| /* |
| * ARMV7M System emulation. |
| * |
| * Copyright (c) 2006-2007 CodeSourcery. |
| * Written by Paul Brook |
| * |
| * This code is licensed under the GPL. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/arm/armv7m.h" |
| #include "qapi/error.h" |
| #include "hw/sysbus.h" |
| #include "hw/arm/boot.h" |
| #include "hw/loader.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/qdev-clock.h" |
| #include "elf.h" |
| #include "sysemu/reset.h" |
| #include "qemu/error-report.h" |
| #include "qemu/module.h" |
| #include "qemu/log.h" |
| #include "target/arm/idau.h" |
| #include "migration/vmstate.h" |
| |
| /* Bitbanded IO. Each word corresponds to a single bit. */ |
| |
| /* Get the byte address of the real memory for a bitband access. */ |
| static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset) |
| { |
| return s->base | (offset & 0x1ffffff) >> 5; |
| } |
| |
| static MemTxResult bitband_read(void *opaque, hwaddr offset, |
| uint64_t *data, unsigned size, MemTxAttrs attrs) |
| { |
| BitBandState *s = opaque; |
| uint8_t buf[4]; |
| MemTxResult res; |
| int bitpos, bit; |
| hwaddr addr; |
| |
| assert(size <= 4); |
| |
| /* Find address in underlying memory and round down to multiple of size */ |
| addr = bitband_addr(s, offset) & (-size); |
| res = address_space_read(&s->source_as, addr, attrs, buf, size); |
| if (res) { |
| return res; |
| } |
| /* Bit position in the N bytes read... */ |
| bitpos = (offset >> 2) & ((size * 8) - 1); |
| /* ...converted to byte in buffer and bit in byte */ |
| bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1; |
| *data = bit; |
| return MEMTX_OK; |
| } |
| |
| static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value, |
| unsigned size, MemTxAttrs attrs) |
| { |
| BitBandState *s = opaque; |
| uint8_t buf[4]; |
| MemTxResult res; |
| int bitpos, bit; |
| hwaddr addr; |
| |
| assert(size <= 4); |
| |
| /* Find address in underlying memory and round down to multiple of size */ |
| addr = bitband_addr(s, offset) & (-size); |
| res = address_space_read(&s->source_as, addr, attrs, buf, size); |
| if (res) { |
| return res; |
| } |
| /* Bit position in the N bytes read... */ |
| bitpos = (offset >> 2) & ((size * 8) - 1); |
| /* ...converted to byte in buffer and bit in byte */ |
| bit = 1 << (bitpos & 7); |
| if (value & 1) { |
| buf[bitpos >> 3] |= bit; |
| } else { |
| buf[bitpos >> 3] &= ~bit; |
| } |
| return address_space_write(&s->source_as, addr, attrs, buf, size); |
| } |
| |
| static const MemoryRegionOps bitband_ops = { |
| .read_with_attrs = bitband_read, |
| .write_with_attrs = bitband_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .impl.min_access_size = 1, |
| .impl.max_access_size = 4, |
| .valid.min_access_size = 1, |
| .valid.max_access_size = 4, |
| }; |
| |
| static void bitband_init(Object *obj) |
| { |
| BitBandState *s = BITBAND(obj); |
| SysBusDevice *dev = SYS_BUS_DEVICE(obj); |
| |
| memory_region_init_io(&s->iomem, obj, &bitband_ops, s, |
| "bitband", 0x02000000); |
| sysbus_init_mmio(dev, &s->iomem); |
| } |
| |
| static void bitband_realize(DeviceState *dev, Error **errp) |
| { |
| BitBandState *s = BITBAND(dev); |
| |
| if (!s->source_memory) { |
| error_setg(errp, "source-memory property not set"); |
| return; |
| } |
| |
| address_space_init(&s->source_as, s->source_memory, "bitband-source"); |
| } |
| |
| /* Board init. */ |
| |
| static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = { |
| 0x20000000, 0x40000000 |
| }; |
| |
| static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = { |
| 0x22000000, 0x42000000 |
| }; |
| |
| static MemTxResult v7m_sysreg_ns_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| MemoryRegion *mr = opaque; |
| |
| if (attrs.secure) { |
| /* S accesses to the alias act like NS accesses to the real region */ |
| attrs.secure = 0; |
| return memory_region_dispatch_write(mr, addr, value, |
| size_memop(size) | MO_TE, attrs); |
| } else { |
| /* NS attrs are RAZ/WI for privileged, and BusFault for user */ |
