| /* |
| * Virtual page mapping |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| |
| #include "qemu/cutils.h" |
| #include "cpu.h" |
| #include "exec/exec-all.h" |
| #include "exec/target_page.h" |
| #include "tcg.h" |
| #include "hw/qdev-core.h" |
| #include "hw/qdev-properties.h" |
| #if !defined(CONFIG_USER_ONLY) |
| #include "hw/boards.h" |
| #include "hw/xen/xen.h" |
| #endif |
| #include "sysemu/kvm.h" |
| #include "sysemu/sysemu.h" |
| #include "qemu/timer.h" |
| #include "qemu/config-file.h" |
| #include "qemu/error-report.h" |
| #if defined(CONFIG_USER_ONLY) |
| #include "qemu.h" |
| #else /* !CONFIG_USER_ONLY */ |
| #include "hw/hw.h" |
| #include "exec/memory.h" |
| #include "exec/ioport.h" |
| #include "sysemu/dma.h" |
| #include "sysemu/numa.h" |
| #include "sysemu/hw_accel.h" |
| #include "exec/address-spaces.h" |
| #include "sysemu/xen-mapcache.h" |
| #include "trace-root.h" |
| |
| #ifdef CONFIG_FALLOCATE_PUNCH_HOLE |
| #include <linux/falloc.h> |
| #endif |
| |
| #endif |
| #include "qemu/rcu_queue.h" |
| #include "qemu/main-loop.h" |
| #include "translate-all.h" |
| #include "sysemu/replay.h" |
| |
| #include "exec/memory-internal.h" |
| #include "exec/ram_addr.h" |
| #include "exec/log.h" |
| |
| #include "migration/vmstate.h" |
| |
| #include "qemu/range.h" |
| #ifndef _WIN32 |
| #include "qemu/mmap-alloc.h" |
| #endif |
| |
| #include "monitor/monitor.h" |
| |
| //#define DEBUG_SUBPAGE |
| |
| #if !defined(CONFIG_USER_ONLY) |
| /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes |
| * are protected by the ramlist lock. |
| */ |
| RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) }; |
| |
| static MemoryRegion *system_memory; |
| static MemoryRegion *system_io; |
| |
| AddressSpace address_space_io; |
| AddressSpace address_space_memory; |
| |
| MemoryRegion io_mem_rom, io_mem_notdirty; |
| static MemoryRegion io_mem_unassigned; |
| |
| /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ |
| #define RAM_PREALLOC (1 << 0) |
| |
| /* RAM is mmap-ed with MAP_SHARED */ |
| #define RAM_SHARED (1 << 1) |
| |
| /* Only a portion of RAM (used_length) is actually used, and migrated. |
| * This used_length size can change across reboots. |
| */ |
| #define RAM_RESIZEABLE (1 << 2) |
| |
| /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically |
| * zero the page and wake waiting processes. |
| * (Set during postcopy) |
| */ |
| #define RAM_UF_ZEROPAGE (1 << 3) |
| |
| /* RAM can be migrated */ |
| #define RAM_MIGRATABLE (1 << 4) |
| #endif |
| |
| #ifdef TARGET_PAGE_BITS_VARY |
| int target_page_bits; |
| bool target_page_bits_decided; |
| #endif |
| |
| struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus); |
| /* current CPU in the current thread. It is only valid inside |
| cpu_exec() */ |
| __thread CPUState *current_cpu; |
| /* 0 = Do not count executed instructions. |
| 1 = Precise instruction counting. |
| 2 = Adaptive rate instruction counting. */ |
| int use_icount; |
| |
| uintptr_t qemu_host_page_size; |
| intptr_t qemu_host_page_mask; |
| |
| bool set_preferred_target_page_bits(int bits) |
| { |
| /* The target page size is the lowest common denominator for all |
| * the CPUs in the system, so we can only make it smaller, never |
| * larger. And we can't make it smaller once we've committed to |
| * a particular size. |
| */ |
| #ifdef TARGET_PAGE_BITS_VARY |
| assert(bits >= TARGET_PAGE_BITS_MIN); |
| if (target_page_bits == 0 || target_page_bits > bits) { |
| if (target_page_bits_decided) { |
| return false; |
| } |
| target_page_bits = bits; |
| } |
| #endif |
| return true; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| static void finalize_target_page_bits(void) |
| { |
| #ifdef TARGET_PAGE_BITS_VARY |
| if (target_page_bits == 0) { |
| target_page_bits = TARGET_PAGE_BITS_MIN; |
| } |
| target_page_bits_decided = true; |
| #endif |
| } |
| |
| typedef struct PhysPageEntry PhysPageEntry; |
| |
| struct PhysPageEntry { |
| /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */ |
| uint32_t skip : 6; |
| /* index into phys_sections (!skip) or phys_map_nodes (skip) */ |
| uint32_t ptr : 26; |
| }; |
| |
| #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6) |
| |
| /* Size of the L2 (and L3, etc) page tables. */ |
| #define ADDR_SPACE_BITS 64 |
| |
| #define P_L2_BITS 9 |
| #define P_L2_SIZE (1 << P_L2_BITS) |
| |
| #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1) |
| |
| typedef PhysPageEntry Node[P_L2_SIZE]; |
| |
| typedef struct PhysPageMap { |
| struct rcu_head rcu; |
| |
| unsigned sections_nb; |
| unsigned sections_nb_alloc; |
| unsigned nodes_nb; |
| unsigned nodes_nb_alloc; |
| Node *nodes; |
| MemoryRegionSection *sections; |
| } PhysPageMap; |
| |
| struct AddressSpaceDispatch { |
| MemoryRegionSection *mru_section; |
| /* This is a multi-level map on the physical address space. |
| * The bottom level has pointers to MemoryRegionSections. |
| */ |
| PhysPageEntry phys_map; |
| PhysPageMap map; |
| }; |
| |
| #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK) |
| typedef struct subpage_t { |
| MemoryRegion iomem; |
| FlatView *fv; |
| hwaddr base; |
| uint16_t sub_section[]; |
| } subpage_t; |
| |
| #define PHYS_SECTION_UNASSIGNED 0 |
| #define PHYS_SECTION_NOTDIRTY 1 |
| #define PHYS_SECTION_ROM 2 |
| #define PHYS_SECTION_WATCH 3 |
| |
| static void io_mem_init(void); |
| static void memory_map_init(void); |
| static void tcg_commit(MemoryListener *listener); |
| |
| static MemoryRegion io_mem_watch; |
| |
| /** |
| * CPUAddressSpace: all the information a CPU needs about an AddressSpace |
| * @cpu: the CPU whose AddressSpace this is |
| * @as: the AddressSpace itself |
| * @memory_dispatch: its dispatch pointer (cached, RCU protected) |
| * @tcg_as_listener: listener for tracking changes to the AddressSpace |
| */ |
| struct CPUAddressSpace { |
| CPUState *cpu; |
| AddressSpace *as; |
| struct AddressSpaceDispatch *memory_dispatch; |
| MemoryListener tcg_as_listener; |
| }; |
| |
| struct DirtyBitmapSnapshot { |
| ram_addr_t start; |
| ram_addr_t end; |
| unsigned long dirty[]; |
| }; |
| |
| #endif |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes) |
| { |
| static unsigned alloc_hint = 16; |
| if (map->nodes_nb + nodes > map->nodes_nb_alloc) { |
| map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint); |
| map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes); |
| map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc); |
| alloc_hint = map->nodes_nb_alloc; |
| } |
| } |
| |
| static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf) |
| { |
| unsigned i; |
| uint32_t ret; |
| PhysPageEntry e; |
| PhysPageEntry *p; |
| |
| ret = map->nodes_nb++; |
| p = map->nodes[ret]; |
| assert(ret != PHYS_MAP_NODE_NIL); |
| assert(ret != map->nodes_nb_alloc); |
| |
| e.skip = leaf ? 0 : 1; |
| e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL; |
| for (i = 0; i < P_L2_SIZE; ++i) { |
| memcpy(&p[i], &e, sizeof(e)); |
| } |
| return ret; |
| } |
| |
| static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp, |
| hwaddr *index, hwaddr *nb, uint16_t leaf, |
| int level) |
| { |
| PhysPageEntry *p; |
| hwaddr step = (hwaddr)1 << (level * P_L2_BITS); |
| |
| if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) { |
| lp->ptr = phys_map_node_alloc(map, level == 0); |
| } |
| p = map->nodes[lp->ptr]; |
| lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
| |
| while (*nb && lp < &p[P_L2_SIZE]) { |
| if ((*index & (step - 1)) == 0 && *nb >= step) { |
| lp->skip = 0; |
| lp->ptr = leaf; |
| *index += step; |
| *nb -= step; |
| } else { |
| phys_page_set_level(map, lp, index, nb, leaf, level - 1); |
| } |
| ++lp; |
| } |
| } |
| |
| static void phys_page_set(AddressSpaceDispatch *d, |
| hwaddr index, hwaddr nb, |
| uint16_t leaf) |
| { |
| /* Wildly overreserve - it doesn't matter much. */ |
| phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS); |
| |
| phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1); |
| } |
| |
| /* Compact a non leaf page entry. Simply detect that the entry has a single child, |
| * and update our entry so we can skip it and go directly to the destination. |
| */ |
| static void phys_page_compact(PhysPageEntry *lp, Node *nodes) |
| { |
| unsigned valid_ptr = P_L2_SIZE; |
| int valid = 0; |
| PhysPageEntry *p; |
| int i; |
| |
| if (lp->ptr == PHYS_MAP_NODE_NIL) { |
| return; |
| } |
| |
| p = nodes[lp->ptr]; |
| for (i = 0; i < P_L2_SIZE; i++) { |
| if (p[i].ptr == PHYS_MAP_NODE_NIL) { |
| continue; |
| } |
| |
| valid_ptr = i; |
| valid++; |
| if (p[i].skip) { |
| phys_page_compact(&p[i], nodes); |
| } |
| } |
| |
| /* We can only compress if there's only one child. */ |
| if (valid != 1) { |
| return; |
| } |
| |
| assert(valid_ptr < P_L2_SIZE); |
| |
| /* Don't compress if it won't fit in the # of bits we have. */ |
| if (lp->skip + p[valid_ptr].skip >= (1 << 3)) { |
| return; |
| } |
| |
| lp->ptr = p[valid_ptr].ptr; |
| if (!p[valid_ptr].skip) { |
| /* If our only child is a leaf, make this a leaf. */ |
| /* By design, we should have made this node a leaf to begin with so we |
| * should never reach here. |
