  | if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) { | 
|  | goto exit_errmsg; | 
|  | } | 
|  | if (!elf_check_ident(ehdr)) { | 
|  | error_setg(&err, "Invalid ELF image for this architecture"); | 
|  | goto exit_errmsg; | 
|  | } | 
|  | bswap_ehdr(ehdr); | 
|  | if (!elf_check_ehdr(ehdr)) { | 
|  | error_setg(&err, "Invalid ELF image for this architecture"); | 
|  | goto exit_errmsg; | 
|  | } | 
|  |  | 
|  | phdr = imgsrc_read_alloc(ehdr->e_phoff, | 
|  | ehdr->e_phnum * sizeof(struct elf_phdr), | 
|  | src, &err); | 
|  | if (phdr == NULL) { | 
|  | goto exit_errmsg; | 
|  | } | 
|  | bswap_phdr(phdr, ehdr->e_phnum); | 
|  |  | 
|  | info->nsegs = 0; | 
|  | info->pt_dynamic_addr = 0; | 
|  |  | 
|  | mmap_lock(); | 
|  |  | 
|  | /* | 
|  | * Find the maximum size of the image and allocate an appropriate | 
|  | * amount of memory to handle that.  Locate the interpreter, if any. | 
|  | */ | 
|  | loaddr = -1, hiaddr = 0; | 
|  | info->alignment = 0; | 
|  | info->exec_stack = EXSTACK_DEFAULT; | 
|  | for (i = 0; i < ehdr->e_phnum; ++i) { | 
|  | struct elf_phdr *eppnt = phdr + i; | 
|  | if (eppnt->p_type == PT_LOAD) { | 
|  | abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK; | 
|  | if (a < loaddr) { | 
|  | loaddr = a; | 
|  | } | 
|  | a = eppnt->p_vaddr + eppnt->p_memsz - 1; | 
|  | if (a > hiaddr) { | 
|  | hiaddr = a; | 
|  | } | 
|  | ++info->nsegs; | 
|  | info->alignment |= eppnt->p_align; | 
|  | } else if (eppnt->p_type == PT_INTERP && pinterp_name) { | 
|  | g_autofree char *interp_name = NULL; | 
|  |  | 
|  | if (*pinterp_name) { | 
|  | error_setg(&err, "Multiple PT_INTERP entries"); | 
|  | goto exit_errmsg; | 
|  | } | 
|  |  | 
|  | interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz, | 
|  | src, &err); | 
|  | if (interp_name == NULL) { | 
|  | goto exit_errmsg; | 
|  | } | 
|  | if (interp_name[eppnt->p_filesz - 1] != 0) { | 
|  | error_setg(&err, "Invalid PT_INTERP entry"); | 
|  | goto exit_errmsg; | 
|  | } | 
|  | *pinterp_name = g_steal_pointer(&interp_name); | 
|  | } else if (eppnt->p_type == PT_GNU_PROPERTY) { | 
|  | if (!parse_elf_properties(src, info, eppnt, &err)) { | 
|  | goto exit_errmsg; | 
|  | } | 
|  | } else if (eppnt->p_type == PT_GNU_STACK) { | 
|  | info->exec_stack = eppnt->p_flags & PF_X; | 
|  | } | 
|  | } | 
|  |  | 
|  | load_addr = loaddr; | 
|  |  | 
|  | if (pinterp_name != NULL) { | 
|  | if (ehdr->e_type == ET_EXEC) { | 
|  | /* | 
|  | * Make sure that the low address does not conflict with | 
|  | * MMAP_MIN_ADDR or the QEMU application itself. | 
|  | */ | 
|  | probe_guest_base(image_name, loaddr, hiaddr); | 
|  | } else { | 
|  | abi_ulong align; | 
|  |  | 
|  | /* | 
|  | * The binary is dynamic, but we still need to | 
|  | * select guest_base.  In this case we pass a size. | 
|  | */ | 
|  | probe_guest_base(image_name, 0, hiaddr - loaddr); | 
|  |  | 
|  | /* | 
|  | * Avoid collision with the loader by providing a different | 
|  | * default load address. | 
|  | */ | 
|  | load_addr += elf_et_dyn_base; | 
|  |  | 
|  | /* | 
|  | * TODO: Better support for mmap alignment is desirable. | 
|  | * Since we do not have complete control over the guest | 
|  | * address space, we prefer the kernel to choose some address | 
|  | * rather than force the use of LOAD_ADDR via MAP_FIXED. | 
|  | * But without MAP_FIXED we cannot guarantee alignment, | 
|  | * only suggest it. | 
|  | */ | 
|  | align = pow2ceil(info->alignment); | 
|  | if (align) { | 
|  | load_addr &= -align; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve address space for all of this. | 
|  | * | 
|  | * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get | 
|  | * exactly the address range that is required.  Without reserved_va, | 
|  | * the guest address space is not isolated.  We have attempted to avoid | 
|  | * conflict with the host program itself via probe_guest_base, but using | 
|  | * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check. | 
|  | * | 
|  | * Otherwise this is ET_DYN, and we are searching for a location | 
|  | * that can hold the memory space required.  If the image is | 
|  | * pre-linked, LOAD_ADDR will be non-zero, and the kernel should | 
|  | * honor that address if it happens to be free. | 
|  | * | 
|  | * In both cases, we will overwrite pages in this range with mappings | 
|  | * from the executable. | 
|  | */ | 
|  | load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE, | 
|  | MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | | 
|  | (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0), | 
|  | -1, 0); | 
|  | if (load_addr == -1) { | 
|  | goto exit_mmap; | 
|  | } | 
|  | load_bias = load_addr - loaddr; | 
|  |  | 
|  | if (elf_is_fdpic(ehdr)) { | 
|  | struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = | 
|  | g_malloc(sizeof(*loadsegs) * info->nsegs); | 
|  |  | 
|  | for (i = 0; i < ehdr->e_phnum; ++i) { | 
|  | switch (phdr[i].p_type) { | 
|  | case PT_DYNAMIC: | 
|  | info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; | 
|  | break; | 
|  | case PT_LOAD: | 
|  | loadsegs->addr = phdr[i].p_vaddr + load_bias; | 
|  | loadsegs->p_vaddr = phdr[i].p_vaddr; | 
|  | loadsegs->p_memsz = phdr[i].p_memsz; | 