| if (attrs.user) { |
| return MEMTX_ERROR; |
| } |
| return MEMTX_OK; |
| } |
| } |
| |
| static MemTxResult v7m_sysreg_ns_read(void *opaque, hwaddr addr, |
| uint64_t *data, unsigned size, |
| MemTxAttrs attrs) |
| { |
| MemoryRegion *mr = opaque; |
| |
| if (attrs.secure) { |
| /* S accesses to the alias act like NS accesses to the real region */ |
| attrs.secure = 0; |
| return memory_region_dispatch_read(mr, addr, data, |
| size_memop(size) | MO_TE, attrs); |
| } else { |
| /* NS attrs are RAZ/WI for privileged, and BusFault for user */ |
| if (attrs.user) { |
| return MEMTX_ERROR; |
| } |
| *data = 0; |
| return MEMTX_OK; |
| } |
| } |
| |
| static const MemoryRegionOps v7m_sysreg_ns_ops = { |
| .read_with_attrs = v7m_sysreg_ns_read, |
| .write_with_attrs = v7m_sysreg_ns_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static MemTxResult v7m_systick_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| ARMv7MState *s = opaque; |
| MemoryRegion *mr; |
| |
| /* Direct the access to the correct systick */ |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); |
| return memory_region_dispatch_write(mr, addr, value, |
| size_memop(size) | MO_TE, attrs); |
| } |
| |
| static MemTxResult v7m_systick_read(void *opaque, hwaddr addr, |
| uint64_t *data, unsigned size, |
| MemTxAttrs attrs) |
| { |
| ARMv7MState *s = opaque; |
| MemoryRegion *mr; |
| |
| /* Direct the access to the correct systick */ |
| mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); |
| return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE, |
| attrs); |
| } |
| |
| static const MemoryRegionOps v7m_systick_ops = { |
| .read_with_attrs = v7m_systick_read, |
| .write_with_attrs = v7m_systick_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| /* |
| * Unassigned portions of the PPB space are RAZ/WI for privileged |
| * accesses, and fault for non-privileged accesses. |
| */ |
| static MemTxResult ppb_default_read(void *opaque, hwaddr addr, |
| uint64_t *data, unsigned size, |
| MemTxAttrs attrs) |
| { |
| qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n", |
| (uint32_t)addr); |
| if (attrs.user) { |
| return MEMTX_ERROR; |
| } |
| *data = 0; |
| return MEMTX_OK; |
| } |
| |
| static MemTxResult ppb_default_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size, |
| MemTxAttrs attrs) |
| { |
| qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n", |
| (uint32_t)addr); |
| if (attrs.user) { |
| return MEMTX_ERROR; |
| } |
| return MEMTX_OK; |
| } |
| |
| static const MemoryRegionOps ppb_default_ops = { |
| .read_with_attrs = ppb_default_read, |
| .write_with_attrs = ppb_default_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .valid.min_access_size = 1, |
| .valid.max_access_size = 8, |
| }; |
| |
| static void armv7m_instance_init(Object *obj) |
| { |
| ARMv7MState *s = ARMV7M(obj); |
| int i; |
| |
| /* Can't init the cpu here, we don't yet know which model to use */ |
| |
| memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX); |
| |
| object_initialize_child(obj, "nvic", &s->nvic, TYPE_NVIC); |
| object_property_add_alias(obj, "num-irq", |
| OBJECT(&s->nvic), "num-irq"); |
| |
| object_initialize_child(obj, "systick-reg-ns", &s->systick[M_REG_NS], |
| TYPE_SYSTICK); |
| /* |
| * We can't initialize the secure systick here, as we don't know |
| * yet if we need it. |
| */ |
| |
| for (i = 0; i < ARRAY_SIZE(s->bitband); i++) { |
| object_initialize_child(obj, "bitband[*]", &s->bitband[i], |
| TYPE_BITBAND); |
| } |
| |
| s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", NULL, NULL, 0); |
| s->cpuclk = qdev_init_clock_in(DEVICE(obj), "cpuclk", NULL, NULL, 0); |
| } |
| |
| static void armv7m_realize(DeviceState *dev, Error **errp) |
| { |
| ARMv7MState *s = ARMV7M(dev); |
| SysBusDevice *sbd; |
| Error *err = NULL; |
| int i; |
| |
| if (!s->board_memory) { |
| error_setg(errp, "memory property was not set"); |
| return; |
| } |
| |
| /* cpuclk must be connected; refclk is optional */ |
| if (!clock_has_source(s->cpuclk)) { |