| * But since it's so simple to handle this, let's do it just in case we |
| * change this rule. |
| */ |
| lp->skip = 0; |
| } else { |
| lp->skip += p[valid_ptr].skip; |
| } |
| } |
| |
| void address_space_dispatch_compact(AddressSpaceDispatch *d) |
| { |
| if (d->phys_map.skip) { |
| phys_page_compact(&d->phys_map, d->map.nodes); |
| } |
| } |
| |
| static inline bool section_covers_addr(const MemoryRegionSection *section, |
| hwaddr addr) |
| { |
| /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means |
| * the section must cover the entire address space. |
| */ |
| return int128_gethi(section->size) || |
| range_covers_byte(section->offset_within_address_space, |
| int128_getlo(section->size), addr); |
| } |
| |
| static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr) |
| { |
| PhysPageEntry lp = d->phys_map, *p; |
| Node *nodes = d->map.nodes; |
| MemoryRegionSection *sections = d->map.sections; |
| hwaddr index = addr >> TARGET_PAGE_BITS; |
| int i; |
| |
| for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) { |
| if (lp.ptr == PHYS_MAP_NODE_NIL) { |
| return §ions[PHYS_SECTION_UNASSIGNED]; |
| } |
| p = nodes[lp.ptr]; |
| lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)]; |
| } |
| |
| if (section_covers_addr(§ions[lp.ptr], addr)) { |
| return §ions[lp.ptr]; |
| } else { |
| return §ions[PHYS_SECTION_UNASSIGNED]; |
| } |
| } |
| |
| bool memory_region_is_unassigned(MemoryRegion *mr) |
| { |
| return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device |
| && mr != &io_mem_watch; |
| } |
| |
| /* Called from RCU critical section */ |
| static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, |
| hwaddr addr, |
| bool resolve_subpage) |
| { |
| MemoryRegionSection *section = atomic_read(&d->mru_section); |
| subpage_t *subpage; |
| |
| if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] || |
| !section_covers_addr(section, addr)) { |
| section = phys_page_find(d, addr); |
| atomic_set(&d->mru_section, section); |
| } |
| if (resolve_subpage && section->mr->subpage) { |
| subpage = container_of(section->mr, subpage_t, iomem); |
| section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]]; |
| } |
| return section; |
| } |
| |
| /* Called from RCU critical section */ |
| static MemoryRegionSection * |
| address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat, |
| hwaddr *plen, bool resolve_subpage) |
| { |
| MemoryRegionSection *section; |
| MemoryRegion *mr; |
| Int128 diff; |
| |
| section = address_space_lookup_region(d, addr, resolve_subpage); |
| /* Compute offset within MemoryRegionSection */ |
| addr -= section->offset_within_address_space; |
| |
| /* Compute offset within MemoryRegion */ |
| *xlat = addr + section->offset_within_region; |
| |
| mr = section->mr; |
| |
| /* MMIO registers can be expected to perform full-width accesses based only |
| * on their address, without considering adjacent registers that could |
| * decode to completely different MemoryRegions. When such registers |
| * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO |
| * regions overlap wildly. For this reason we cannot clamp the accesses |
| * here. |
| * |
| * If the length is small (as is the case for address_space_ldl/stl), |
| * everything works fine. If the incoming length is large, however, |
| * the caller really has to do the clamping through memory_access_size. |
| */ |
| if (memory_region_is_ram(mr)) { |
| diff = int128_sub(section->size, int128_make64(addr)); |
| *plen = int128_get64(int128_min(diff, int128_make64(*plen))); |
| } |
| return section; |
| } |
| |
| /** |
| * address_space_translate_iommu - translate an address through an IOMMU |
| * memory region and then through the target address space. |
| * |
| * @iommu_mr: the IOMMU memory region that we start the translation from |
| * @addr: the address to be translated through the MMU |
| * @xlat: the translated address offset within the destination memory region. |
| * It cannot be %NULL. |
| * @plen_out: valid read/write length of the translated address. It |
| * cannot be %NULL. |
| * @page_mask_out: page mask for the translated address. This |
| * should only be meaningful for IOMMU translated |
| * addresses, since there may be huge pages that this bit |
| * would tell. It can be %NULL if we don't care about it. |
| * @is_write: whether the translation operation is for write |
| * @is_mmio: whether this can be MMIO, set true if it can |
| * @target_as: the address space targeted by the IOMMU |
| * @attrs: transaction attributes |
| * |
| * This function is called from RCU critical section. It is the common |
| * part of flatview_do_translate and address_space_translate_cached. |
| */ |
| static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr, |
| hwaddr *xlat, |
| hwaddr *plen_out, |
| hwaddr *page_mask_out, |
| bool is_write, |
| bool is_mmio, |
| AddressSpace **target_as, |
| MemTxAttrs attrs) |
| { |
| MemoryRegionSection *section; |
| hwaddr page_mask = (hwaddr)-1; |
| |
| do { |
| hwaddr addr = *xlat; |
| IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr); |
| int iommu_idx = 0; |
| IOMMUTLBEntry iotlb; |
| |
| if (imrc->attrs_to_index) { |
| iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); |
| } |
| |
| iotlb = imrc->translate(iommu_mr, addr, is_write ? |
| IOMMU_WO : IOMMU_RO, iommu_idx); |
| |
| if (!(iotlb.perm & (1 << is_write))) { |
| goto unassigned; |
| } |
| |
| addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
| | (addr & iotlb.addr_mask)); |
| page_mask &= iotlb.addr_mask; |
| *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1); |
| *target_as = iotlb.target_as; |
| |
| section = address_space_translate_internal( |
| address_space_to_dispatch(iotlb.target_as), addr, xlat, |
| plen_out, is_mmio); |
| |
| iommu_mr = memory_region_get_iommu(section->mr); |
| } while (unlikely(iommu_mr)); |
| |
| if (page_mask_out) { |
| *page_mask_out = page_mask; |
| } |
| return *section; |
| |
| unassigned: |
| return (MemoryRegionSection) { .mr = &io_mem_unassigned }; |
| } |
| |
| /** |
| * flatview_do_translate - translate an address in FlatView |
| * |
| * @fv: the flat view that we want to translate on |
| * @addr: the address to be translated in above address space |
| * @xlat: the translated address offset within memory region. It |
| * cannot be @NULL. |
| * @plen_out: valid read/write length of the translated address. It |
| * can be @NULL when we don't care about it. |
| * @page_mask_out: page mask for the translated address. This |
| * should only be meaningful for IOMMU translated |
| * addresses, since there may be huge pages that this bit |
| * would tell. It can be @NULL if we don't care about it. |
| * @is_write: whether the translation operation is for write |
| * @is_mmio: whether this can be MMIO, set true if it can |
| * @target_as: the address space targeted by the IOMMU |
| * @attrs: memory transaction attributes |
| * |
| * This function is called from RCU critical section |
| */ |
| static MemoryRegionSection flatview_do_translate(FlatView *fv, |
| hwaddr addr, |
| hwaddr *xlat, |
| hwaddr *plen_out, |
| hwaddr *page_mask_out, |
| bool is_write, |
| bool is_mmio, |
| AddressSpace **target_as, |
| MemTxAttrs attrs) |
| { |
| MemoryRegionSection *section; |
| IOMMUMemoryRegion *iommu_mr; |
| hwaddr plen = (hwaddr)(-1); |
| |
| if (!plen_out) { |
| plen_out = &plen; |
| } |
| |
| section = address_space_translate_internal( |
| flatview_to_dispatch(fv), addr, xlat, |
| plen_out, is_mmio); |
| |
| iommu_mr = memory_region_get_iommu(section->mr); |
| if (unlikely(iommu_mr)) { |
| return address_space_translate_iommu(iommu_mr, xlat, |
| plen_out, page_mask_out, |
| is_write, is_mmio, |
| target_as, attrs); |
| } |
| if (page_mask_out) { |
| /* Not behind an IOMMU, use default page size. */ |
| *page_mask_out = ~TARGET_PAGE_MASK; |
| } |
| |
| return *section; |
| } |
| |
| /* Called from RCU critical section */ |
| IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr, |
| bool is_write, MemTxAttrs attrs) |
| { |
| MemoryRegionSection section; |
| hwaddr xlat, page_mask; |
| |
| /* |
| * This can never be MMIO, and we don't really care about plen, |
| * but page mask. |
| */ |
| section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat, |
| NULL, &page_mask, is_write, false, &as, |
| attrs); |
| |
| /* Illegal translation */ |
| if (section.mr == &io_mem_unassigned) { |
| goto iotlb_fail; |
| } |
| |
| /* Convert memory region offset into address space offset */ |
| xlat += section.offset_within_address_space - |
| section.offset_within_region; |
| |
| return (IOMMUTLBEntry) { |
| .target_as = as, |
| .iova = addr & ~page_mask, |
| .translated_addr = xlat & ~page_mask, |
| .addr_mask = page_mask, |
| /* IOTLBs are for DMAs, and DMA only allows on RAMs. */ |
| .perm = IOMMU_RW, |
| }; |
| |
| iotlb_fail: |
| return (IOMMUTLBEntry) {0}; |
| } |
| |
| /* Called from RCU critical section */ |
| MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat, |
| hwaddr *plen, bool is_write, |
| MemTxAttrs attrs) |
| { |
| MemoryRegion *mr; |
| MemoryRegionSection section; |
| AddressSpace *as = NULL; |
| |
| /* This can be MMIO, so setup MMIO bit. */ |
