blob: b4c60aa44682e55615f43676edd578858b4a90bd [file] [log] [blame]
/*
* Emulation of Linux signals
*
* Copyright (c) 2003 Fabrice Bellard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu.h"
#include "signal-common.h"
#include "linux-user/trace.h"
#define __SUNOS_MAXWIN 31
/* This is what SunOS does, so shall I. */
struct target_sigcontext {
abi_ulong sigc_onstack; /* state to restore */
abi_ulong sigc_mask; /* sigmask to restore */
abi_ulong sigc_sp; /* stack pointer */
abi_ulong sigc_pc; /* program counter */
abi_ulong sigc_npc; /* next program counter */
abi_ulong sigc_psr; /* for condition codes etc */
abi_ulong sigc_g1; /* User uses these two registers */
abi_ulong sigc_o0; /* within the trampoline code. */
/* Now comes information regarding the users window set
* at the time of the signal.
*/
abi_ulong sigc_oswins; /* outstanding windows */
/* stack ptrs for each regwin buf */
char *sigc_spbuf[__SUNOS_MAXWIN];
/* Windows to restore after signal */
struct {
abi_ulong locals[8];
abi_ulong ins[8];
} sigc_wbuf[__SUNOS_MAXWIN];
};
/* A Sparc stack frame */
struct sparc_stackf {
abi_ulong locals[8];
abi_ulong ins[8];
/* It's simpler to treat fp and callers_pc as elements of ins[]
* since we never need to access them ourselves.
*/
char *structptr;
abi_ulong xargs[6];
abi_ulong xxargs[1];
};
typedef struct {
struct {
abi_ulong psr;
abi_ulong pc;
abi_ulong npc;
abi_ulong y;
abi_ulong u_regs[16]; /* globals and ins */
} si_regs;
int si_mask;
} __siginfo_t;
typedef struct {
abi_ulong si_float_regs[32];
unsigned long si_fsr;
unsigned long si_fpqdepth;
struct {
unsigned long *insn_addr;
unsigned long insn;
} si_fpqueue [16];
} qemu_siginfo_fpu_t;
struct target_signal_frame {
struct sparc_stackf ss;
__siginfo_t info;
abi_ulong fpu_save;
abi_ulong insns[2] __attribute__ ((aligned (8)));
abi_ulong extramask[TARGET_NSIG_WORDS - 1];
abi_ulong extra_size; /* Should be 0 */
qemu_siginfo_fpu_t fpu_state;
};
struct target_rt_signal_frame {
struct sparc_stackf ss;
siginfo_t info;
abi_ulong regs[20];
sigset_t mask;
abi_ulong fpu_save;
unsigned int insns[2];
stack_t stack;
unsigned int extra_size; /* Should be 0 */
qemu_siginfo_fpu_t fpu_state;
};
#define UREG_O0 16
#define UREG_O6 22
#define UREG_I0 0
#define UREG_I1 1
#define UREG_I2 2
#define UREG_I3 3
#define UREG_I4 4
#define UREG_I5 5
#define UREG_I6 6
#define UREG_I7 7
#define UREG_L0 8
#define UREG_FP UREG_I6
#define UREG_SP UREG_O6
static inline abi_ulong get_sigframe(struct target_sigaction *sa,
CPUSPARCState *env,
unsigned long framesize)
{
abi_ulong sp = get_sp_from_cpustate(env);
/*
* If we are on the alternate signal stack and would overflow it, don't.
* Return an always-bogus address instead so we will die with SIGSEGV.
*/
if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) {
return -1;
}
/* This is the X/Open sanctioned signal stack switching. */
sp = target_sigsp(sp, sa) - framesize;
/* Always align the stack frame. This handles two cases. First,
* sigaltstack need not be mindful of platform specific stack
* alignment. Second, if we took this signal because the stack
* is not aligned properly, we'd like to take the signal cleanly
* and report that.