| error_setg(errp, "armv7m: cpuclk must be connected"); |
| return; |
| } |
| |
| memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1); |
| |
| s->cpu = ARM_CPU(object_new_with_props(s->cpu_type, OBJECT(s), "cpu", |
| &err, NULL)); |
| if (err != NULL) { |
| error_propagate(errp, err); |
| return; |
| } |
| |
| object_property_set_link(OBJECT(s->cpu), "memory", OBJECT(&s->container), |
| &error_abort); |
| if (object_property_find(OBJECT(s->cpu), "idau")) { |
| object_property_set_link(OBJECT(s->cpu), "idau", s->idau, |
| &error_abort); |
| } |
| if (object_property_find(OBJECT(s->cpu), "init-svtor")) { |
| if (!object_property_set_uint(OBJECT(s->cpu), "init-svtor", |
| s->init_svtor, errp)) { |
| return; |
| } |
| } |
| if (object_property_find(OBJECT(s->cpu), "init-nsvtor")) { |
| if (!object_property_set_uint(OBJECT(s->cpu), "init-nsvtor", |
| s->init_nsvtor, errp)) { |
| return; |
| } |
| } |
| if (object_property_find(OBJECT(s->cpu), "start-powered-off")) { |
| if (!object_property_set_bool(OBJECT(s->cpu), "start-powered-off", |
| s->start_powered_off, errp)) { |
| return; |
| } |
| } |
| if (object_property_find(OBJECT(s->cpu), "vfp")) { |
| if (!object_property_set_bool(OBJECT(s->cpu), "vfp", s->vfp, errp)) { |
| return; |
| } |
| } |
| if (object_property_find(OBJECT(s->cpu), "dsp")) { |
| if (!object_property_set_bool(OBJECT(s->cpu), "dsp", s->dsp, errp)) { |
| return; |
| } |
| } |
| |
| /* |
| * Tell the CPU where the NVIC is; it will fail realize if it doesn't |
| * have one. Similarly, tell the NVIC where its CPU is. |
| */ |
| s->cpu->env.nvic = &s->nvic; |
| s->nvic.cpu = s->cpu; |
| |
| if (!qdev_realize(DEVICE(s->cpu), NULL, errp)) { |
| return; |
| } |
| |
| /* Note that we must realize the NVIC after the CPU */ |
| if (!sysbus_realize(SYS_BUS_DEVICE(&s->nvic), errp)) { |
| return; |
| } |
| |
| /* Alias the NVIC's input and output GPIOs as our own so the board |
| * code can wire them up. (We do this in realize because the |
| * NVIC doesn't create the input GPIO array until realize.) |
| */ |
| qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL); |
| qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ"); |
| qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI"); |
| |
| /* |
| * We map various devices into the container MR at their architected |
| * addresses. In particular, we map everything corresponding to the |
| * "System PPB" space. This is the range from 0xe0000000 to 0xe00fffff |
| * and includes the NVIC, the System Control Space (system registers), |
| * the systick timer, and for CPUs with the Security extension an NS |
| * banked version of all of these. |
| * |
| * The default behaviour for unimplemented registers/ranges |
| * (for instance the Data Watchpoint and Trace unit at 0xe0001000) |
| * is to RAZ/WI for privileged access and BusFault for non-privileged |
| * access. |
| * |
| * The NVIC and System Control Space (SCS) starts at 0xe000e000 |
| * and looks like this: |
| * 0x004 - ICTR |
| * 0x010 - 0xff - systick |
| * 0x100..0x7ec - NVIC |
| * 0x7f0..0xcff - Reserved |
| * 0xd00..0xd3c - SCS registers |
| * 0xd40..0xeff - Reserved or Not implemented |
| * 0xf00 - STIR |
| * |
| * Some registers within this space are banked between security states. |
| * In v8M there is a second range 0xe002e000..0xe002efff which is the |
| * NonSecure alias SCS; secure accesses to this behave like NS accesses |
| * to the main SCS range, and non-secure accesses (including when |
| * the security extension is not implemented) are RAZ/WI. |
| * Note that both the main SCS range and the alias range are defined |
| * to be exempt from memory attribution (R_BLJT) and so the memory |
| * transaction attribute always matches the current CPU security |
| * state (attrs.secure == env->v7m.secure). In the v7m_sysreg_ns_ops |
| * wrappers we change attrs.secure to indicate the NS access; so |
| * generally code determining which banked register to use should |