| section = flatview_do_translate(fv, addr, xlat, plen, NULL, |
| is_write, true, &as, attrs); |
| mr = section.mr; |
| |
| if (xen_enabled() && memory_access_is_direct(mr, is_write)) { |
| hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr; |
| *plen = MIN(page, *plen); |
| } |
| |
| return mr; |
| } |
| |
| typedef struct TCGIOMMUNotifier { |
| IOMMUNotifier n; |
| MemoryRegion *mr; |
| CPUState *cpu; |
| int iommu_idx; |
| bool active; |
| } TCGIOMMUNotifier; |
| |
| static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb) |
| { |
| TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n); |
| |
| if (!notifier->active) { |
| return; |
| } |
| tlb_flush(notifier->cpu); |
| notifier->active = false; |
| /* We leave the notifier struct on the list to avoid reallocating it later. |
| * Generally the number of IOMMUs a CPU deals with will be small. |
| * In any case we can't unregister the iommu notifier from a notify |
| * callback. |
| */ |
| } |
| |
| static void tcg_register_iommu_notifier(CPUState *cpu, |
| IOMMUMemoryRegion *iommu_mr, |
| int iommu_idx) |
| { |
| /* Make sure this CPU has an IOMMU notifier registered for this |
| * IOMMU/IOMMU index combination, so that we can flush its TLB |
| * when the IOMMU tells us the mappings we've cached have changed. |
| */ |
| MemoryRegion *mr = MEMORY_REGION(iommu_mr); |
| TCGIOMMUNotifier *notifier; |
| int i; |
| |
| for (i = 0; i < cpu->iommu_notifiers->len; i++) { |
| notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); |
| if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) { |
| break; |
| } |
| } |
| if (i == cpu->iommu_notifiers->len) { |
| /* Not found, add a new entry at the end of the array */ |
| cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1); |
| notifier = g_new0(TCGIOMMUNotifier, 1); |
| g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier; |
| |
| notifier->mr = mr; |
| notifier->iommu_idx = iommu_idx; |
| notifier->cpu = cpu; |
| /* Rather than trying to register interest in the specific part |
| * of the iommu's address space that we've accessed and then |
| * expand it later as subsequent accesses touch more of it, we |
| * just register interest in the whole thing, on the assumption |
| * that iommu reconfiguration will be rare. |
| */ |
| iommu_notifier_init(¬ifier->n, |
| tcg_iommu_unmap_notify, |
| IOMMU_NOTIFIER_UNMAP, |
| 0, |
| HWADDR_MAX, |
| iommu_idx); |
| memory_region_register_iommu_notifier(notifier->mr, ¬ifier->n); |
| } |
| |
| if (!notifier->active) { |
| notifier->active = true; |
| } |
| } |
| |
| static void tcg_iommu_free_notifier_list(CPUState *cpu) |
| { |
| /* Destroy the CPU's notifier list */ |
| int i; |
| TCGIOMMUNotifier *notifier; |
| |
| for (i = 0; i < cpu->iommu_notifiers->len; i++) { |
| notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i); |
| memory_region_unregister_iommu_notifier(notifier->mr, ¬ifier->n); |
| g_free(notifier); |
| } |
| g_array_free(cpu->iommu_notifiers, true); |
| } |
| |
| /* Called from RCU critical section */ |
| MemoryRegionSection * |
| address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr, |
| hwaddr *xlat, hwaddr *plen, |
| MemTxAttrs attrs, int *prot) |
| { |
| MemoryRegionSection *section; |
| IOMMUMemoryRegion *iommu_mr; |
| IOMMUMemoryRegionClass *imrc; |
| IOMMUTLBEntry iotlb; |
| int iommu_idx; |
| AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch); |
| |
| for (;;) { |
| section = address_space_translate_internal(d, addr, &addr, plen, false); |
| |
| iommu_mr = memory_region_get_iommu(section->mr); |
| if (!iommu_mr) { |
| break; |
| } |
| |
| imrc = memory_region_get_iommu_class_nocheck(iommu_mr); |
| |
| iommu_idx = imrc->attrs_to_index(iommu_mr, attrs); |
| tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx); |
| /* We need all the permissions, so pass IOMMU_NONE so the IOMMU |
| * doesn't short-cut its translation table walk. |
| */ |
| iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx); |
| addr = ((iotlb.translated_addr & ~iotlb.addr_mask) |
| | (addr & iotlb.addr_mask)); |
| /* Update the caller's prot bits to remove permissions the IOMMU |
| * is giving us a failure response for. If we get down to no |
| * permissions left at all we can give up now. |
| */ |
| if (!(iotlb.perm & IOMMU_RO)) { |
| *prot &= ~(PAGE_READ | PAGE_EXEC); |
| } |
| if (!(iotlb.perm & IOMMU_WO)) { |
| *prot &= ~PAGE_WRITE; |
| } |
| |
| if (!*prot) { |
| goto translate_fail; |
| } |
| |
| d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as)); |
| } |
| |
| assert(!memory_region_is_iommu(section->mr)); |
| *xlat = addr; |
| return section; |
| |
| translate_fail: |
| return &d->map.sections[PHYS_SECTION_UNASSIGNED]; |
| } |
| #endif |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| static int cpu_common_post_load(void *opaque, int version_id) |
| { |
| CPUState *cpu = opaque; |
| |
| /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the |
| version_id is increased. */ |
| cpu->interrupt_request &= ~0x01; |
| tlb_flush(cpu); |
| |
| /* loadvm has just updated the content of RAM, bypassing the |
| * usual mechanisms that ensure we flush TBs for writes to |
| * memory we've translated code from. So we must flush all TBs, |
| * which will now be stale. |
| */ |
| tb_flush(cpu); |
| |
| return 0; |
| } |
| |
| static int cpu_common_pre_load(void *opaque) |
| { |
| CPUState *cpu = opaque; |
| |
| cpu->exception_index = -1; |
| |
| return 0; |
| } |
| |
| static bool cpu_common_exception_index_needed(void *opaque) |
| { |
| CPUState *cpu = opaque; |
| |
| return tcg_enabled() && cpu->exception_index != -1; |
| } |
| |
| static const VMStateDescription vmstate_cpu_common_exception_index = { |
| .name = "cpu_common/exception_index", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = cpu_common_exception_index_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_INT32(exception_index, CPUState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static bool cpu_common_crash_occurred_needed(void *opaque) |
| { |
| CPUState *cpu = opaque; |
| |
| return cpu->crash_occurred; |
| } |
| |
| static const VMStateDescription vmstate_cpu_common_crash_occurred = { |
| .name = "cpu_common/crash_occurred", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .needed = cpu_common_crash_occurred_needed, |
| .fields = (VMStateField[]) { |
| VMSTATE_BOOL(crash_occurred, CPUState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| const VMStateDescription vmstate_cpu_common = { |
| .name = "cpu_common", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .pre_load = cpu_common_pre_load, |
| .post_load = cpu_common_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(halted, CPUState), |
| VMSTATE_UINT32(interrupt_request, CPUState), |
| VMSTATE_END_OF_LIST() |
| }, |
| .subsections = (const VMStateDescription*[]) { |
| &vmstate_cpu_common_exception_index, |
| &vmstate_cpu_common_crash_occurred, |
| NULL |
| } |
| }; |
| |
| #endif |
| |
| CPUState *qemu_get_cpu(int index) |
| { |
| CPUState *cpu; |
| |
| CPU_FOREACH(cpu) { |
| if (cpu->cpu_index == index) { |
| return cpu; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| void cpu_address_space_init(CPUState *cpu, int asidx, |
| const char *prefix, MemoryRegion *mr) |
| { |
| CPUAddressSpace *newas; |
| AddressSpace *as = g_new0(AddressSpace, 1); |
| char *as_name; |
| |
| assert(mr); |
| as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index); |
| address_space_init(as, mr, as_name); |
| g_free(as_name); |
| |
| /* Target code should have set num_ases before calling us */ |
| assert(asidx < cpu->num_ases); |
| |
| if (asidx == 0) { |
| /* address space 0 gets the convenience alias */ |
| cpu->as = as; |
| } |
| |
| /* KVM cannot currently support multiple address spaces. */ |
| assert(asidx == 0 || !kvm_enabled()); |
| |
| if (!cpu->cpu_ases) { |
| cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases); |
| } |
| |
| newas = &cpu->cpu_ases[asidx]; |
| newas->cpu = cpu; |
| newas->as = as; |
| if (tcg_enabled()) { |
| newas->tcg_as_listener.commit = tcg_commit; |
| memory_listener_register(&newas->tcg_as_listener, as); |
| } |
| } |
| |
| AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx) |
| { |
| /* Return the AddressSpace corresponding to the specified index */ |
| return cpu->cpu_ases[asidx].as; |
| } |
| #endif |
| |
| void cpu_exec_unrealizefn(CPUState *cpu) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| |
| cpu_list_remove(cpu); |
| |
| if (cc->vmsd != NULL) { |
| vmstate_unregister(NULL, cc->vmsd, cpu); |
| } |
| if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
| vmstate_unregister(NULL, &vmstate_cpu_common, cpu); |
| } |
| #ifndef CONFIG_USER_ONLY |
| tcg_iommu_free_notifier_list(cpu); |
| #endif |
| } |
| |
| Property cpu_common_props[] = { |
| #ifndef CONFIG_USER_ONLY |
| /* Create a memory property for softmmu CPU object, |
| * so users can wire up its memory. (This can't go in qom/cpu.c |
| * because that file is compiled only once for both user-mode |
| * and system builds.) The default if no link is set up is to use |
| * the system address space. |
| */ |
| DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION, |