*/
sp &= ~15UL;
return sp;
}
static int
setup___siginfo(__siginfo_t *si, CPUSPARCState *env, abi_ulong mask)
{
int err = 0, i;
__put_user(env->psr, &si->si_regs.psr);
__put_user(env->pc, &si->si_regs.pc);
__put_user(env->npc, &si->si_regs.npc);
__put_user(env->y, &si->si_regs.y);
for (i=0; i < 8; i++) {
__put_user(env->gregs[i], &si->si_regs.u_regs[i]);
}
for (i=0; i < 8; i++) {
__put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]);
}
__put_user(mask, &si->si_mask);
return err;
}
#if 0
static int
setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/
CPUSPARCState *env, unsigned long mask)
{
int err = 0;
__put_user(mask, &sc->sigc_mask);
__put_user(env->regwptr[UREG_SP], &sc->sigc_sp);
__put_user(env->pc, &sc->sigc_pc);
__put_user(env->npc, &sc->sigc_npc);
__put_user(env->psr, &sc->sigc_psr);
__put_user(env->gregs[1], &sc->sigc_g1);
__put_user(env->regwptr[UREG_O0], &sc->sigc_o0);
return err;
}
#endif
#define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7)))
void setup_frame(int sig, struct target_sigaction *ka,
target_sigset_t *set, CPUSPARCState *env)
{
abi_ulong sf_addr;
struct target_signal_frame *sf;
int sigframe_size, err, i;
/* 1. Make sure everything is clean */
//synchronize_user_stack();
sigframe_size = NF_ALIGNEDSZ;
sf_addr = get_sigframe(ka, env, sigframe_size);
trace_user_setup_frame(env, sf_addr);
sf = lock_user(VERIFY_WRITE, sf_addr,
sizeof(struct target_signal_frame), 0);
if (!sf) {
goto sigsegv;
}
#if 0
if (invalid_frame_pointer(sf, sigframe_size))
goto sigill_and_return;
#endif
/* 2. Save the current process state */
err = setup___siginfo(&sf->info, env, set->sig[0]);
__put_user(0, &sf->extra_size);
//save_fpu_state(regs, &sf->fpu_state);
//__put_user(&sf->fpu_state, &sf->fpu_save);
__put_user(set->sig[0], &sf->info.si_mask);
for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) {
__put_user(set->sig[i + 1], &sf->extramask[i]);
}
for (i = 0; i < 8; i++) {
__put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]);
}
for (i = 0; i < 8; i++) {
__put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]);
}
if (err)
goto sigsegv;
/* 3. signal handler back-trampoline and parameters */
env->regwptr[UREG_FP] = sf_addr;
env->regwptr[UREG_I0] = sig;
env->regwptr[UREG_I1] = sf_addr +
offsetof(struct target_signal_frame, info);
env->regwptr[UREG_I2] = sf_addr +
offsetof(struct target_signal_frame, info);
/* 4. signal handler */
env->pc = ka->_sa_handler;
env->npc = (env->pc + 4);
/* 5. return to kernel instructions */
if (ka->ka_restorer) {
env->regwptr[UREG_I7] = ka->ka_restorer;
} else {
uint32_t val32;
env->regwptr[UREG_I7] = sf_addr +
offsetof(struct target_signal_frame, insns) - 2 * 4;
/* mov __NR_sigreturn, %g1 */
val32 = 0x821020d8;
__put_user(val32, &sf->insns[0]);
/* t 0x10 */
val32 = 0x91d02010;
__put_user(val32, &sf->insns[1]);
if (err)
goto sigsegv;
/* Flush instruction space. */
// flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0]));
// tb_flush(env);
}
unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
return;
#if 0
sigill_and_return:
force_sig(TARGET_SIGILL);
#endif
sigsegv:
unlock_user(sf, sf_addr, sizeof(struct target_signal_frame));
force_sigsegv(sig);
}
void setup_rt_frame(int sig, struct target_sigaction *ka,
target_siginfo_t *info,
target_sigset_t *set, CPUSPARCState *env)
{
qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n");
}
long do_sigreturn(CPUSPARCState *env)
{
abi_ulong sf_addr;
struct target_signal_frame *sf;
uint32_t up_psr, pc, npc;
target_sigset_t set;
sigset_t host_set;