| * use attrs.secure; code determining actual behaviour of the system |
| * should use env->v7m.secure. |
| * |
| * Within the PPB space, some MRs overlap, and the priority |
| * of overlapping regions is: |
| * - default region (for RAZ/WI and BusFault) : -1 |
| * - system register regions (provided by the NVIC) : 0 |
| * - systick : 1 |
| * This is because the systick device is a small block of registers |
| * in the middle of the other system control registers. |
| */ |
| |
| memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s, |
| "nvic-default", 0x100000); |
| memory_region_add_subregion_overlap(&s->container, 0xe0000000, |
| &s->defaultmem, -1); |
| |
| /* Wire the NVIC up to the CPU */ |
| sbd = SYS_BUS_DEVICE(&s->nvic); |
| sysbus_connect_irq(sbd, 0, |
| qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ)); |
| |
| memory_region_add_subregion(&s->container, 0xe000e000, |
| sysbus_mmio_get_region(sbd, 0)); |
| if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { |
| /* Create the NS alias region for the NVIC sysregs */ |
| memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), |
| &v7m_sysreg_ns_ops, |
| sysbus_mmio_get_region(sbd, 0), |
| "nvic_sysregs_ns", 0x1000); |
| memory_region_add_subregion(&s->container, 0xe002e000, |
| &s->sysreg_ns_mem); |
| } |
| |
| /* |
| * Create and map the systick devices. Note that we only connect |
| * refclk if it has been connected to us; otherwise the systick |
| * device gets the wrong answer for clock_has_source(refclk), because |
| * it has an immediate source (the ARMv7M's clock object) but not |
| * an ultimate source, and then it won't correctly auto-select the |
| * CPU clock as its only possible clock source. |
| */ |
| if (clock_has_source(s->refclk)) { |
| qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "refclk", |
| s->refclk); |
| } |
| qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "cpuclk", s->cpuclk); |
| if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) { |
| return; |
| } |
| sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, |
| qdev_get_gpio_in_named(DEVICE(&s->nvic), |
| "systick-trigger", M_REG_NS)); |
| |
| if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { |
| /* |
| * We couldn't init the secure systick device in instance_init |
| * as we didn't know then if the CPU had the security extensions; |
| * so we have to do it here. |
| */ |
| object_initialize_child(OBJECT(dev), "systick-reg-s", |
| &s->systick[M_REG_S], TYPE_SYSTICK); |
| if (clock_has_source(s->refclk)) { |
| qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "refclk", |
| s->refclk); |
| } |
| qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "cpuclk", |
| s->cpuclk); |
| |
| if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) { |
| return; |
| } |
| sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, |
| qdev_get_gpio_in_named(DEVICE(&s->nvic), |
| "systick-trigger", M_REG_S)); |
| } |
| |
| memory_region_init_io(&s->systickmem, OBJECT(s), |
| &v7m_systick_ops, s, |
| "v7m_systick", 0xe0); |
| |
| memory_region_add_subregion_overlap(&s->container, 0xe000e010, |
| &s->systickmem, 1); |
| if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { |
| memory_region_init_io(&s->systick_ns_mem, OBJECT(s), |
| &v7m_sysreg_ns_ops, &s->systickmem, |
| "v7m_systick_ns", 0xe0); |
| memory_region_add_subregion_overlap(&s->container, 0xe002e010, |
| &s->systick_ns_mem, 1); |
| } |
| |
| /* If the CPU has RAS support, create the RAS register block */ |
| if (cpu_isar_feature(aa32_ras, s->cpu)) { |
| object_initialize_child(OBJECT(dev), "armv7m-ras", |
| &s->ras, TYPE_ARMV7M_RAS); |
| sbd = SYS_BUS_DEVICE(&s->ras); |
| if (!sysbus_realize(sbd, errp)) { |
| return; |
| } |
| memory_region_add_subregion_overlap(&s->container, 0xe0005000, |
| sysbus_mmio_get_region(sbd, 0), 1); |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(s->bitband); i++) { |
| if (s->enable_bitband) { |
| Object *obj = OBJECT(&s->bitband[i]); |
| SysBusDevice *sbd = SYS_BUS_DEVICE(&s->bitband[i]); |
| |