|  | ++loadsegs; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | info->load_bias = load_bias; | 
|  | info->code_offset = load_bias; | 
|  | info->data_offset = load_bias; | 
|  | info->load_addr = load_addr; | 
|  | info->entry = ehdr->e_entry + load_bias; | 
|  | info->start_code = -1; | 
|  | info->end_code = 0; | 
|  | info->start_data = -1; | 
|  | info->end_data = 0; | 
|  | /* Usual start for brk is after all sections of the main executable. */ | 
|  | info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias); | 
|  | info->elf_flags = ehdr->e_flags; | 
|  |  | 
|  | prot_exec = PROT_EXEC; | 
|  | #ifdef TARGET_AARCH64 | 
|  | /* | 
|  | * If the BTI feature is present, this indicates that the executable | 
|  | * pages of the startup binary should be mapped with PROT_BTI, so that | 
|  | * branch targets are enforced. | 
|  | * | 
|  | * The startup binary is either the interpreter or the static executable. | 
|  | * The interpreter is responsible for all pages of a dynamic executable. | 
|  | * | 
|  | * Elf notes are backward compatible to older cpus. | 
|  | * Do not enable BTI unless it is supported. | 
|  | */ | 
|  | if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) | 
|  | && (pinterp_name == NULL || *pinterp_name == 0) | 
|  | && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { | 
|  | prot_exec |= TARGET_PROT_BTI; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | for (i = 0; i < ehdr->e_phnum; i++) { | 
|  | struct elf_phdr *eppnt = phdr + i; | 
|  | if (eppnt->p_type == PT_LOAD) { | 
|  | abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; | 
|  | int elf_prot = 0; | 
|  |  | 
|  | if (eppnt->p_flags & PF_R) { | 
|  | elf_prot |= PROT_READ; | 
|  | } | 
|  | if (eppnt->p_flags & PF_W) { | 
|  | elf_prot |= PROT_WRITE; | 
|  | } | 
|  | if (eppnt->p_flags & PF_X) { | 
|  | elf_prot |= prot_exec; | 
|  | } | 
|  |  | 
|  | vaddr = load_bias + eppnt->p_vaddr; | 
|  | vaddr_po = vaddr & ~TARGET_PAGE_MASK; | 
|  | vaddr_ps = vaddr & TARGET_PAGE_MASK; | 
|  |  | 
|  | vaddr_ef = vaddr + eppnt->p_filesz; | 
|  | vaddr_em = vaddr + eppnt->p_memsz; | 
|  |  | 
|  | /* | 
|  | * Some segments may be completely empty, with a non-zero p_memsz | 
|  | * but no backing file segment. | 
|  | */ | 
|  | if (eppnt->p_filesz != 0) { | 
|  | error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, | 
|  | elf_prot, MAP_PRIVATE | MAP_FIXED, | 
|  | src, eppnt->p_offset - vaddr_po); | 
|  | if (error == -1) { | 
|  | goto exit_mmap; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the load segment requests extra zeros (e.g. bss), map it. */ | 
|  | if (vaddr_ef < vaddr_em && | 
|  | !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) { | 
|  | goto exit_errmsg; | 
|  | } | 
|  |  | 
|  | /* Find the full program boundaries.  */ | 
|  | if (elf_prot & PROT_EXEC) { | 
|  | if (vaddr < info->start_code) { | 
|  | info->start_code = vaddr; | 
|  | } | 
|  | if (vaddr_ef > info->end_code) { | 
|  | info->end_code = vaddr_ef; | 
|  | } | 
|  | } | 
|  | if (elf_prot & PROT_WRITE) { | 
|  | if (vaddr < info->start_data) { | 
|  | info->start_data = vaddr; | 
|  | } | 
|  | if (vaddr_ef > info->end_data) { | 
|  | info->end_data = vaddr_ef; | 
|  | } | 
|  | } | 
|  | #ifdef TARGET_MIPS | 
|  | } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { | 
|  | Mips_elf_abiflags_v0 abiflags; | 
|  |  | 
|  | if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags), | 
|  | src, &err)) { | 
|  | goto exit_errmsg; | 
|  | } | 
|  | bswap_mips_abiflags(&abiflags); | 
|  | info->fp_abi = abiflags.fp_abi; | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | if (info->end_data == 0) { | 
|  | info->start_data = info->end_code; | 
|  | info->end_data = info->end_code; | 
|  | } | 
|  |  | 
|  | if (qemu_log_enabled()) { | 
|  | load_symbols(ehdr, src, load_bias); | 
|  | } | 
|  |  | 
|  | debuginfo_report_elf(image_name, src->fd, load_bias); | 
|  |  | 
|  | mmap_unlock(); | 
|  |  | 
|  | close(src->fd); | 
|  | return; | 
|  |  | 
|  | exit_mmap: | 
|  | error_setg_errno(&err, errno, "Error mapping file"); | 
|  | goto exit_errmsg; | 
|  | exit_errmsg: | 
|  | error_reportf_err(err, "%s: ", image_name); | 
|  | exit(-1); | 
|  | } | 
|  |  | 
|  | static void load_elf_interp(const char *filename, struct image_info *info, | 
|  | char bprm_buf[BPRM_BUF_SIZE]) | 
|  | { | 
|  | struct elfhdr ehdr; | 
|  | ImageSource src; | 
|  | int fd, retval; | 
|  | Error *err = NULL; | 
|  |  | 
|  | fd = open(path(filename), O_RDONLY); | 
|  | if (fd < 0) { | 
|  | error_setg_file_open(&err, errno, filename); | 
|  | error_report_err(err); | 
|  | exit(-1); | 
|  | } | 
|  |  | 
|  | retval = read(fd, bprm_buf, BPRM_BUF_SIZE); | 
|  | if (retval < 0) { | 
|  | error_setg_errno(&err, errno, "Error reading file header"); | 
|  | error_reportf_err(err, "%s: ", filename); | 
|  | exit(-1); | 
|  | } | 
|  |  | 
|  | src.fd = fd; | 
|  | src.cache = bprm_buf; | 
|  | src.cache_size = retval; | 
|  |  | 
|  | load_elf_image(filename, &src, info, &ehdr, NULL); | 
|  | } | 
|  |  | 
|  | #ifdef VDSO_HEADER | 
|  | #include VDSO_HEADER | 
|  | #define  vdso_image_info()  &vdso_image_info | 
|  | #else | 
|  | #define  vdso_image_info()  NULL | 
|  | #endif | 
|  |  | 