| MemoryRegion *), |
| #endif |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| void cpu_exec_initfn(CPUState *cpu) |
| { |
| cpu->as = NULL; |
| cpu->num_ases = 0; |
| |
| #ifndef CONFIG_USER_ONLY |
| cpu->thread_id = qemu_get_thread_id(); |
| cpu->memory = system_memory; |
| object_ref(OBJECT(cpu->memory)); |
| #endif |
| } |
| |
| void cpu_exec_realizefn(CPUState *cpu, Error **errp) |
| { |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| static bool tcg_target_initialized; |
| |
| cpu_list_add(cpu); |
| |
| if (tcg_enabled() && !tcg_target_initialized) { |
| tcg_target_initialized = true; |
| cc->tcg_initialize(); |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| if (qdev_get_vmsd(DEVICE(cpu)) == NULL) { |
| vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu); |
| } |
| if (cc->vmsd != NULL) { |
| vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu); |
| } |
| |
| cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *)); |
| #endif |
| } |
| |
| const char *parse_cpu_model(const char *cpu_model) |
| { |
| ObjectClass *oc; |
| CPUClass *cc; |
| gchar **model_pieces; |
| const char *cpu_type; |
| |
| model_pieces = g_strsplit(cpu_model, ",", 2); |
| |
| oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]); |
| if (oc == NULL) { |
| error_report("unable to find CPU model '%s'", model_pieces[0]); |
| g_strfreev(model_pieces); |
| exit(EXIT_FAILURE); |
| } |
| |
| cpu_type = object_class_get_name(oc); |
| cc = CPU_CLASS(oc); |
| cc->parse_features(cpu_type, model_pieces[1], &error_fatal); |
| g_strfreev(model_pieces); |
| return cpu_type; |
| } |
| |
| #if defined(CONFIG_USER_ONLY) |
| void tb_invalidate_phys_addr(target_ulong addr) |
| { |
| mmap_lock(); |
| tb_invalidate_phys_page_range(addr, addr + 1, 0); |
| mmap_unlock(); |
| } |
| |
| static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
| { |
| tb_invalidate_phys_addr(pc); |
| } |
| #else |
| void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs) |
| { |
| ram_addr_t ram_addr; |
| MemoryRegion *mr; |
| hwaddr l = 1; |
| |
| if (!tcg_enabled()) { |
| return; |
| } |
| |
| rcu_read_lock(); |
| mr = address_space_translate(as, addr, &addr, &l, false, attrs); |
| if (!(memory_region_is_ram(mr) |
| || memory_region_is_romd(mr))) { |
| rcu_read_unlock(); |
| return; |
| } |
| ram_addr = memory_region_get_ram_addr(mr) + addr; |
| tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0); |
| rcu_read_unlock(); |
| } |
| |
| static void breakpoint_invalidate(CPUState *cpu, target_ulong pc) |
| { |
| MemTxAttrs attrs; |
| hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs); |
| int asidx = cpu_asidx_from_attrs(cpu, attrs); |
| if (phys != -1) { |
| /* Locks grabbed by tb_invalidate_phys_addr */ |
| tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as, |
| phys | (pc & ~TARGET_PAGE_MASK), attrs); |
| } |
| } |
| #endif |
| |
| #if defined(CONFIG_USER_ONLY) |
| void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
| |
| { |
| } |
| |
| int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
| int flags) |
| { |
| return -ENOSYS; |
| } |
| |
| void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
| { |
| } |
| |
| int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
| int flags, CPUWatchpoint **watchpoint) |
| { |
| return -ENOSYS; |
| } |
| #else |
| /* Add a watchpoint. */ |
| int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, |
| int flags, CPUWatchpoint **watchpoint) |
| { |
| CPUWatchpoint *wp; |
| |
| /* forbid ranges which are empty or run off the end of the address space */ |
| if (len == 0 || (addr + len - 1) < addr) { |
| error_report("tried to set invalid watchpoint at %" |
| VADDR_PRIx ", len=%" VADDR_PRIu, addr, len); |
| return -EINVAL; |
| } |
| wp = g_malloc(sizeof(*wp)); |
| |
| wp->vaddr = addr; |
| wp->len = len; |
| wp->flags = flags; |
| |
| /* keep all GDB-injected watchpoints in front */ |
| if (flags & BP_GDB) { |
| QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry); |
| } else { |
| QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry); |
| } |
| |
| tlb_flush_page(cpu, addr); |
| |
| if (watchpoint) |
| *watchpoint = wp; |
| return 0; |
| } |
| |
| /* Remove a specific watchpoint. */ |
| int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len, |
| int flags) |
| { |
| CPUWatchpoint *wp; |
| |
| QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
| if (addr == wp->vaddr && len == wp->len |
| && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) { |
| cpu_watchpoint_remove_by_ref(cpu, wp); |
| return 0; |
| } |
| } |
| return -ENOENT; |
| } |
| |
| /* Remove a specific watchpoint by reference. */ |
| void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint) |
| { |
| QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry); |
| |
| tlb_flush_page(cpu, watchpoint->vaddr); |
| |
| g_free(watchpoint); |
| } |
| |
| /* Remove all matching watchpoints. */ |
| void cpu_watchpoint_remove_all(CPUState *cpu, int mask) |
| { |
| CPUWatchpoint *wp, *next; |
| |
| QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) { |
| if (wp->flags & mask) { |
| cpu_watchpoint_remove_by_ref(cpu, wp); |
| } |
| } |
| } |
| |
| /* Return true if this watchpoint address matches the specified |
| * access (ie the address range covered by the watchpoint overlaps |
| * partially or completely with the address range covered by the |
| * access). |
| */ |
| static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp, |
| vaddr addr, |
| vaddr len) |
| { |
| /* We know the lengths are non-zero, but a little caution is |
| * required to avoid errors in the case where the range ends |
| * exactly at the top of the address space and so addr + len |
| * wraps round to zero. |
| */ |
| vaddr wpend = wp->vaddr + wp->len - 1; |
| vaddr addrend = addr + len - 1; |
| |
| return !(addr > wpend || wp->vaddr > addrend); |
| } |
| |
| #endif |
| |
| /* Add a breakpoint. */ |
| int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, |
| CPUBreakpoint **breakpoint) |
| { |
| CPUBreakpoint *bp; |
| |
| bp = g_malloc(sizeof(*bp)); |
| |
| bp->pc = pc; |
| bp->flags = flags; |
| |
| /* keep all GDB-injected breakpoints in front */ |
| if (flags & BP_GDB) { |
| QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry); |
| } else { |
| QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry); |
| } |
| |
| breakpoint_invalidate(cpu, pc); |
| |
| if (breakpoint) { |
| *breakpoint = bp; |
| } |
| return 0; |
| } |
| |
| /* Remove a specific breakpoint. */ |
| int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags) |
| { |
| CPUBreakpoint *bp; |
| |
| QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { |
| if (bp->pc == pc && bp->flags == flags) { |
| cpu_breakpoint_remove_by_ref(cpu, bp); |
| return 0; |
| } |
| } |
| return -ENOENT; |
| } |
| |
| /* Remove a specific breakpoint by reference. */ |
| void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint) |
| { |
| QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry); |
| |
| breakpoint_invalidate(cpu, breakpoint->pc); |
| |
| g_free(breakpoint); |
| } |
| |
| /* Remove all matching breakpoints. */ |
| void cpu_breakpoint_remove_all(CPUState *cpu, int mask) |
| { |
| CPUBreakpoint *bp, *next; |
| |
| QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) { |
| if (bp->flags & mask) { |
| cpu_breakpoint_remove_by_ref(cpu, bp); |
| } |
| } |
| } |
| |
| /* enable or disable single step mode. EXCP_DEBUG is returned by the |
| CPU loop after each instruction */ |
| void cpu_single_step(CPUState *cpu, int enabled) |
| { |
| if (cpu->singlestep_enabled != enabled) { |
| cpu->singlestep_enabled = enabled; |
| if (kvm_enabled()) { |
| kvm_update_guest_debug(cpu, 0); |
| } else { |
| /* must flush all the translated code to avoid inconsistencies */ |
| /* XXX: only flush what is necessary */ |
| tb_flush(cpu); |
| } |
| } |
| } |
| |
| void cpu_abort(CPUState *cpu, const char *fmt, ...) |
| { |
| va_list ap; |
| va_list ap2; |
| |
| va_start(ap, fmt); |
| va_copy(ap2, ap); |
| fprintf(stderr, "qemu: fatal: "); |
| vfprintf(stderr, fmt, ap); |
| fprintf(stderr, "\n"); |
| cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
| if (qemu_log_separate()) { |
| qemu_log_lock(); |
| qemu_log("qemu: fatal: "); |
| qemu_log_vprintf(fmt, ap2); |
| qemu_log("\n"); |
| log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP); |
| qemu_log_flush(); |
| qemu_log_unlock(); |
| qemu_log_close(); |
| } |
| va_end(ap2); |
| va_end(ap); |
| replay_finish(); |
| #if defined(CONFIG_USER_ONLY) |
| { |
| struct sigaction act; |
| sigfillset(&act.sa_mask); |
| act.sa_handler = SIG_DFL; |
| act.sa_flags = 0; |
| sigaction(SIGABRT, &act, NULL); |
| } |
| #endif |
| abort(); |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| /* Called from RCU critical section */ |
| static RAMBlock *qemu_get_ram_block(ram_addr_t addr) |
| { |
| RAMBlock *block; |
| |
| block = atomic_rcu_read(&ram_list.mru_block); |
| if (block && addr - block->offset < block->max_length) { |
| return block; |
| } |
| RAMBLOCK_FOREACH(block) { |
| if (addr - block->offset < block->max_length) { |
| goto found; |
| } |
| } |
| |
| fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr); |
| abort(); |
| |
| found: |
| /* It is safe to write mru_block outside the iothread lock. This |
| * is what happens: |
| * |
| * mru_block = xxx |
| * rcu_read_unlock() |
| * xxx removed from list |
| * rcu_read_lock() |
| * read mru_block |
| * mru_block = NULL; |
| * call_rcu(reclaim_ramblock, xxx); |
| * rcu_read_unlock() |
| * |
| * atomic_rcu_set is not needed here. The block was already published |
| * when it was placed into the list. Here we're just making an extra |
| * copy of the pointer. |
| */ |
| ram_list.mru_block = block; |
| return block; |
| } |
| |
| static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length) |
| { |
| CPUState *cpu; |
| ram_addr_t start1; |
| RAMBlock *block; |
| ram_addr_t end; |
| |
| assert(tcg_enabled()); |
| end = TARGET_PAGE_ALIGN(start + length); |
| start &= TARGET_PAGE_MASK; |
| |
| rcu_read_lock(); |
| block = qemu_get_ram_block(start); |
| assert(block == qemu_get_ram_block(end - 1)); |
| start1 = (uintptr_t)ramblock_ptr(block, start - block->offset); |
| CPU_FOREACH(cpu) { |
| tlb_reset_dirty(cpu, start1, length); |
| } |
| rcu_read_unlock(); |
| } |
| |
| /* Note: start and end must be within the same ram block. */ |
| bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, |
| ram_addr_t length, |
| unsigned client) |
| { |
| DirtyMemoryBlocks *blocks; |
| unsigned long end, page; |
| bool dirty = false; |
| |
| if (length == 0) { |
| return false; |
| } |
| |
| end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; |
| page = start >> TARGET_PAGE_BITS; |
| |
| rcu_read_lock(); |
| |
| blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); |
| |
| while (page < end) { |
| unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; |
| unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; |
| unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); |
| |
| dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx], |
| offset, num); |
| page += num; |
| } |
| |
| rcu_read_unlock(); |
| |
| if (dirty && tcg_enabled()) { |
| tlb_reset_dirty_range_all(start, length); |
| } |
| |
| return dirty; |
| } |
| |
| DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty |
| (ram_addr_t start, ram_addr_t length, unsigned client) |
| { |
| DirtyMemoryBlocks *blocks; |
| unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL); |
| ram_addr_t first = QEMU_ALIGN_DOWN(start, align); |
| ram_addr_t last = QEMU_ALIGN_UP(start + length, align); |
| DirtyBitmapSnapshot *snap; |
| unsigned long page, end, dest; |
| |
| snap = g_malloc0(sizeof(*snap) + |
| ((last - first) >> (TARGET_PAGE_BITS + 3))); |
| snap->start = first; |
| snap->end = last; |
| |
| page = first >> TARGET_PAGE_BITS; |
| end = last >> TARGET_PAGE_BITS; |
| dest = 0; |
| |
| rcu_read_lock(); |
| |
| blocks = atomic_rcu_read(&ram_list.dirty_memory[client]); |
| |
| while (page < end) { |
| unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE; |
| unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE; |
| unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset); |
| |
| assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL))); |
| assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL))); |
| offset >>= BITS_PER_LEVEL; |
| |
| bitmap_copy_and_clear_atomic(snap->dirty + dest, |
| blocks->blocks[idx] + offset, |
| num); |
| page += num; |
| dest += num >> BITS_PER_LEVEL; |
| } |
| |
| rcu_read_unlock(); |
| |
| if (tcg_enabled()) { |
| tlb_reset_dirty_range_all(start, length); |
| } |
| |
| return snap; |
| } |
| |
| bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap, |
| ram_addr_t start, |
| ram_addr_t length) |
| { |
| unsigned long page, end; |
| |
| assert(start >= snap->start); |
| assert(start + length <= snap->end); |
| |
| end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS; |
| page = (start - snap->start) >> TARGET_PAGE_BITS; |
| |
| while (page < end) { |
| if (test_bit(page, snap->dirty)) { |
| return true; |
| } |
| page++; |
| } |
| return false; |
| } |
| |
| /* Called from RCU critical section */ |
| hwaddr memory_region_section_get_iotlb(CPUState *cpu, |
| MemoryRegionSection *section, |
| target_ulong vaddr, |
| hwaddr paddr, hwaddr xlat, |
| int prot, |
| target_ulong *address) |
| { |
| hwaddr iotlb; |
| CPUWatchpoint *wp; |
| |
| if (memory_region_is_ram(section->mr)) { |
| /* Normal RAM. */ |
| iotlb = memory_region_get_ram_addr(section->mr) + xlat; |
| if (!section->readonly) { |
| iotlb |= PHYS_SECTION_NOTDIRTY; |
| } else { |
| iotlb |= PHYS_SECTION_ROM; |
| } |
| } else { |
| AddressSpaceDispatch *d; |
| |
| d = flatview_to_dispatch(section->fv); |
| iotlb = section - d->map.sections; |
| iotlb += xlat; |
| } |
| |
| /* Make accesses to pages with watchpoints go via the |
| watchpoint trap routines. */ |
| QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
| if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) { |
| /* Avoid trapping reads of pages with a write breakpoint. */ |
| if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) { |
| iotlb = PHYS_SECTION_WATCH + paddr; |
| *address |= TLB_MMIO; |
| break; |
| } |
| } |
| } |
| |
| return iotlb; |
| } |
| #endif /* defined(CONFIG_USER_ONLY) */ |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
| uint16_t section); |
| static subpage_t *subpage_init(FlatView *fv, hwaddr base); |
| |
| static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) = |
| qemu_anon_ram_alloc; |
| |
| /* |
| * Set a custom physical guest memory alloator. |
| * Accelerators with unusual needs may need this. Hopefully, we can |
| * get rid of it eventually. |
| */ |
| void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared)) |
| { |
| phys_mem_alloc = alloc; |
| } |
| |
| static uint16_t phys_section_add(PhysPageMap *map, |
| MemoryRegionSection *section) |
| { |
| /* The physical section number is ORed with a page-aligned |
| * pointer to produce the iotlb entries. Thus it should |
| * never overflow into the page-aligned value. |
| */ |
| assert(map->sections_nb < TARGET_PAGE_SIZE); |
| |
| if (map->sections_nb == map->sections_nb_alloc) { |
| map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16); |
| map->sections = g_renew(MemoryRegionSection, map->sections, |
| map->sections_nb_alloc); |
| } |
| map->sections[map->sections_nb] = *section; |
| memory_region_ref(section->mr); |
| return map->sections_nb++; |
| } |
| |
| static void phys_section_destroy(MemoryRegion *mr) |
| { |
| bool have_sub_page = mr->subpage; |
| |
| memory_region_unref(mr); |
| |
| if (have_sub_page) { |
| subpage_t *subpage = container_of(mr, subpage_t, iomem); |
| object_unref(OBJECT(&subpage->iomem)); |
| g_free(subpage); |
| } |
| } |
| |
| static void phys_sections_free(PhysPageMap *map) |
| { |
| while (map->sections_nb > 0) { |
| MemoryRegionSection *section = &map->sections[--map->sections_nb]; |
| phys_section_destroy(section->mr); |
| } |
| g_free(map->sections); |
| g_free(map->nodes); |
| } |
| |
| static void register_subpage(FlatView *fv, MemoryRegionSection *section) |
| { |
| AddressSpaceDispatch *d = flatview_to_dispatch(fv); |
| subpage_t *subpage; |
| hwaddr base = section->offset_within_address_space |
| & TARGET_PAGE_MASK; |
| MemoryRegionSection *existing = phys_page_find(d, base); |
| MemoryRegionSection subsection = { |
| .offset_within_address_space = base, |
| .size = int128_make64(TARGET_PAGE_SIZE), |
| }; |
| hwaddr start, end; |
| |
| assert(existing->mr->subpage || existing->mr == &io_mem_unassigned); |
| |
| if (!(existing->mr->subpage)) { |
| subpage = subpage_init(fv, base); |
| subsection.fv = fv; |
| subsection.mr = &subpage->iomem; |
| phys_page_set(d, base >> TARGET_PAGE_BITS, 1, |
| phys_section_add(&d->map, &subsection)); |
| } else { |
| subpage = container_of(existing->mr, subpage_t, iomem); |
| } |
| start = section->offset_within_address_space & ~TARGET_PAGE_MASK; |
| end = start + int128_get64(section->size) - 1; |
| subpage_register(subpage, start, end, |
| phys_section_add(&d->map, section)); |
| } |
| |
| |
| static void register_multipage(FlatView *fv, |
| MemoryRegionSection *section) |
| { |
| AddressSpaceDispatch *d = flatview_to_dispatch(fv); |
| hwaddr start_addr = section->offset_within_address_space; |
| uint16_t section_index = phys_section_add(&d->map, section); |
| uint64_t num_pages = int128_get64(int128_rshift(section->size, |
| TARGET_PAGE_BITS)); |
| |
| assert(num_pages); |
| phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index); |
| } |
| |
| void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section) |
| { |
| MemoryRegionSection now = *section, remain = *section; |
| Int128 page_size = int128_make64(TARGET_PAGE_SIZE); |
| |
| if (now.offset_within_address_space & ~TARGET_PAGE_MASK) { |
| uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space) |
| - now.offset_within_address_space; |
| |
| now.size = int128_min(int128_make64(left), now.size); |
| register_subpage(fv, &now); |
| } else { |
| now.size = int128_zero(); |
| } |
| while (int128_ne(remain.size, now.size)) { |
| remain.size = int128_sub(remain.size, now.size); |