| if (!object_property_set_int(obj, "base", |
| bitband_input_addr[i], errp)) { |
| return; |
| } |
| object_property_set_link(obj, "source-memory", |
| OBJECT(s->board_memory), &error_abort); |
| if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) { |
| return; |
| } |
| |
| memory_region_add_subregion(&s->container, bitband_output_addr[i], |
| sysbus_mmio_get_region(sbd, 0)); |
| } else { |
| object_unparent(OBJECT(&s->bitband[i])); |
| } |
| } |
| } |
| |
| static Property armv7m_properties[] = { |
| DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type), |
| DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION, |
| MemoryRegion *), |
| DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *), |
| DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0), |
| DEFINE_PROP_UINT32("init-nsvtor", ARMv7MState, init_nsvtor, 0), |
| DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false), |
| DEFINE_PROP_BOOL("start-powered-off", ARMv7MState, start_powered_off, |
| false), |
| DEFINE_PROP_BOOL("vfp", ARMv7MState, vfp, true), |
| DEFINE_PROP_BOOL("dsp", ARMv7MState, dsp, true), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static const VMStateDescription vmstate_armv7m = { |
| .name = "armv7m", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_CLOCK(refclk, ARMv7MState), |
| VMSTATE_CLOCK(cpuclk, ARMv7MState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void armv7m_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = armv7m_realize; |
| dc->vmsd = &vmstate_armv7m; |
| device_class_set_props(dc, armv7m_properties); |
| } |
| |
| static const TypeInfo armv7m_info = { |
| .name = TYPE_ARMV7M, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(ARMv7MState), |
| .instance_init = armv7m_instance_init, |
| .class_init = armv7m_class_init, |
| }; |
| |
| static void armv7m_reset(void *opaque) |
| { |
| ARMCPU *cpu = opaque; |
| |
| cpu_reset(CPU(cpu)); |
| } |
| |
| void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename, |
| hwaddr mem_base, int mem_size) |
| { |
| ssize_t image_size; |
| uint64_t entry; |
| AddressSpace *as; |
| int asidx; |
| CPUState *cs = CPU(cpu); |
| |
| if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) { |
| asidx = ARMASIdx_S; |
| } else { |
| asidx = ARMASIdx_NS; |
| } |
| as = cpu_get_address_space(cs, asidx); |
| |
| if (kernel_filename) { |
| image_size = load_elf_as(kernel_filename, NULL, NULL, NULL, |
| &entry, NULL, NULL, |
| NULL, 0, EM_ARM, 1, 0, as); |
| if (image_size < 0) { |
| image_size = load_image_targphys_as(kernel_filename, mem_base, |
| mem_size, as); |
| } |
| if (image_size < 0) { |
| error_report("Could not load kernel '%s'", kernel_filename); |
| exit(1); |
| } |
| } |
| |
| /* CPU objects (unlike devices) are not automatically reset on system |
| * reset, so we must always register a handler to do so. Unlike |
| * A-profile CPUs, we don't need to do anything special in the |
| * handler to arrange that it starts correctly. |
| * This is arguably the wrong place to do this, but it matches the |
| * way A-profile does it. Note that this means that every M profile |
| * board must call this function! |
| */ |
| qemu_register_reset(armv7m_reset, cpu); |
| } |
| |
| static Property bitband_properties[] = { |
| DEFINE_PROP_UINT32("base", BitBandState, base, 0), |
| DEFINE_PROP_LINK("source-memory", BitBandState, source_memory, |
| TYPE_MEMORY_REGION, MemoryRegion *), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void bitband_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = bitband_realize; |
| device_class_set_props(dc, bitband_properties); |
| } |
| |
| static const TypeInfo bitband_info = { |
| .name = TYPE_BITBAND, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(BitBandState), |
| .instance_init = bitband_init, |
| .class_init = bitband_class_init, |
| }; |
| |
| static void armv7m_register_types(void) |
| { |
| type_register_static(&bitband_info); |
| type_register_static(&armv7m_info); |
| } |
| |
| type_init(armv7m_register_types) |