|  | static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso) | 
|  | { | 
|  | ImageSource src; | 
|  | struct elfhdr ehdr; | 
|  | abi_ulong load_bias, load_addr; | 
|  |  | 
|  | src.fd = -1; | 
|  | src.cache = vdso->image; | 
|  | src.cache_size = vdso->image_size; | 
|  |  | 
|  | load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL); | 
|  | load_addr = info->load_addr; | 
|  | load_bias = info->load_bias; | 
|  |  | 
|  | /* | 
|  | * We need to relocate the VDSO image.  The one built into the kernel | 
|  | * is built for a fixed address.  The one built for QEMU is not, since | 
|  | * that requires close control of the guest address space. | 
|  | * We pre-processed the image to locate all of the addresses that need | 
|  | * to be updated. | 
|  | */ | 
|  | for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) { | 
|  | abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]); | 
|  | *addr = tswapal(tswapal(*addr) + load_bias); | 
|  | } | 
|  |  | 
|  | /* Install signal trampolines, if present. */ | 
|  | if (vdso->sigreturn_ofs) { | 
|  | default_sigreturn = load_addr + vdso->sigreturn_ofs; | 
|  | } | 
|  | if (vdso->rt_sigreturn_ofs) { | 
|  | default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs; | 
|  | } | 
|  |  | 
|  | /* Remove write from VDSO segment. */ | 
|  | target_mprotect(info->start_data, info->end_data - info->start_data, | 
|  | PROT_READ | PROT_EXEC); | 
|  | } | 
|  |  | 
|  | static int symfind(const void *s0, const void *s1) | 
|  | { | 
|  | struct elf_sym *sym = (struct elf_sym *)s1; | 
|  | __typeof(sym->st_value) addr = *(uint64_t *)s0; | 
|  | int result = 0; | 
|  |  | 
|  | if (addr < sym->st_value) { | 
|  | result = -1; | 
|  | } else if (addr >= sym->st_value + sym->st_size) { | 
|  | result = 1; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr) | 
|  | { | 
|  | #if ELF_CLASS == ELFCLASS32 | 
|  | struct elf_sym *syms = s->disas_symtab.elf32; | 
|  | #else | 
|  | struct elf_sym *syms = s->disas_symtab.elf64; | 
|  | #endif | 
|  |  | 
|  | // binary search | 
|  | struct elf_sym *sym; | 
|  |  | 
|  | sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); | 
|  | if (sym != NULL) { | 
|  | return s->disas_strtab + sym->st_name; | 
|  | } | 
|  |  | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | /* FIXME: This should use elf_ops.h.inc  */ | 
|  | static int symcmp(const void *s0, const void *s1) | 
|  | { | 
|  | struct elf_sym *sym0 = (struct elf_sym *)s0; | 
|  | struct elf_sym *sym1 = (struct elf_sym *)s1; | 
|  | return (sym0->st_value < sym1->st_value) | 
|  | ? -1 | 
|  | : ((sym0->st_value > sym1->st_value) ? 1 : 0); | 
|  | } | 
|  |  | 
|  | /* Best attempt to load symbols from this ELF object. */ | 
|  | static void load_symbols(struct elfhdr *hdr, const ImageSource *src, | 
|  | abi_ulong load_bias) | 
|  | { | 
|  | int i, shnum, nsyms, sym_idx = 0, str_idx = 0; | 
|  | g_autofree struct elf_shdr *shdr = NULL; | 
|  | char *strings = NULL; | 
|  | struct elf_sym *syms = NULL; | 
|  | struct elf_sym *new_syms; | 
|  | uint64_t segsz; | 
|  |  | 
|  | shnum = hdr->e_shnum; | 
|  | shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr), | 
|  | src, NULL); | 
|  | if (shdr == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | bswap_shdr(shdr, shnum); | 
|  | for (i = 0; i < shnum; ++i) { | 
|  | if (shdr[i].sh_type == SHT_SYMTAB) { | 
|  | sym_idx = i; | 
|  | str_idx = shdr[i].sh_link; | 
|  | goto found; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* There will be no symbol table if the file was stripped.  */ | 
|  | return; | 
|  |  | 
|  | found: | 
|  | /* Now know where the strtab and symtab are.  Snarf them.  */ | 
|  |  | 
|  | segsz = shdr[str_idx].sh_size; | 
|  | strings = g_try_malloc(segsz); | 
|  | if (!strings) { | 
|  | goto give_up; | 
|  | } | 
|  | if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) { | 
|  | goto give_up; | 
|  | } | 
|  |  | 
|  | segsz = shdr[sym_idx].sh_size; | 
|  | if (segsz / sizeof(struct elf_sym) > INT_MAX) { | 
|  | /* | 
|  | * Implausibly large symbol table: give up rather than ploughing | 
|  | * on with the number of symbols calculation overflowing. | 
|  | */ | 
|  | goto give_up; | 
|  | } | 
|  | nsyms = segsz / sizeof(struct elf_sym); | 
|  | syms = g_try_malloc(segsz); | 
|  | if (!syms) { | 
|  | goto give_up; | 
|  | } | 
|  | if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) { | 
|  | goto give_up; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nsyms; ) { | 
|  | bswap_sym(syms + i); | 
|  | /* Throw away entries which we do not need.  */ | 
|  | if (syms[i].st_shndx == SHN_UNDEF | 
|  | || syms[i].st_shndx >= SHN_LORESERVE | 
|  | || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { | 
|  | if (i < --nsyms) { | 
|  | syms[i] = syms[nsyms]; | 
|  | } | 
|  | } else { | 
|  | #if defined(TARGET_ARM) || defined (TARGET_MIPS) | 
|  | /* The bottom address bit marks a Thumb or MIPS16 symbol.  */ | 
|  | syms[i].st_value &= ~(target_ulong)1; | 
|  | #endif | 
|  | syms[i].st_value += load_bias; | 
|  | i++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* No "useful" symbol.  */ | 
|  | if (nsyms == 0) { | 
|  | goto give_up; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to free the storage associated with the local symbols | 