int err=0, i;
sf_addr = env->regwptr[UREG_FP];
trace_user_do_sigreturn(env, sf_addr);
if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) {
goto segv_and_exit;
}
/* 1. Make sure we are not getting garbage from the user */
if (sf_addr & 3)
goto segv_and_exit;
__get_user(pc, &sf->info.si_regs.pc);
__get_user(npc, &sf->info.si_regs.npc);
if ((pc | npc) & 3) {
goto segv_and_exit;
}
/* 2. Restore the state */
__get_user(up_psr, &sf->info.si_regs.psr);
/* User can only change condition codes and FPU enabling in %psr. */
env->psr = (up_psr & (PSR_ICC /* | PSR_EF */))
| (env->psr & ~(PSR_ICC /* | PSR_EF */));
env->pc = pc;
env->npc = npc;
__get_user(env->y, &sf->info.si_regs.y);
for (i=0; i < 8; i++) {
__get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]);
}
for (i=0; i < 8; i++) {
__get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]);
}
/* FIXME: implement FPU save/restore:
* __get_user(fpu_save, &sf->fpu_save);
* if (fpu_save)
* err |= restore_fpu_state(env, fpu_save);
*/
/* This is pretty much atomic, no amount locking would prevent
* the races which exist anyways.
*/
__get_user(set.sig[0], &sf->info.si_mask);
for(i = 1; i < TARGET_NSIG_WORDS; i++) {
__get_user(set.sig[i], &sf->extramask[i - 1]);
}
target_to_host_sigset_internal(&host_set, &set);
set_sigmask(&host_set);
if (err) {
goto segv_and_exit;
}
unlock_user_struct(sf, sf_addr, 0);
return -TARGET_QEMU_ESIGRETURN;
segv_and_exit:
unlock_user_struct(sf, sf_addr, 0);
force_sig(TARGET_SIGSEGV);
return -TARGET_QEMU_ESIGRETURN;
}
long do_rt_sigreturn(CPUSPARCState *env)
{
trace_user_do_rt_sigreturn(env, 0);
qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n");
return -TARGET_ENOSYS;
}
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
#define SPARC_MC_TSTATE 0
#define SPARC_MC_PC 1
#define SPARC_MC_NPC 2
#define SPARC_MC_Y 3
#define SPARC_MC_G1 4
#define SPARC_MC_G2 5
#define SPARC_MC_G3 6
#define SPARC_MC_G4 7
#define SPARC_MC_G5 8
#define SPARC_MC_G6 9
#define SPARC_MC_G7 10
#define SPARC_MC_O0 11
#define SPARC_MC_O1 12
#define SPARC_MC_O2 13
#define SPARC_MC_O3 14
#define SPARC_MC_O4 15
#define SPARC_MC_O5 16
#define SPARC_MC_O6 17
#define SPARC_MC_O7 18
#define SPARC_MC_NGREG 19
typedef abi_ulong target_mc_greg_t;
typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG];
struct target_mc_fq {
abi_ulong *mcfq_addr;
uint32_t mcfq_insn;
};
struct target_mc_fpu {
union {
uint32_t sregs[32];
uint64_t dregs[32];
//uint128_t qregs[16];
} mcfpu_fregs;
abi_ulong mcfpu_fsr;
abi_ulong mcfpu_fprs;
abi_ulong mcfpu_gsr;
struct target_mc_fq *mcfpu_fq;
unsigned char mcfpu_qcnt;
unsigned char mcfpu_qentsz;
unsigned char mcfpu_enab;
};
typedef struct target_mc_fpu target_mc_fpu_t;
typedef struct {
target_mc_gregset_t mc_gregs;
target_mc_greg_t mc_fp;
target_mc_greg_t mc_i7;
target_mc_fpu_t mc_fpregs;
} target_mcontext_t;
struct target_ucontext {
struct target_ucontext *tuc_link;
abi_ulong tuc_flags;
target_sigset_t tuc_sigmask;
target_mcontext_t tuc_mcontext;
};
/* A V9 register window */
struct target_reg_window {
abi_ulong locals[8];
abi_ulong ins[8];
};
#define TARGET_STACK_BIAS 2047
/* {set, get}context() needed for 64-bit SparcLinux userland. */
void sparc64_set_context(CPUSPARCState *env)
{
abi_ulong ucp_addr;
struct target_ucontext *ucp;
target_mc_gregset_t *grp;
abi_ulong pc, npc, tstate;
abi_ulong fp, i7, w_addr;
unsigned int i;
ucp_addr = env->regwptr[UREG_I0];
if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) {
goto do_sigsegv;
}
grp = &ucp->tuc_mcontext.mc_gregs;