| remain.offset_within_address_space += int128_get64(now.size); |
| remain.offset_within_region += int128_get64(now.size); |
| now = remain; |
| if (int128_lt(remain.size, page_size)) { |
| register_subpage(fv, &now); |
| } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) { |
| now.size = page_size; |
| register_subpage(fv, &now); |
| } else { |
| now.size = int128_and(now.size, int128_neg(page_size)); |
| register_multipage(fv, &now); |
| } |
| } |
| } |
| |
| void qemu_flush_coalesced_mmio_buffer(void) |
| { |
| if (kvm_enabled()) |
| kvm_flush_coalesced_mmio_buffer(); |
| } |
| |
| void qemu_mutex_lock_ramlist(void) |
| { |
| qemu_mutex_lock(&ram_list.mutex); |
| } |
| |
| void qemu_mutex_unlock_ramlist(void) |
| { |
| qemu_mutex_unlock(&ram_list.mutex); |
| } |
| |
| void ram_block_dump(Monitor *mon) |
| { |
| RAMBlock *block; |
| char *psize; |
| |
| rcu_read_lock(); |
| monitor_printf(mon, "%24s %8s %18s %18s %18s\n", |
| "Block Name", "PSize", "Offset", "Used", "Total"); |
| RAMBLOCK_FOREACH(block) { |
| psize = size_to_str(block->page_size); |
| monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64 |
| " 0x%016" PRIx64 "\n", block->idstr, psize, |
| (uint64_t)block->offset, |
| (uint64_t)block->used_length, |
| (uint64_t)block->max_length); |
| g_free(psize); |
| } |
| rcu_read_unlock(); |
| } |
| |
| #ifdef __linux__ |
| /* |
| * FIXME TOCTTOU: this iterates over memory backends' mem-path, which |
| * may or may not name the same files / on the same filesystem now as |
| * when we actually open and map them. Iterate over the file |
| * descriptors instead, and use qemu_fd_getpagesize(). |
| */ |
| static int find_max_supported_pagesize(Object *obj, void *opaque) |
| { |
| long *hpsize_min = opaque; |
| |
| if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) { |
| long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj)); |
| |
| if (hpsize < *hpsize_min) { |
| *hpsize_min = hpsize; |
| } |
| } |
| |
| return 0; |
| } |
| |
| long qemu_getrampagesize(void) |
| { |
| long hpsize = LONG_MAX; |
| long mainrampagesize; |
| Object *memdev_root; |
| |
| mainrampagesize = qemu_mempath_getpagesize(mem_path); |
| |
| /* it's possible we have memory-backend objects with |
| * hugepage-backed RAM. these may get mapped into system |
| * address space via -numa parameters or memory hotplug |
| * hooks. we want to take these into account, but we |
| * also want to make sure these supported hugepage |
| * sizes are applicable across the entire range of memory |
| * we may boot from, so we take the min across all |
| * backends, and assume normal pages in cases where a |
| * backend isn't backed by hugepages. |
| */ |
| memdev_root = object_resolve_path("/objects", NULL); |
| if (memdev_root) { |
| object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize); |
| } |
| if (hpsize == LONG_MAX) { |
| /* No additional memory regions found ==> Report main RAM page size */ |
| return mainrampagesize; |
| } |
| |
| /* If NUMA is disabled or the NUMA nodes are not backed with a |
| * memory-backend, then there is at least one node using "normal" RAM, |
| * so if its page size is smaller we have got to report that size instead. |
| */ |
| if (hpsize > mainrampagesize && |
| (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) { |
| static bool warned; |
| if (!warned) { |
| error_report("Huge page support disabled (n/a for main memory)."); |
| warned = true; |
| } |
| return mainrampagesize; |
| } |
| |
| return hpsize; |
| } |
| #else |
| long qemu_getrampagesize(void) |
| { |
| return getpagesize(); |
| } |
| #endif |
| |
| #ifdef __linux__ |
| static int64_t get_file_size(int fd) |
| { |
| int64_t size = lseek(fd, 0, SEEK_END); |
| if (size < 0) { |
| return -errno; |
| } |
| return size; |
| } |
| |
| static int file_ram_open(const char *path, |
| const char *region_name, |
| bool *created, |
| Error **errp) |
| { |
| char *filename; |
| char *sanitized_name; |
| char *c; |
| int fd = -1; |
| |
| *created = false; |
| for (;;) { |
| fd = open(path, O_RDWR); |
| if (fd >= 0) { |
| /* @path names an existing file, use it */ |
| break; |
| } |
| if (errno == ENOENT) { |
| /* @path names a file that doesn't exist, create it */ |
| fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644); |
| if (fd >= 0) { |
| *created = true; |
| break; |
| } |
| } else if (errno == EISDIR) { |
| /* @path names a directory, create a file there */ |
| /* Make name safe to use with mkstemp by replacing '/' with '_'. */ |
| sanitized_name = g_strdup(region_name); |
| for (c = sanitized_name; *c != '\0'; c++) { |
| if (*c == '/') { |
| *c = '_'; |
| } |
| } |
| |
| filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path, |
| sanitized_name); |
| g_free(sanitized_name); |
| |
| fd = mkstemp(filename); |
| if (fd >= 0) { |
| unlink(filename); |
| g_free(filename); |
| break; |
| } |
| g_free(filename); |
| } |
| if (errno != EEXIST && errno != EINTR) { |
| error_setg_errno(errp, errno, |
| "can't open backing store %s for guest RAM", |
| path); |
| return -1; |
| } |
| /* |
| * Try again on EINTR and EEXIST. The latter happens when |
| * something else creates the file between our two open(). |
| */ |
| } |
| |
| return fd; |
| } |
| |
| static void *file_ram_alloc(RAMBlock *block, |
| ram_addr_t memory, |
| int fd, |
| bool truncate, |
| Error **errp) |
| { |
| void *area; |
| |
| block->page_size = qemu_fd_getpagesize(fd); |
| if (block->mr->align % block->page_size) { |
| error_setg(errp, "alignment 0x%" PRIx64 |
| " must be multiples of page size 0x%zx", |
| block->mr->align, block->page_size); |
| return NULL; |
| } else if (block->mr->align && !is_power_of_2(block->mr->align)) { |
| error_setg(errp, "alignment 0x%" PRIx64 |
| " must be a power of two", block->mr->align); |
| return NULL; |
| } |
| block->mr->align = MAX(block->page_size, block->mr->align); |
| #if defined(__s390x__) |
| if (kvm_enabled()) { |
| block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN); |
| } |
| #endif |
| |
| if (memory < block->page_size) { |
| error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to " |
| "or larger than page size 0x%zx", |
| memory, block->page_size); |
| return NULL; |
| } |
| |
| memory = ROUND_UP(memory, block->page_size); |
| |
| /* |
| * ftruncate is not supported by hugetlbfs in older |
| * hosts, so don't bother bailing out on errors. |
| * If anything goes wrong with it under other filesystems, |
| * mmap will fail. |
| * |
| * Do not truncate the non-empty backend file to avoid corrupting |
| * the existing data in the file. Disabling shrinking is not |
| * enough. For example, the current vNVDIMM implementation stores |
| * the guest NVDIMM labels at the end of the backend file. If the |
| * backend file is later extended, QEMU will not be able to find |
| * those labels. Therefore, extending the non-empty backend file |
| * is disabled as well. |
| */ |
| if (truncate && ftruncate(fd, memory)) { |
| perror("ftruncate"); |
| } |
| |
| area = qemu_ram_mmap(fd, memory, block->mr->align, |
| block->flags & RAM_SHARED); |
| if (area == MAP_FAILED) { |
| error_setg_errno(errp, errno, |
| "unable to map backing store for guest RAM"); |
| return NULL; |
| } |
| |
| if (mem_prealloc) { |
| os_mem_prealloc(fd, area, memory, smp_cpus, errp); |
| if (errp && *errp) { |
| qemu_ram_munmap(area, memory); |
| return NULL; |
| } |
| } |
| |
| block->fd = fd; |
| return area; |
| } |
| #endif |
| |
| /* Allocate space within the ram_addr_t space that governs the |
| * dirty bitmaps. |
| * Called with the ramlist lock held. |
| */ |
| static ram_addr_t find_ram_offset(ram_addr_t size) |
| { |
| RAMBlock *block, *next_block; |
| ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX; |
| |
| assert(size != 0); /* it would hand out same offset multiple times */ |
| |
| if (QLIST_EMPTY_RCU(&ram_list.blocks)) { |
| return 0; |
| } |
| |
| RAMBLOCK_FOREACH(block) { |
| ram_addr_t candidate, next = RAM_ADDR_MAX; |
| |
| /* Align blocks to start on a 'long' in the bitmap |
| * which makes the bitmap sync'ing take the fast path. |
| */ |
| candidate = block->offset + block->max_length; |
| candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS); |
| |
| /* Search for the closest following block |
| * and find the gap. |
| */ |
| RAMBLOCK_FOREACH(next_block) { |
| if (next_block->offset >= candidate) { |
| next = MIN(next, next_block->offset); |
| } |
| } |
| |
| /* If it fits remember our place and remember the size |
| * of gap, but keep going so that we might find a smaller |
| * gap to fill so avoiding fragmentation. |
| */ |
| if (next - candidate >= size && next - candidate < mingap) { |
| offset = candidate; |
| mingap = next - candidate; |
| } |
| |
| trace_find_ram_offset_loop(size, candidate, offset, next, mingap); |
| } |
| |
| if (offset == RAM_ADDR_MAX) { |
| fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n", |
| (uint64_t)size); |
| abort(); |
| } |
| |
| trace_find_ram_offset(size, offset); |
| |
| return offset; |
| } |
| |
| static unsigned long last_ram_page(void) |
| { |
| RAMBlock *block; |
| ram_addr_t last = 0; |
| |
| rcu_read_lock(); |
| RAMBLOCK_FOREACH(block) { |