|  | * that we threw away.  Whether or not this has any effect on the | 
|  | * memory allocation depends on the malloc implementation and how | 
|  | * many symbols we managed to discard. | 
|  | */ | 
|  | new_syms = g_try_renew(struct elf_sym, syms, nsyms); | 
|  | if (new_syms == NULL) { | 
|  | goto give_up; | 
|  | } | 
|  | syms = new_syms; | 
|  |  | 
|  | qsort(syms, nsyms, sizeof(*syms), symcmp); | 
|  |  | 
|  | { | 
|  | struct syminfo *s = g_new(struct syminfo, 1); | 
|  |  | 
|  | s->disas_strtab = strings; | 
|  | s->disas_num_syms = nsyms; | 
|  | #if ELF_CLASS == ELFCLASS32 | 
|  | s->disas_symtab.elf32 = syms; | 
|  | #else | 
|  | s->disas_symtab.elf64 = syms; | 
|  | #endif | 
|  | s->lookup_symbol = lookup_symbolxx; | 
|  | s->next = syminfos; | 
|  | syminfos = s; | 
|  | } | 
|  | return; | 
|  |  | 
|  | give_up: | 
|  | g_free(strings); | 
|  | g_free(syms); | 
|  | } | 
|  |  | 
|  | uint32_t get_elf_eflags(int fd) | 
|  | { | 
|  | struct elfhdr ehdr; | 
|  | off_t offset; | 
|  | int ret; | 
|  |  | 
|  | /* Read ELF header */ | 
|  | offset = lseek(fd, 0, SEEK_SET); | 
|  | if (offset == (off_t) -1) { | 
|  | return 0; | 
|  | } | 
|  | ret = read(fd, &ehdr, sizeof(ehdr)); | 
|  | if (ret < sizeof(ehdr)) { | 
|  | return 0; | 
|  | } | 
|  | offset = lseek(fd, offset, SEEK_SET); | 
|  | if (offset == (off_t) -1) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check ELF signature */ | 
|  | if (!elf_check_ident(&ehdr)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* check header */ | 
|  | bswap_ehdr(&ehdr); | 
|  | if (!elf_check_ehdr(&ehdr)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* return architecture id */ | 
|  | return ehdr.e_flags; | 
|  | } | 
|  |  | 
|  | int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) | 
|  | { | 
|  | /* | 
|  | * We need a copy of the elf header for passing to create_elf_tables. | 
|  | * We will have overwritten the original when we re-use bprm->buf | 
|  | * while loading the interpreter.  Allocate the storage for this now | 
|  | * and let elf_load_image do any swapping that may be required. | 
|  | */ | 
|  | struct elfhdr ehdr; | 
|  | struct image_info interp_info, vdso_info; | 
|  | char *elf_interpreter = NULL; | 
|  | char *scratch; | 
|  |  | 
|  | memset(&interp_info, 0, sizeof(interp_info)); | 
|  | #ifdef TARGET_MIPS | 
|  | interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; | 
|  | #endif | 
|  |  | 
|  | load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter); | 
|  |  | 
|  | /* Do this so that we can load the interpreter, if need be.  We will | 
|  | change some of these later */ | 
|  | bprm->p = setup_arg_pages(bprm, info); | 
|  |  | 
|  | scratch = g_new0(char, TARGET_PAGE_SIZE); | 
|  | if (STACK_GROWS_DOWN) { | 
|  | bprm->p = copy_elf_strings(1, &bprm->filename, scratch, | 
|  | bprm->p, info->stack_limit); | 
|  | info->file_string = bprm->p; | 
|  | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, | 
|  | bprm->p, info->stack_limit); | 
|  | info->env_strings = bprm->p; | 
|  | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, | 
|  | bprm->p, info->stack_limit); | 
|  | info->arg_strings = bprm->p; | 
|  | } else { | 
|  | info->arg_strings = bprm->p; | 
|  | bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, | 
|  | bprm->p, info->stack_limit); | 
|  | info->env_strings = bprm->p; | 
|  | bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, | 
|  | bprm->p, info->stack_limit); | 
|  | info->file_string = bprm->p; | 
|  | bprm->p = copy_elf_strings(1, &bprm->filename, scratch, | 
|  | bprm->p, info->stack_limit); | 
|  | } | 
|  |  | 
|  | g_free(scratch); | 
|  |  | 
|  | if (!bprm->p) { | 
|  | fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); | 
|  | exit(-1); | 
|  | } | 
|  |  | 
|  | if (elf_interpreter) { | 
|  | load_elf_interp(elf_interpreter, &interp_info, bprm->buf); | 
|  |  | 
|  | /* | 
|  | * While unusual because of ELF_ET_DYN_BASE, if we are unlucky | 
|  | * with the mappings the interpreter can be loaded above but | 
|  | * near the main executable, which can leave very little room | 
|  | * for the heap. | 
|  | * If the current brk has less than 16MB, use the end of the | 
|  | * interpreter. | 
|  | */ | 
|  | if (interp_info.brk > info->brk && | 
|  | interp_info.load_bias - info->brk < 16 * MiB)  { | 
|  | info->brk = interp_info.brk; | 
|  | } | 
|  |  | 
|  | /* If the program interpreter is one of these two, then assume | 
|  | an iBCS2 image.  Otherwise assume a native linux image.  */ | 
|  |  | 
|  | if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 | 
|  | || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { | 
|  | info->personality = PER_SVR4; | 
|  |  | 
|  | /* Why this, you ask???  Well SVr4 maps page 0 as read-only, | 
|  | and some applications "depend" upon this behavior.  Since | 
|  | we do not have the power to recompile these, we emulate | 
|  | the SVr4 behavior.  Sigh.  */ | 
|  | target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC, | 
|  | MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS, | 
|  | -1, 0); | 
|  | } | 
|  | #ifdef TARGET_MIPS | 