__get_user(pc, &((*grp)[SPARC_MC_PC]));
__get_user(npc, &((*grp)[SPARC_MC_NPC]));
if ((pc | npc) & 3) {
goto do_sigsegv;
}
if (env->regwptr[UREG_I1]) {
target_sigset_t target_set;
sigset_t set;
if (TARGET_NSIG_WORDS == 1) {
__get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]);
} else {
abi_ulong *src, *dst;
src = ucp->tuc_sigmask.sig;
dst = target_set.sig;
for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
__get_user(*dst, src);
}
}
target_to_host_sigset_internal(&set, &target_set);
set_sigmask(&set);
}
env->pc = pc;
env->npc = npc;
__get_user(env->y, &((*grp)[SPARC_MC_Y]));
__get_user(tstate, &((*grp)[SPARC_MC_TSTATE]));
env->asi = (tstate >> 24) & 0xff;
cpu_put_ccr(env, tstate >> 32);
cpu_put_cwp64(env, tstate & 0x1f);
__get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1]));
__get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2]));
__get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3]));
__get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4]));
__get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5]));
__get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6]));
__get_user(env->gregs[7], (&(*grp)[SPARC_MC_G7]));
__get_user(env->regwptr[UREG_I0], (&(*grp)[SPARC_MC_O0]));
__get_user(env->regwptr[UREG_I1], (&(*grp)[SPARC_MC_O1]));
__get_user(env->regwptr[UREG_I2], (&(*grp)[SPARC_MC_O2]));
__get_user(env->regwptr[UREG_I3], (&(*grp)[SPARC_MC_O3]));
__get_user(env->regwptr[UREG_I4], (&(*grp)[SPARC_MC_O4]));
__get_user(env->regwptr[UREG_I5], (&(*grp)[SPARC_MC_O5]));
__get_user(env->regwptr[UREG_I6], (&(*grp)[SPARC_MC_O6]));
__get_user(env->regwptr[UREG_I7], (&(*grp)[SPARC_MC_O7]));
__get_user(fp, &(ucp->tuc_mcontext.mc_fp));
__get_user(i7, &(ucp->tuc_mcontext.mc_i7));
w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6];
if (put_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]),
abi_ulong) != 0) {
goto do_sigsegv;
}
if (put_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]),
abi_ulong) != 0) {
goto do_sigsegv;
}
/* FIXME this does not match how the kernel handles the FPU in
* its sparc64_set_context implementation. In particular the FPU
* is only restored if fenab is non-zero in:
* __get_user(fenab, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_enab));
*/
__get_user(env->fprs, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fprs));
{
uint32_t *src = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs;
for (i = 0; i < 64; i++, src++) {
if (i & 1) {
__get_user(env->fpr[i/2].l.lower, src);
} else {
__get_user(env->fpr[i/2].l.upper, src);
}
}
}
__get_user(env->fsr,
&(ucp->tuc_mcontext.mc_fpregs.mcfpu_fsr));
__get_user(env->gsr,
&(ucp->tuc_mcontext.mc_fpregs.mcfpu_gsr));
unlock_user_struct(ucp, ucp_addr, 0);
return;
do_sigsegv:
unlock_user_struct(ucp, ucp_addr, 0);
force_sig(TARGET_SIGSEGV);
}
void sparc64_get_context(CPUSPARCState *env)
{
abi_ulong ucp_addr;
struct target_ucontext *ucp;
target_mc_gregset_t *grp;
target_mcontext_t *mcp;
abi_ulong fp, i7, w_addr;
int err;
unsigned int i;
target_sigset_t target_set;
sigset_t set;
ucp_addr = env->regwptr[UREG_I0];
if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) {
goto do_sigsegv;
}
mcp = &ucp->tuc_mcontext;
grp = &mcp->mc_gregs;
/* Skip over the trap instruction, first. */
env->pc = env->npc;
env->npc += 4;
/* If we're only reading the signal mask then do_sigprocmask()
* is guaranteed not to fail, which is important because we don't
* have any way to signal a failure or restart this operation since
* this is not a normal syscall.
