| .. |
| Copyright (C) 2017, Emilio G. Cota <cota@braap.org> |
| Copyright (c) 2019, Linaro Limited |
| Written by Emilio Cota and Alex Bennée |
| |
| ================ |
| QEMU TCG Plugins |
| ================ |
| |
| QEMU TCG plugins provide a way for users to run experiments taking |
| advantage of the total system control emulation can have over a guest. |
| It provides a mechanism for plugins to subscribe to events during |
| translation and execution and optionally callback into the plugin |
| during these events. TCG plugins are unable to change the system state |
| only monitor it passively. However they can do this down to an |
| individual instruction granularity including potentially subscribing |
| to all load and store operations. |
| |
| API Stability |
| ============= |
| |
| This is a new feature for QEMU and it does allow people to develop |
| out-of-tree plugins that can be dynamically linked into a running QEMU |
| process. However the project reserves the right to change or break the |
| API should it need to do so. The best way to avoid this is to submit |
| your plugin upstream so they can be updated if/when the API changes. |
| |
| API versioning |
| -------------- |
| |
| All plugins need to declare a symbol which exports the plugin API |
| version they were built against. This can be done simply by:: |
| |
| QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; |
| |
| The core code will refuse to load a plugin that doesn't export a |
| `qemu_plugin_version` symbol or if plugin version is outside of QEMU's |
| supported range of API versions. |
| |
| Additionally the `qemu_info_t` structure which is passed to the |
| `qemu_plugin_install` method of a plugin will detail the minimum and |
| current API versions supported by QEMU. The API version will be |
| incremented if new APIs are added. The minimum API version will be |
| incremented if existing APIs are changed or removed. |
| |
| Exposure of QEMU internals |
| -------------------------- |
| |
| The plugin architecture actively avoids leaking implementation details |
| about how QEMU's translation works to the plugins. While there are |
| conceptions such as translation time and translation blocks the |
| details are opaque to plugins. The plugin is able to query select |
| details of instructions and system configuration only through the |
| exported *qemu_plugin* functions. |
| |
| Query Handle Lifetime |
| --------------------- |
| |
| Each callback provides an opaque anonymous information handle which |
| can usually be further queried to find out information about a |
| translation, instruction or operation. The handles themselves are only |
| valid during the lifetime of the callback so it is important that any |
| information that is needed is extracted during the callback and saved |
| by the plugin. |
| |
| Usage |
| ===== |
| |
| The QEMU binary needs to be compiled for plugin support:: |
| |
| configure --enable-plugins |
| |
| Once built a program can be run with multiple plugins loaded each with |
| their own arguments:: |
| |
| $QEMU $OTHER_QEMU_ARGS \ |
| -plugin tests/plugin/libhowvec.so,arg=inline,arg=hint \ |
| -plugin tests/plugin/libhotblocks.so |
| |
| Arguments are plugin specific and can be used to modify their |
| behaviour. In this case the howvec plugin is being asked to use inline |
| ops to count and break down the hint instructions by type. |
| |
| Plugin Life cycle |
| ================= |
| |
| First the plugin is loaded and the public qemu_plugin_install function |
| is called. The plugin will then register callbacks for various plugin |
| events. Generally plugins will register a handler for the *atexit* |
| if they want to dump a summary of collected information once the |
| program/system has finished running. |
| |
| When a registered event occurs the plugin callback is invoked. The |
| callbacks may provide additional information. In the case of a |
| translation event the plugin has an option to enumerate the |
| instructions in a block of instructions and optionally register |
| callbacks to some or all instructions when they are executed. |
| |
| There is also a facility to add an inline event where code to |
| increment a counter can be directly inlined with the translation. |
| Currently only a simple increment is supported. This is not atomic so |
| can miss counts. If you want absolute precision you should use a |
| callback which can then ensure atomicity itself. |
| |
| Finally when QEMU exits all the registered *atexit* callbacks are |
| invoked. |
| |
| Internals |
| ========= |
| |
| Locking |
| ------- |
| |
| We have to ensure we cannot deadlock, particularly under MTTCG. For |
| this we acquire a lock when called from plugin code. We also keep the |
| list of callbacks under RCU so that we do not have to hold the lock |
| when calling the callbacks. This is also for performance, since some |
| callbacks (e.g. memory access callbacks) might be called very |
| frequently. |
| |
| * A consequence of this is that we keep our own list of CPUs, so that |
| we do not have to worry about locking order wrt cpu_list_lock. |
| * Use a recursive lock, since we can get registration calls from |
| callbacks. |
| |
| As a result registering/unregistering callbacks is "slow", since it |
| takes a lock. But this is very infrequent; we want performance when |
| calling (or not calling) callbacks, not when registering them. Using |
| RCU is great for this. |
| |
| We support the uninstallation of a plugin at any time (e.g. from |
| plugin callbacks). This allows plugins to remove themselves if they no |
| longer want to instrument the code. This operation is asynchronous |
| which means callbacks may still occur after the uninstall operation is |
| requested. The plugin isn't completely uninstalled until the safe work |
| has executed while all vCPUs are quiescent. |