|  | info->interp_fp_abi = interp_info.fp_abi; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Load a vdso if available, which will amongst other things contain the | 
|  | * signal trampolines.  Otherwise, allocate a separate page for them. | 
|  | */ | 
|  | const VdsoImageInfo *vdso = vdso_image_info(); | 
|  | if (vdso) { | 
|  | load_elf_vdso(&vdso_info, vdso); | 
|  | info->vdso = vdso_info.load_bias; | 
|  | } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { | 
|  | abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, | 
|  | PROT_READ | PROT_WRITE, | 
|  | MAP_PRIVATE | MAP_ANON, -1, 0); | 
|  | if (tramp_page == -1) { | 
|  | return -errno; | 
|  | } | 
|  |  | 
|  | setup_sigtramp(tramp_page); | 
|  | target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); | 
|  | } | 
|  |  | 
|  | bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info, | 
|  | elf_interpreter ? &interp_info : NULL, | 
|  | vdso ? &vdso_info : NULL); | 
|  | info->start_stack = bprm->p; | 
|  |  | 
|  | /* If we have an interpreter, set that as the program's entry point. | 
|  | Copy the load_bias as well, to help PPC64 interpret the entry | 
|  | point as a function descriptor.  Do this after creating elf tables | 
|  | so that we copy the original program entry point into the AUXV.  */ | 
|  | if (elf_interpreter) { | 
|  | info->load_bias = interp_info.load_bias; | 
|  | info->entry = interp_info.entry; | 
|  | g_free(elf_interpreter); | 
|  | } | 
|  |  | 
|  | #ifdef USE_ELF_CORE_DUMP | 
|  | bprm->core_dump = &elf_core_dump; | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef USE_ELF_CORE_DUMP | 
|  | #include "exec/translate-all.h" | 
|  |  | 
|  | /* | 
|  | * Definitions to generate Intel SVR4-like core files. | 
|  | * These mostly have the same names as the SVR4 types with "target_elf_" | 
|  | * tacked on the front to prevent clashes with linux definitions, | 
|  | * and the typedef forms have been avoided.  This is mostly like | 
|  | * the SVR4 structure, but more Linuxy, with things that Linux does | 
|  | * not support and which gdb doesn't really use excluded. | 
|  | * | 
|  | * Fields we don't dump (their contents is zero) in linux-user qemu | 
|  | * are marked with XXX. | 
|  | * | 
|  | * Core dump code is copied from linux kernel (fs/binfmt_elf.c). | 
|  | * | 
|  | * Porting ELF coredump for target is (quite) simple process.  First you | 
|  | * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for | 
|  | * the target resides): | 
|  | * | 
|  | * #define USE_ELF_CORE_DUMP | 
|  | * | 
|  | * Next you define type of register set used for dumping.  ELF specification | 
|  | * says that it needs to be array of elf_greg_t that has size of ELF_NREG. | 
|  | * | 
|  | * typedef <target_regtype> target_elf_greg_t; | 
|  | * #define ELF_NREG <number of registers> | 
|  | * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; | 
|  | * | 
|  | * Last step is to implement target specific function that copies registers | 
|  | * from given cpu into just specified register set.  Prototype is: | 
|  | * | 
|  | * static void elf_core_copy_regs(taret_elf_gregset_t *regs, | 
|  | *                                const CPUArchState *env); | 
|  | * | 
|  | * Parameters: | 
|  | *     regs - copy register values into here (allocated and zeroed by caller) | 
|  | *     env - copy registers from here | 
|  | * | 
|  | * Example for ARM target is provided in this file. | 
|  | */ | 
|  |  | 
|  | struct target_elf_siginfo { | 
|  | abi_int    si_signo; /* signal number */ | 
|  | abi_int    si_code;  /* extra code */ | 
|  | abi_int    si_errno; /* errno */ | 
|  | }; | 
|  |  | 
|  | struct target_elf_prstatus { | 
|  | struct target_elf_siginfo pr_info;      /* Info associated with signal */ | 
|  | abi_short          pr_cursig;    /* Current signal */ | 
|  | abi_ulong          pr_sigpend;   /* XXX */ | 
|  | abi_ulong          pr_sighold;   /* XXX */ | 
|  | target_pid_t       pr_pid; | 
|  | target_pid_t       pr_ppid; | 
|  | target_pid_t       pr_pgrp; | 
|  | target_pid_t       pr_sid; | 
|  | struct target_timeval pr_utime;  /* XXX User time */ | 
|  | struct target_timeval pr_stime;  /* XXX System time */ | 
|  | struct target_timeval pr_cutime; /* XXX Cumulative user time */ | 
|  | struct target_timeval pr_cstime; /* XXX Cumulative system time */ | 
|  | target_elf_gregset_t      pr_reg;       /* GP registers */ | 
|  | abi_int            pr_fpvalid;   /* XXX */ | 
|  | }; | 
|  |  | 
|  | #define ELF_PRARGSZ     (80) /* Number of chars for args */ | 
|  |  | 
|  | struct target_elf_prpsinfo { | 
|  | char         pr_state;       /* numeric process state */ | 
|  | char         pr_sname;       /* char for pr_state */ | 
|  | char         pr_zomb;        /* zombie */ | 
|  | char         pr_nice;        /* nice val */ | 
|  | abi_ulong    pr_flag;        /* flags */ | 
|  | target_uid_t pr_uid; | 
|  | target_gid_t pr_gid; | 
|  | target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; | 
|  | /* Lots missing */ | 
|  | char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */ | 
|  | char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ | 
|  | }; | 
|  |  | 
|  | #ifdef BSWAP_NEEDED | 
|  | static void bswap_prstatus(struct target_elf_prstatus *prstatus) | 
|  | { | 