*/
err = do_sigprocmask(0, NULL, &set);
assert(err == 0);
host_to_target_sigset_internal(&target_set, &set);
if (TARGET_NSIG_WORDS == 1) {
__put_user(target_set.sig[0],
(abi_ulong *)&ucp->tuc_sigmask);
} else {
abi_ulong *src, *dst;
src = target_set.sig;
dst = ucp->tuc_sigmask.sig;
for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) {
__put_user(*src, dst);
}
if (err)
goto do_sigsegv;
}
/* XXX: tstate must be saved properly */
// __put_user(env->tstate, &((*grp)[SPARC_MC_TSTATE]));
__put_user(env->pc, &((*grp)[SPARC_MC_PC]));
__put_user(env->npc, &((*grp)[SPARC_MC_NPC]));
__put_user(env->y, &((*grp)[SPARC_MC_Y]));
__put_user(env->gregs[1], &((*grp)[SPARC_MC_G1]));
__put_user(env->gregs[2], &((*grp)[SPARC_MC_G2]));
__put_user(env->gregs[3], &((*grp)[SPARC_MC_G3]));
__put_user(env->gregs[4], &((*grp)[SPARC_MC_G4]));
__put_user(env->gregs[5], &((*grp)[SPARC_MC_G5]));
__put_user(env->gregs[6], &((*grp)[SPARC_MC_G6]));
__put_user(env->gregs[7], &((*grp)[SPARC_MC_G7]));
__put_user(env->regwptr[UREG_I0], &((*grp)[SPARC_MC_O0]));
__put_user(env->regwptr[UREG_I1], &((*grp)[SPARC_MC_O1]));
__put_user(env->regwptr[UREG_I2], &((*grp)[SPARC_MC_O2]));
__put_user(env->regwptr[UREG_I3], &((*grp)[SPARC_MC_O3]));
__put_user(env->regwptr[UREG_I4], &((*grp)[SPARC_MC_O4]));
__put_user(env->regwptr[UREG_I5], &((*grp)[SPARC_MC_O5]));
__put_user(env->regwptr[UREG_I6], &((*grp)[SPARC_MC_O6]));
__put_user(env->regwptr[UREG_I7], &((*grp)[SPARC_MC_O7]));
w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6];
fp = i7 = 0;
if (get_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]),
abi_ulong) != 0) {
goto do_sigsegv;
}
if (get_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]),
abi_ulong) != 0) {
goto do_sigsegv;
}
__put_user(fp, &(mcp->mc_fp));
__put_user(i7, &(mcp->mc_i7));
{
uint32_t *dst = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs;
for (i = 0; i < 64; i++, dst++) {
if (i & 1) {
__put_user(env->fpr[i/2].l.lower, dst);
} else {
__put_user(env->fpr[i/2].l.upper, dst);
}
}
}
__put_user(env->fsr, &(mcp->mc_fpregs.mcfpu_fsr));
__put_user(env->gsr, &(mcp->mc_fpregs.mcfpu_gsr));
__put_user(env->fprs, &(mcp->mc_fpregs.mcfpu_fprs));
if (err)
goto do_sigsegv;
unlock_user_struct(ucp, ucp_addr, 1);
return;
do_sigsegv:
unlock_user_struct(ucp, ucp_addr, 1);
force_sig(TARGET_SIGSEGV);
}
#endif