| last = MAX(last, block->offset + block->max_length); |
| } |
| rcu_read_unlock(); |
| return last >> TARGET_PAGE_BITS; |
| } |
| |
| static void qemu_ram_setup_dump(void *addr, ram_addr_t size) |
| { |
| int ret; |
| |
| /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */ |
| if (!machine_dump_guest_core(current_machine)) { |
| ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP); |
| if (ret) { |
| perror("qemu_madvise"); |
| fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, " |
| "but dump_guest_core=off specified\n"); |
| } |
| } |
| } |
| |
| const char *qemu_ram_get_idstr(RAMBlock *rb) |
| { |
| return rb->idstr; |
| } |
| |
| bool qemu_ram_is_shared(RAMBlock *rb) |
| { |
| return rb->flags & RAM_SHARED; |
| } |
| |
| /* Note: Only set at the start of postcopy */ |
| bool qemu_ram_is_uf_zeroable(RAMBlock *rb) |
| { |
| return rb->flags & RAM_UF_ZEROPAGE; |
| } |
| |
| void qemu_ram_set_uf_zeroable(RAMBlock *rb) |
| { |
| rb->flags |= RAM_UF_ZEROPAGE; |
| } |
| |
| bool qemu_ram_is_migratable(RAMBlock *rb) |
| { |
| return rb->flags & RAM_MIGRATABLE; |
| } |
| |
| void qemu_ram_set_migratable(RAMBlock *rb) |
| { |
| rb->flags |= RAM_MIGRATABLE; |
| } |
| |
| void qemu_ram_unset_migratable(RAMBlock *rb) |
| { |
| rb->flags &= ~RAM_MIGRATABLE; |
| } |
| |
| /* Called with iothread lock held. */ |
| void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev) |
| { |
| RAMBlock *block; |
| |
| assert(new_block); |
| assert(!new_block->idstr[0]); |
| |
| if (dev) { |
| char *id = qdev_get_dev_path(dev); |
| if (id) { |
| snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id); |
| g_free(id); |
| } |
| } |
| pstrcat(new_block->idstr, sizeof(new_block->idstr), name); |
| |
| rcu_read_lock(); |
| RAMBLOCK_FOREACH(block) { |
| if (block != new_block && |
| !strcmp(block->idstr, new_block->idstr)) { |
| fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n", |
| new_block->idstr); |
| abort(); |
| } |
| } |
| rcu_read_unlock(); |
| } |
| |
| /* Called with iothread lock held. */ |
| void qemu_ram_unset_idstr(RAMBlock *block) |
| { |
| /* FIXME: arch_init.c assumes that this is not called throughout |
| * migration. Ignore the problem since hot-unplug during migration |
| * does not work anyway. |
| */ |
| if (block) { |
| memset(block->idstr, 0, sizeof(block->idstr)); |
| } |
| } |
| |
| size_t qemu_ram_pagesize(RAMBlock *rb) |
| { |
| return rb->page_size; |
| } |
| |
| /* Returns the largest size of page in use */ |
| size_t qemu_ram_pagesize_largest(void) |
| { |
| RAMBlock *block; |
| size_t largest = 0; |
| |
| RAMBLOCK_FOREACH(block) { |
| largest = MAX(largest, qemu_ram_pagesize(block)); |
| } |
| |
| return largest; |
| } |
| |
| static int memory_try_enable_merging(void *addr, size_t len) |
| { |
| if (!machine_mem_merge(current_machine)) { |
| /* disabled by the user */ |
| return 0; |
| } |
| |
| return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE); |
| } |
| |
| /* Only legal before guest might have detected the memory size: e.g. on |
| * incoming migration, or right after reset. |
| * |
| * As memory core doesn't know how is memory accessed, it is up to |
| * resize callback to update device state and/or add assertions to detect |
| * misuse, if necessary. |
| */ |
| int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp) |
| { |
| assert(block); |
| |
| newsize = HOST_PAGE_ALIGN(newsize); |
| |
| if (block->used_length == newsize) { |
| return 0; |
| } |
| |
| if (!(block->flags & RAM_RESIZEABLE)) { |
| error_setg_errno(errp, EINVAL, |
| "Length mismatch: %s: 0x" RAM_ADDR_FMT |
| " in != 0x" RAM_ADDR_FMT, block->idstr, |
| newsize, block->used_length); |
| return -EINVAL; |
| } |
| |
| if (block->max_length < newsize) { |
| error_setg_errno(errp, EINVAL, |
| "Length too large: %s: 0x" RAM_ADDR_FMT |
| " > 0x" RAM_ADDR_FMT, block->idstr, |
| newsize, block->max_length); |
| return -EINVAL; |
| } |
| |
| cpu_physical_memory_clear_dirty_range(block->offset, block->used_length); |
| block->used_length = newsize; |
| cpu_physical_memory_set_dirty_range(block->offset, block->used_length, |
| DIRTY_CLIENTS_ALL); |
| memory_region_set_size(block->mr, newsize); |
| if (block->resized) { |
| block->resized(block->idstr, newsize, block->host); |
| } |
| return 0; |
| } |
| |
| /* Called with ram_list.mutex held */ |
| static void dirty_memory_extend(ram_addr_t old_ram_size, |
| ram_addr_t new_ram_size) |
| { |
| ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size, |
| DIRTY_MEMORY_BLOCK_SIZE); |
| ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size, |
| DIRTY_MEMORY_BLOCK_SIZE); |
| int i; |
| |
| /* Only need to extend if block count increased */ |
| if (new_num_blocks <= old_num_blocks) { |
| return; |
| } |
| |
| for (i = 0; i < DIRTY_MEMORY_NUM; i++) { |
| DirtyMemoryBlocks *old_blocks; |
| DirtyMemoryBlocks *new_blocks; |
| int j; |
| |
| old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]); |
| new_blocks = g_malloc(sizeof(*new_blocks) + |
| sizeof(new_blocks->blocks[0]) * new_num_blocks); |
| |
| if (old_num_blocks) { |
| memcpy(new_blocks->blocks, old_blocks->blocks, |
| old_num_blocks * sizeof(old_blocks->blocks[0])); |
| } |
| |
| for (j = old_num_blocks; j < new_num_blocks; j++) { |
| new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE); |
| } |
| |
| atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks); |
| |
| if (old_blocks) { |
| g_free_rcu(old_blocks, rcu); |
| } |
| } |
| } |
| |
| static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared) |
| { |
| RAMBlock *block; |
| RAMBlock *last_block = NULL; |
| ram_addr_t old_ram_size, new_ram_size; |
| Error *err = NULL; |
| |
| old_ram_size = last_ram_page(); |
| |
| qemu_mutex_lock_ramlist(); |
| new_block->offset = find_ram_offset(new_block->max_length); |
| |
| if (!new_block->host) { |
| if (xen_enabled()) { |
| xen_ram_alloc(new_block->offset, new_block->max_length, |
| new_block->mr, &err); |
| if (err) { |
| error_propagate(errp, err); |
| qemu_mutex_unlock_ramlist(); |
| return; |
| } |
| } else { |
| new_block->host = phys_mem_alloc(new_block->max_length, |
| &new_block->mr->align, shared); |
| if (!new_block->host) { |
| error_setg_errno(errp, errno, |
| "cannot set up guest memory '%s'", |
| memory_region_name(new_block->mr)); |
| qemu_mutex_unlock_ramlist(); |
| return; |
| } |
| memory_try_enable_merging(new_block->host, new_block->max_length); |
| } |
| } |
| |
| new_ram_size = MAX(old_ram_size, |
| (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS); |
| if (new_ram_size > old_ram_size) { |
| dirty_memory_extend(old_ram_size, new_ram_size); |
| } |
| /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ, |
| * QLIST (which has an RCU-friendly variant) does not have insertion at |
| * tail, so save the last element in last_block. |
| */ |
| RAMBLOCK_FOREACH(block) { |
| last_block = block; |
| if (block->max_length < new_block->max_length) { |
| break; |
| } |
| } |
| if (block) { |
| QLIST_INSERT_BEFORE_RCU(block, new_block, next); |
| } else if (last_block) { |
| QLIST_INSERT_AFTER_RCU(last_block, new_block, next); |
| } else { /* list is empty */ |
| QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next); |
| } |
| ram_list.mru_block = NULL; |
| |
| /* Write list before version */ |
| smp_wmb(); |
| ram_list.version++; |
| qemu_mutex_unlock_ramlist(); |
| |
| cpu_physical_memory_set_dirty_range(new_block->offset, |
| new_block->used_length, |
| DIRTY_CLIENTS_ALL); |
| |
| if (new_block->host) { |
| qemu_ram_setup_dump(new_block->host, new_block->max_length); |
| qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE); |
| /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */ |
| qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK); |
| ram_block_notify_add(new_block->host, new_block->max_length); |
| } |
| } |
| |
| #ifdef __linux__ |
| RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr, |
| bool share, int fd, |
| Error **errp) |
| { |
| RAMBlock *new_block; |
| Error *local_err = NULL; |
| int64_t file_size; |
| |
| if (xen_enabled()) { |
| error_setg(errp, "-mem-path not supported with Xen"); |
| return NULL; |
| } |
| |
| if (kvm_enabled() && !kvm_has_sync_mmu()) { |
| error_setg(errp, |
| "host lacks kvm mmu notifiers, -mem-path unsupported"); |
| return NULL; |
| } |
| |
| if (phys_mem_alloc != qemu_anon_ram_alloc) { |
| /* |
| * file_ram_alloc() needs to allocate just like |
| * phys_mem_alloc, but we haven't bothered to provide |
| * a hook there. |
| */ |
| error_setg(errp, |
| "-mem-path not supported with this accelerator"); |
| return NULL; |
| } |
| |
| size = HOST_PAGE_ALIGN(size); |
| file_size = get_file_size(fd); |
| if (file_size > 0 && file_size < size) { |
| error_setg(errp, "backing store %s size 0x%" PRIx64 |
| " does not match 'size' option 0x" RAM_ADDR_FMT, |
| mem_path, file_size, size); |
| return NULL; |
| } |
| |
| new_block = g_malloc0(sizeof(*new_block)); |
| new_block->mr = mr; |
| new_block->used_length = size; |
| new_block->max_length = size; |
| new_block->flags = share ? RAM_SHARED : 0; |
| new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp); |
| if (!new_block->host) { |
| g_free(new_block); |