|  | prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); | 
|  | prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); | 
|  | prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); | 
|  | prstatus->pr_cursig = tswap16(prstatus->pr_cursig); | 
|  | prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); | 
|  | prstatus->pr_sighold = tswapal(prstatus->pr_sighold); | 
|  | prstatus->pr_pid = tswap32(prstatus->pr_pid); | 
|  | prstatus->pr_ppid = tswap32(prstatus->pr_ppid); | 
|  | prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); | 
|  | prstatus->pr_sid = tswap32(prstatus->pr_sid); | 
|  | /* cpu times are not filled, so we skip them */ | 
|  | /* regs should be in correct format already */ | 
|  | prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); | 
|  | } | 
|  |  | 
|  | static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) | 
|  | { | 
|  | psinfo->pr_flag = tswapal(psinfo->pr_flag); | 
|  | psinfo->pr_uid = tswap16(psinfo->pr_uid); | 
|  | psinfo->pr_gid = tswap16(psinfo->pr_gid); | 
|  | psinfo->pr_pid = tswap32(psinfo->pr_pid); | 
|  | psinfo->pr_ppid = tswap32(psinfo->pr_ppid); | 
|  | psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); | 
|  | psinfo->pr_sid = tswap32(psinfo->pr_sid); | 
|  | } | 
|  |  | 
|  | static void bswap_note(struct elf_note *en) | 
|  | { | 
|  | bswap32s(&en->n_namesz); | 
|  | bswap32s(&en->n_descsz); | 
|  | bswap32s(&en->n_type); | 
|  | } | 
|  | #else | 
|  | static inline void bswap_prstatus(struct target_elf_prstatus *p) { } | 
|  | static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} | 
|  | static inline void bswap_note(struct elf_note *en) { } | 
|  | #endif /* BSWAP_NEEDED */ | 
|  |  | 
|  | /* | 
|  | * Calculate file (dump) size of given memory region. | 
|  | */ | 
|  | static size_t vma_dump_size(target_ulong start, target_ulong end, | 
|  | unsigned long flags) | 
|  | { | 
|  | /* The area must be readable. */ | 
|  | if (!(flags & PAGE_READ)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Usually we don't dump executable pages as they contain | 
|  | * non-writable code that debugger can read directly from | 
|  | * target library etc. If there is no elf header, we dump it. | 
|  | */ | 
|  | if (!(flags & PAGE_WRITE_ORG) && | 
|  | (flags & PAGE_EXEC) && | 
|  | memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return end - start; | 
|  | } | 
|  |  | 
|  | static size_t size_note(const char *name, size_t datasz) | 
|  | { | 
|  | size_t namesz = strlen(name) + 1; | 
|  |  | 
|  | namesz = ROUND_UP(namesz, 4); | 
|  | datasz = ROUND_UP(datasz, 4); | 
|  |  | 
|  | return sizeof(struct elf_note) + namesz + datasz; | 
|  | } | 
|  |  | 
|  | static void *fill_note(void **pptr, int type, const char *name, size_t datasz) | 
|  | { | 
|  | void *ptr = *pptr; | 
|  | struct elf_note *n = ptr; | 
|  | size_t namesz = strlen(name) + 1; | 
|  |  | 
|  | n->n_namesz = namesz; | 
|  | n->n_descsz = datasz; | 
|  | n->n_type = type; | 
|  | bswap_note(n); | 
|  |  | 
|  | ptr += sizeof(*n); | 
|  | memcpy(ptr, name, namesz); | 
|  |  | 
|  | namesz = ROUND_UP(namesz, 4); | 
|  | datasz = ROUND_UP(datasz, 4); | 
|  |  | 
|  | *pptr = ptr + namesz + datasz; | 
|  | return ptr + namesz; | 
|  | } | 
|  |  | 
|  | static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, | 
|  | uint32_t flags) | 
|  | { | 
|  | memcpy(elf->e_ident, ELFMAG, SELFMAG); | 
|  |  | 
|  | elf->e_ident[EI_CLASS] = ELF_CLASS; | 
|  | elf->e_ident[EI_DATA] = ELF_DATA; | 
|  | elf->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | elf->e_ident[EI_OSABI] = ELF_OSABI; | 
|  |  | 
|  | elf->e_type = ET_CORE; | 
|  | elf->e_machine = machine; | 
|  | elf->e_version = EV_CURRENT; | 
|  | elf->e_phoff = sizeof(struct elfhdr); | 
|  | elf->e_flags = flags; | 
|  | elf->e_ehsize = sizeof(struct elfhdr); | 
|  | elf->e_phentsize = sizeof(struct elf_phdr); | 
|  | elf->e_phnum = segs; | 
|  |  | 
|  | bswap_ehdr(elf); | 
|  | } | 
|  |  | 
|  | static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset) | 
|  | { | 
|  | phdr->p_type = PT_NOTE; | 
|  | phdr->p_offset = offset; | 
|  | phdr->p_filesz = sz; | 
|  |  | 
|  | bswap_phdr(phdr, 1); | 
|  | } | 
|  |  | 
|  | static void fill_prstatus_note(void *data, const TaskState *ts, | 
|  | CPUState *cpu, int signr) | 
|  | { | 
|  | /* | 
|  | * Because note memory is only aligned to 4, and target_elf_prstatus | 
|  | * may well have higher alignment requirements, fill locally and | 
|  | * memcpy to the destination afterward. | 
|  | */ | 
|  | struct target_elf_prstatus prstatus = { | 
|  | .pr_info.si_signo = signr, | 
|  | .pr_cursig = signr, | 
|  | .pr_pid = ts->ts_tid, | 
|  | .pr_ppid = getppid(), | 
|  | .pr_pgrp = getpgrp(), | 
|  | .pr_sid = getsid(0), | 
|  | }; | 
|  |  | 
|  | elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu)); | 
|  | bswap_prstatus(&prstatus); | 
|  | memcpy(data, &prstatus, sizeof(prstatus)); | 
|  | } | 
|  |  | 
|  | static void fill_prpsinfo_note(void *data, const TaskState *ts) | 
|  | { | 
|  | /* | 
|  | * Because note memory is only aligned to 4, and target_elf_prpsinfo | 
|  | * may well have higher alignment requirements, fill locally and | 
|  | * memcpy to the destination afterward. | 
