| /* |
| * QEMU fw_cfg helpers (X86 specific) |
| * |
| * Copyright (c) 2019 Red Hat, Inc. |
| * |
| * Author: |
| * Philippe Mathieu-Daudé <philmd@redhat.com> |
| * |
| * SPDX-License-Identifier: GPL-2.0-or-later |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "sysemu/numa.h" |
| #include "hw/acpi/acpi.h" |
| #include "hw/acpi/aml-build.h" |
| #include "hw/firmware/smbios.h" |
| #include "hw/i386/fw_cfg.h" |
| #include "hw/timer/hpet.h" |
| #include "hw/nvram/fw_cfg.h" |
| #include "e820_memory_layout.h" |
| #include "kvm/kvm_i386.h" |
| #include "qapi/error.h" |
| #include CONFIG_DEVICES |
| |
| struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; |
| |
| const char *fw_cfg_arch_key_name(uint16_t key) |
| { |
| static const struct { |
| uint16_t key; |
| const char *name; |
| } fw_cfg_arch_wellknown_keys[] = { |
| {FW_CFG_ACPI_TABLES, "acpi_tables"}, |
| {FW_CFG_SMBIOS_ENTRIES, "smbios_entries"}, |
| {FW_CFG_IRQ0_OVERRIDE, "irq0_override"}, |
| {FW_CFG_HPET, "hpet"}, |
| }; |
| |
| for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) { |
| if (fw_cfg_arch_wellknown_keys[i].key == key) { |
| return fw_cfg_arch_wellknown_keys[i].name; |
| } |
| } |
| return NULL; |
| } |
| |
| void fw_cfg_build_smbios(MachineState *ms, FWCfgState *fw_cfg) |
| { |
| #ifdef CONFIG_SMBIOS |
| uint8_t *smbios_tables, *smbios_anchor; |
| size_t smbios_tables_len, smbios_anchor_len; |
| struct smbios_phys_mem_area *mem_array; |
| unsigned i, array_count; |
| X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); |
| |
| /* tell smbios about cpuid version and features */ |
| smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); |
| |
| smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len); |
| if (smbios_tables) { |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, |
| smbios_tables, smbios_tables_len); |
| } |
| |
| /* build the array of physical mem area from e820 table */ |
| mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); |
| for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { |
| uint64_t addr, len; |
| |
| if (e820_get_entry(i, E820_RAM, &addr, &len)) { |
| mem_array[array_count].address = addr; |
| mem_array[array_count].length = len; |
| array_count++; |
| } |
| } |
| smbios_get_tables(ms, mem_array, array_count, |
| &smbios_tables, &smbios_tables_len, |
| &smbios_anchor, &smbios_anchor_len, |
| &error_fatal); |
| g_free(mem_array); |
| |
| if (smbios_anchor) { |
| fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", |
| smbios_tables, smbios_tables_len); |
| fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", |
| smbios_anchor, smbios_anchor_len); |
| } |
| #endif |
| } |
| |
| FWCfgState *fw_cfg_arch_create(MachineState *ms, |
| uint16_t boot_cpus, |
| uint16_t apic_id_limit) |
| { |
| FWCfgState *fw_cfg; |
| uint64_t *numa_fw_cfg; |
| int i; |
| MachineClass *mc = MACHINE_GET_CLASS(ms); |
| const CPUArchIdList *cpus = mc->possible_cpu_arch_ids(ms); |
| int nb_numa_nodes = ms->numa_state->num_nodes; |
| |
| fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, |
| &address_space_memory); |
| fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, boot_cpus); |
| |
| /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: |
| * |
| * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for |
| * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, |
| * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface |
| * for CPU hotplug also uses APIC ID and not "CPU index". |
| * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", |
| * but the "limit to the APIC ID values SeaBIOS may see". |
| * |