|  | */ | 
|  | struct target_elf_prpsinfo psinfo = { | 
|  | .pr_pid = getpid(), | 
|  | .pr_ppid = getppid(), | 
|  | .pr_pgrp = getpgrp(), | 
|  | .pr_sid = getsid(0), | 
|  | .pr_uid = getuid(), | 
|  | .pr_gid = getgid(), | 
|  | }; | 
|  | char *base_filename; | 
|  | size_t len; | 
|  |  | 
|  | len = ts->info->env_strings - ts->info->arg_strings; | 
|  | len = MIN(len, ELF_PRARGSZ); | 
|  | memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len); | 
|  | for (size_t i = 0; i < len; i++) { | 
|  | if (psinfo.pr_psargs[i] == 0) { | 
|  | psinfo.pr_psargs[i] = ' '; | 
|  | } | 
|  | } | 
|  |  | 
|  | base_filename = g_path_get_basename(ts->bprm->filename); | 
|  | /* | 
|  | * Using strncpy here is fine: at max-length, | 
|  | * this field is not NUL-terminated. | 
|  | */ | 
|  | strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname)); | 
|  | g_free(base_filename); | 
|  |  | 
|  | bswap_psinfo(&psinfo); | 
|  | memcpy(data, &psinfo, sizeof(psinfo)); | 
|  | } | 
|  |  | 
|  | static void fill_auxv_note(void *data, const TaskState *ts) | 
|  | { | 
|  | memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Constructs name of coredump file.  We have following convention | 
|  | * for the name: | 
|  | *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core | 
|  | * | 
|  | * Returns the filename | 
|  | */ | 
|  | static char *core_dump_filename(const TaskState *ts) | 
|  | { | 
|  | g_autoptr(GDateTime) now = g_date_time_new_now_local(); | 
|  | g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); | 
|  | g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); | 
|  |  | 
|  | return g_strdup_printf("qemu_%s_%s_%d.core", | 
|  | base_filename, nowstr, (int)getpid()); | 
|  | } | 
|  |  | 
|  | static int dump_write(int fd, const void *ptr, size_t size) | 
|  | { | 
|  | const char *bufp = (const char *)ptr; | 
|  | ssize_t bytes_written, bytes_left; | 
|  |  | 
|  | bytes_written = 0; | 
|  | bytes_left = size; | 
|  |  | 
|  | /* | 
|  | * In normal conditions, single write(2) should do but | 
|  | * in case of socket etc. this mechanism is more portable. | 
|  | */ | 
|  | do { | 
|  | bytes_written = write(fd, bufp, bytes_left); | 
|  | if (bytes_written < 0) { | 
|  | if (errno == EINTR) | 
|  | continue; | 
|  | return (-1); | 
|  | } else if (bytes_written == 0) { /* eof */ | 
|  | return (-1); | 
|  | } | 
|  | bufp += bytes_written; | 
|  | bytes_left -= bytes_written; | 
|  | } while (bytes_left > 0); | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | static int wmr_page_unprotect_regions(void *opaque, target_ulong start, | 
|  | target_ulong end, unsigned long flags) | 
|  | { | 
|  | if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) { | 
|  | size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size()); | 
|  |  | 
|  | while (1) { | 
|  | page_unprotect(start, 0); | 
|  | if (end - start <= step) { | 
|  | break; | 
|  | } | 
|  | start += step; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | unsigned count; | 
|  | size_t size; | 
|  | } CountAndSizeRegions; | 
|  |  | 
|  | static int wmr_count_and_size_regions(void *opaque, target_ulong start, | 
|  | target_ulong end, unsigned long flags) | 
|  | { | 
|  | CountAndSizeRegions *css = opaque; | 
|  |  | 
|  | css->count++; | 
|  | css->size += vma_dump_size(start, end, flags); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | struct elf_phdr *phdr; | 
|  | off_t offset; | 
|  | } FillRegionPhdr; | 
|  |  | 
|  | static int wmr_fill_region_phdr(void *opaque, target_ulong start, | 
|  | target_ulong end, unsigned long flags) | 
|  | { | 
|  | FillRegionPhdr *d = opaque; | 
|  | struct elf_phdr *phdr = d->phdr; | 
|  |  | 
|  | phdr->p_type = PT_LOAD; | 
|  | phdr->p_vaddr = start; | 
|  | phdr->p_paddr = 0; | 
|  | phdr->p_filesz = vma_dump_size(start, end, flags); | 
|  | phdr->p_offset = d->offset; | 
|  | d->offset += phdr->p_filesz; | 
|  | phdr->p_memsz = end - start; | 
|  | phdr->p_flags = (flags & PAGE_READ ? PF_R : 0) | 
|  | | (flags & PAGE_WRITE_ORG ? PF_W : 0) | 
|  | | (flags & PAGE_EXEC ? PF_X : 0); | 
|  | phdr->p_align = ELF_EXEC_PAGESIZE; | 
|  |  | 
|  | bswap_phdr(phdr, 1); | 
|  | d->phdr = phdr + 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int wmr_write_region(void *opaque, target_ulong start, | 
|  | target_ulong end, unsigned long flags) | 
|  | { | 
|  | int fd = *(int *)opaque; | 
|  | size_t size = vma_dump_size(start, end, flags); | 
|  |  | 
|  | if (!size) { | 
|  | return 0; | 
|  | } | 
|  | return dump_write(fd, g2h_untagged(start), size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write out ELF coredump. | 
|  | * | 
|  | * See documentation of ELF object file format in: | 
|  | * http://www.caldera.com/developers/devspecs/gabi41.pdf | 
|  | * | 
|  | * Coredump format in linux is following: | 
|  | * | 
|  | * 0   +----------------------+         \ | 
|  | *     | ELF header           | ET_CORE  | | 
|  | *     +----------------------+          | | 
|  | *     | ELF program headers  |          |--- headers | 
|  | *     | - NOTE section       |          | | 
|  | *     | - PT_LOAD sections   |          | | 
|  | *     +----------------------+         / | 
|  | *     | NOTEs:               | | 
|  | *     | - NT_PRSTATUS        | | 
|  | *     | - NT_PRSINFO         | | 
|  | *     | - NT_AUXV            | | 
|  | *     +----------------------+ <-- aligned to target page | 
|  | *     | Process memory dump  | | 
|  | *     :                      : | 
|  | *     .                      . | 
|  | *     :                      : | 
|  | *     |                      | | 
|  | *     +----------------------+ | 
|  | * | 
|  | * NT_PRSTATUS -> struct elf_prstatus (per thread) | 
|  | * NT_PRSINFO  -> struct elf_prpsinfo | 
|  | * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). | 
|  | * | 
|  | * Format follows System V format as close as possible.  Current | 
|  | * version limitations are as follows: | 
|  | *     - no floating point registers are dumped | 
|  | * | 
|  | * Function returns 0 in case of success, negative errno otherwise. | 
|  | * | 
|  | * TODO: make this work also during runtime: it should be | 
|  | * possible to force coredump from running process and then | 
|  | * continue processing.  For example qemu could set up SIGUSR2 | 
|  | * handler (provided that target process haven't registered | 
|  | * handler for that) that does the dump when signal is received. | 
|  | */ | 
|  | static int elf_core_dump(int signr, const CPUArchState *env) | 
|  | { | 
|  | const CPUState *cpu = env_cpu((CPUArchState *)env); | 
|  | const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu); | 
|  | struct rlimit dumpsize; | 
|  | CountAndSizeRegions css; | 
|  | off_t offset, note_offset, data_offset; | 
|  | size_t note_size; | 
|  | int cpus, ret; | 
|  | int fd = -1; | 
|  | CPUState *cpu_iter; | 
|  |  | 
|  | if (prctl(PR_GET_DUMPABLE) == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | cpu_list_lock(); | 
|  | mmap_lock(); | 
|  |  | 
|  | /* By unprotecting, we merge vmas that might be split. */ | 
|  | walk_memory_regions(NULL, wmr_page_unprotect_regions); | 
|  |  | 
|  | /* | 
|  | * Walk through target process memory mappings and | 
|  | * set up structure containing this information. | 
|  | */ | 
|  | memset(&css, 0, sizeof(css)); | 
|  | walk_memory_regions(&css, wmr_count_and_size_regions); | 
|  |  | 
|  | cpus = 0; | 
|  | CPU_FOREACH(cpu_iter) { | 
|  | cpus++; | 
|  | } | 
|  |  | 
|  | offset = sizeof(struct elfhdr); | 
|  | offset += (css.count + 1) * sizeof(struct elf_phdr); | 
|  | note_offset = offset; | 
|  |  | 
|  | offset += size_note("CORE", ts->info->auxv_len); | 
|  | offset += size_note("CORE", sizeof(struct target_elf_prpsinfo)); | 
|  | offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus; | 
|  | note_size = offset - note_offset; | 
|  | data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE); | 
|  |  | 
|  | /* Do not dump if the corefile size exceeds the limit. */ | 
|  | if (dumpsize.rlim_cur != RLIM_INFINITY | 
|  | && dumpsize.rlim_cur < data_offset + css.size) { | 
|  | errno = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | { | 
|  | g_autofree char *corefile = core_dump_filename(ts); | 
|  | fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC, | 
|  | S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH); | 
|  | } | 
|  | if (fd < 0) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There is a fair amount of alignment padding within the notes | 
|  | * as well as preceeding the process memory.  Allocate a zeroed | 
|  | * block to hold it all.  Write all of the headers directly into | 
|  | * this buffer and then write it out as a block. | 
|  | */ | 
|  | { | 
|  | g_autofree void *header = g_malloc0(data_offset); | 
|  | FillRegionPhdr frp; | 
|  | void *hptr, *dptr; | 
|  |  | 
|  | /* Create elf file header. */ | 
|  | hptr = header; | 
|  | fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0); | 
|  | hptr += sizeof(struct elfhdr); | 
|  |  | 
|  | /* Create elf program headers. */ | 
|  | fill_elf_note_phdr(hptr, note_size, note_offset); | 
|  | hptr += sizeof(struct elf_phdr); | 
|  |  | 
|  | frp.phdr = hptr; | 
|  | frp.offset = data_offset; | 
|  | walk_memory_regions(&frp, wmr_fill_region_phdr); | 
|  | hptr = frp.phdr; | 
|  |  | 
|  | /* Create the notes. */ | 
|  | dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len); | 
|  | fill_auxv_note(dptr, ts); | 
|  |  | 
|  | dptr = fill_note(&hptr, NT_PRPSINFO, "CORE", | 
|  | sizeof(struct target_elf_prpsinfo)); | 
|  | fill_prpsinfo_note(dptr, ts); | 
|  |  | 
|  | CPU_FOREACH(cpu_iter) { | 
|  | dptr = fill_note(&hptr, NT_PRSTATUS, "CORE", | 
|  | sizeof(struct target_elf_prstatus)); | 
|  | fill_prstatus_note(dptr, ts, cpu_iter, | 
|  | cpu_iter == cpu ? signr : 0); | 
|  | } | 
|  |  | 
|  | if (dump_write(fd, header, data_offset) < 0) { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finally write process memory into the corefile as well. | 
|  | */ | 
|  | if (walk_memory_regions(&fd, wmr_write_region) < 0) { | 
|  | goto out; | 
|  | } | 
|  | errno = 0; | 
|  |  | 
|  | out: | 
|  | ret = -errno; | 
|  | mmap_unlock(); | 
|  | cpu_list_unlock(); | 
|  | if (fd >= 0) { | 
|  | close(fd); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | #endif /* USE_ELF_CORE_DUMP */ | 
|  |  | 
|  | void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) | 
|  | { | 
|  | init_thread(regs, infop); | 
|  | } |