| * So for compatibility reasons with old BIOSes we are stuck with |
| * "etc/max-cpus" actually being apic_id_limit |
| */ |
| fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, apic_id_limit); |
| fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, ms->ram_size); |
| #ifdef CONFIG_ACPI |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, |
| acpi_tables, acpi_tables_len); |
| #endif |
| fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, 1); |
| |
| fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, |
| sizeof(struct e820_entry) * e820_get_num_entries()); |
| |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); |
| /* allocate memory for the NUMA channel: one (64bit) word for the number |
| * of nodes, one word for each VCPU->node and one word for each node to |
| * hold the amount of memory. |
| */ |
| numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes); |
| numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); |
| for (i = 0; i < cpus->len; i++) { |
| unsigned int apic_id = cpus->cpus[i].arch_id; |
| assert(apic_id < apic_id_limit); |
| numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id); |
| } |
| for (i = 0; i < nb_numa_nodes; i++) { |
| numa_fw_cfg[apic_id_limit + 1 + i] = |
| cpu_to_le64(ms->numa_state->nodes[i].node_mem); |
| } |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, |
| (1 + apic_id_limit + nb_numa_nodes) * |
| sizeof(*numa_fw_cfg)); |
| |
| return fw_cfg; |
| } |
| |
| void fw_cfg_build_feature_control(MachineState *ms, FWCfgState *fw_cfg) |
| { |
| X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu); |
| CPUX86State *env = &cpu->env; |
| uint32_t unused, ebx, ecx, edx; |
| uint64_t feature_control_bits = 0; |
| uint64_t *val; |
| |
| cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); |
| if (ecx & CPUID_EXT_VMX) { |
| feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; |
| } |
| |
| if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == |
| (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && |
| (env->mcg_cap & MCG_LMCE_P)) { |
| feature_control_bits |= FEATURE_CONTROL_LMCE; |
| } |
| |
| if (env->cpuid_level >= 7) { |
| cpu_x86_cpuid(env, 0x7, 0, &unused, &ebx, &ecx, &unused); |
| if (ebx & CPUID_7_0_EBX_SGX) { |
| feature_control_bits |= FEATURE_CONTROL_SGX; |
| } |
| if (ecx & CPUID_7_0_ECX_SGX_LC) { |
| feature_control_bits |= FEATURE_CONTROL_SGX_LC; |
| } |
| } |
| |
| if (!feature_control_bits) { |
| return; |
| } |
| |
| val = g_malloc(sizeof(*val)); |
| *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); |
| fw_cfg_add_file(fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); |
| } |
| |
| void fw_cfg_add_acpi_dsdt(Aml *scope, FWCfgState *fw_cfg) |
| { |
| /* |
| * when using port i/o, the 8-bit data register *always* overlaps |
| * with half of the 16-bit control register. Hence, the total size |
| * of the i/o region used is FW_CFG_CTL_SIZE; when using DMA, the |
| * DMA control register is located at FW_CFG_DMA_IO_BASE + 4 |
| */ |
| Object *obj = OBJECT(fw_cfg); |
| uint8_t io_size = object_property_get_bool(obj, "dma_enabled", NULL) ? |
| ROUND_UP(FW_CFG_CTL_SIZE, 4) + sizeof(dma_addr_t) : |
| FW_CFG_CTL_SIZE; |
| Aml *dev = aml_device("FWCF"); |
| Aml *crs = aml_resource_template(); |
| |
| aml_append(dev, aml_name_decl("_HID", aml_string("QEMU0002"))); |
| |
| /* device present, functioning, decoding, not shown in UI */ |
| aml_append(dev, aml_name_decl("_STA", aml_int(0xB))); |
| |
| aml_append(crs, |
| aml_io(AML_DECODE16, FW_CFG_IO_BASE, FW_CFG_IO_BASE, 0x01, io_size)); |
| |
| aml_append(dev, aml_name_decl("_CRS", crs)); |
| aml_append(scope, dev); |
| } |