| return NULL; |
| } |
| |
| ram_block_add(new_block, &local_err, share); |
| if (local_err) { |
| g_free(new_block); |
| error_propagate(errp, local_err); |
| return NULL; |
| } |
| return new_block; |
| |
| } |
| |
| |
| RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, |
| bool share, const char *mem_path, |
| Error **errp) |
| { |
| int fd; |
| bool created; |
| RAMBlock *block; |
| |
| fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp); |
| if (fd < 0) { |
| return NULL; |
| } |
| |
| block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp); |
| if (!block) { |
| if (created) { |
| unlink(mem_path); |
| } |
| close(fd); |
| return NULL; |
| } |
| |
| return block; |
| } |
| #endif |
| |
| static |
| RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size, |
| void (*resized)(const char*, |
| uint64_t length, |
| void *host), |
| void *host, bool resizeable, bool share, |
| MemoryRegion *mr, Error **errp) |
| { |
| RAMBlock *new_block; |
| Error *local_err = NULL; |
| |
| size = HOST_PAGE_ALIGN(size); |
| max_size = HOST_PAGE_ALIGN(max_size); |
| new_block = g_malloc0(sizeof(*new_block)); |
| new_block->mr = mr; |
| new_block->resized = resized; |
| new_block->used_length = size; |
| new_block->max_length = max_size; |
| assert(max_size >= size); |
| new_block->fd = -1; |
| new_block->page_size = getpagesize(); |
| new_block->host = host; |
| if (host) { |
| new_block->flags |= RAM_PREALLOC; |
| } |
| if (resizeable) { |
| new_block->flags |= RAM_RESIZEABLE; |
| } |
| ram_block_add(new_block, &local_err, share); |
| if (local_err) { |
| g_free(new_block); |
| error_propagate(errp, local_err); |
| return NULL; |
| } |
| return new_block; |
| } |
| |
| RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, |
| MemoryRegion *mr, Error **errp) |
| { |
| return qemu_ram_alloc_internal(size, size, NULL, host, false, |
| false, mr, errp); |
| } |
| |
| RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, |
| MemoryRegion *mr, Error **errp) |
| { |
| return qemu_ram_alloc_internal(size, size, NULL, NULL, false, |
| share, mr, errp); |
| } |
| |
| RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz, |
| void (*resized)(const char*, |
| uint64_t length, |
| void *host), |
| MemoryRegion *mr, Error **errp) |
| { |
| return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, |
| false, mr, errp); |
| } |
| |
| static void reclaim_ramblock(RAMBlock *block) |
| { |
| if (block->flags & RAM_PREALLOC) { |
| ; |
| } else if (xen_enabled()) { |
| xen_invalidate_map_cache_entry(block->host); |
| #ifndef _WIN32 |
| } else if (block->fd >= 0) { |
| qemu_ram_munmap(block->host, block->max_length); |
| close(block->fd); |
| #endif |
| } else { |
| qemu_anon_ram_free(block->host, block->max_length); |
| } |
| g_free(block); |
| } |
| |
| void qemu_ram_free(RAMBlock *block) |
| { |
| if (!block) { |
| return; |
| } |
| |
| if (block->host) { |
| ram_block_notify_remove(block->host, block->max_length); |
| } |
| |
| qemu_mutex_lock_ramlist(); |
| QLIST_REMOVE_RCU(block, next); |
| ram_list.mru_block = NULL; |
| /* Write list before version */ |
| smp_wmb(); |
| ram_list.version++; |
| call_rcu(block, reclaim_ramblock, rcu); |
| qemu_mutex_unlock_ramlist(); |
| } |
| |
| #ifndef _WIN32 |
| void qemu_ram_remap(ram_addr_t addr, ram_addr_t length) |
| { |
| RAMBlock *block; |
| ram_addr_t offset; |
| int flags; |
| void *area, *vaddr; |
| |
| RAMBLOCK_FOREACH(block) { |
| offset = addr - block->offset; |
| if (offset < block->max_length) { |
| vaddr = ramblock_ptr(block, offset); |
| if (block->flags & RAM_PREALLOC) { |
| ; |
| } else if (xen_enabled()) { |
| abort(); |
| } else { |
| flags = MAP_FIXED; |
| if (block->fd >= 0) { |
| flags |= (block->flags & RAM_SHARED ? |
| MAP_SHARED : MAP_PRIVATE); |
| area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
| flags, block->fd, offset); |
| } else { |
| /* |
| * Remap needs to match alloc. Accelerators that |
| * set phys_mem_alloc never remap. If they did, |
| * we'd need a remap hook here. |
| */ |
| assert(phys_mem_alloc == qemu_anon_ram_alloc); |
| |
| flags |= MAP_PRIVATE | MAP_ANONYMOUS; |
| area = mmap(vaddr, length, PROT_READ | PROT_WRITE, |
| flags, -1, 0); |
| } |
| if (area != vaddr) { |
| error_report("Could not remap addr: " |
| RAM_ADDR_FMT "@" RAM_ADDR_FMT "", |
| length, addr); |
| exit(1); |
| } |
| memory_try_enable_merging(vaddr, length); |
| qemu_ram_setup_dump(vaddr, length); |
| } |
| } |
| } |
| } |
| #endif /* !_WIN32 */ |
| |
| /* Return a host pointer to ram allocated with qemu_ram_alloc. |
| * This should not be used for general purpose DMA. Use address_space_map |
| * or address_space_rw instead. For local memory (e.g. video ram) that the |
| * device owns, use memory_region_get_ram_ptr. |
| * |
| * Called within RCU critical section. |
| */ |
| void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr) |
| { |
| RAMBlock *block = ram_block; |
| |
| if (block == NULL) { |
| block = qemu_get_ram_block(addr); |
| addr -= block->offset; |
| } |
| |
| if (xen_enabled() && block->host == NULL) { |
| /* We need to check if the requested address is in the RAM |
| * because we don't want to map the entire memory in QEMU. |
| * In that case just map until the end of the page. |
| */ |
| if (block->offset == 0) { |
| return xen_map_cache(addr, 0, 0, false); |
| } |
| |
| block->host = xen_map_cache(block->offset, block->max_length, 1, false); |
| } |
| return ramblock_ptr(block, addr); |
| } |
| |
| /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr |
| * but takes a size argument. |
| * |
| * Called within RCU critical section. |
| */ |
| static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr, |
| hwaddr *size, bool lock) |
| { |
| RAMBlock *block = ram_block; |
| if (*size == 0) { |
| return NULL; |
| } |
| |
| if (block == NULL) { |
| block = qemu_get_ram_block(addr); |
| addr -= block->offset; |
| } |
| *size = MIN(*size, block->max_length - addr); |
| |
| if (xen_enabled() && block->host == NULL) { |
| /* We need to check if the requested address is in the RAM |
| * because we don't want to map the entire memory in QEMU. |
| * In that case just map the requested area. |
| */ |
| if (block->offset == 0) { |
| return xen_map_cache(addr, *size, lock, lock); |
| } |
| |
| block->host = xen_map_cache(block->offset, block->max_length, 1, lock); |
| } |
| |
| return ramblock_ptr(block, addr); |
| } |
| |
| /* Return the offset of a hostpointer within a ramblock */ |
| ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host) |
| { |
| ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host; |
| assert((uintptr_t)host >= (uintptr_t)rb->host); |
| assert(res < rb->max_length); |
| |
| return res; |
| } |
| |
| /* |
| * Translates a host ptr back to a RAMBlock, a ram_addr and an offset |
| * in that RAMBlock. |
| * |
| * ptr: Host pointer to look up |
| * round_offset: If true round the result offset down to a page boundary |
| * *ram_addr: set to result ram_addr |
| * *offset: set to result offset within the RAMBlock |
| * |
| * Returns: RAMBlock (or NULL if not found) |
| * |
| * By the time this function returns, the returned pointer is not protected |
| * by RCU anymore. If the caller is not within an RCU critical section and |
| * does not hold the iothread lock, it must have other means of protecting the |
| * pointer, such as a reference to the region that includes the incoming |
| * ram_addr_t. |
| */ |
| RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset, |
| ram_addr_t *offset) |
| { |
| RAMBlock *block; |
| uint8_t *host = ptr; |
| |
| if (xen_enabled()) { |
| ram_addr_t ram_addr; |
| rcu_read_lock(); |
| ram_addr = xen_ram_addr_from_mapcache(ptr); |
| block = qemu_get_ram_block(ram_addr); |
| if (block) { |
| *offset = ram_addr - block->offset; |
| } |
| rcu_read_unlock(); |
| return block; |
| } |
| |
| rcu_read_lock(); |
| block = atomic_rcu_read(&ram_list.mru_block); |
| if (block && block->host && host - block->host < block->max_length) { |
| goto found; |
| } |
| |
| RAMBLOCK_FOREACH(block) { |
| /* This case append when the block is not mapped. */ |
| if (block->host == NULL) { |
| continue; |
| } |
| if (host - block->host < block->max_length) { |
| goto found; |
| } |
| } |
| |
| rcu_read_unlock(); |
| return NULL; |
| |
| found: |
| *offset = (host - block->host); |
| if (round_offset) { |
| *offset &= TARGET_PAGE_MASK; |
| } |
| rcu_read_unlock(); |
| return block; |
| } |
| |
| /* |
| * Finds the named RAMBlock |
| * |
| * name: The name of RAMBlock to find |
| * |
| * Returns: RAMBlock (or NULL if not found) |
| */ |
| RAMBlock *qemu_ram_block_by_name(const char *name) |
| { |
| RAMBlock *block; |
| |
| RAMBLOCK_FOREACH(block) { |
| if (!strcmp(name, block->idstr)) { |
| return block; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* Some of the softmmu routines need to translate from a host pointer |
| (typically a TLB entry) back to a ram offset. */ |
| ram_addr_t qemu_ram_addr_from_host(void *ptr) |
| { |
| RAMBlock *block; |
| ram_addr_t offset; |
| |
| block = qemu_ram_block_from_host(ptr, false, &offset); |
| if (!block) { |
| return RAM_ADDR_INVALID; |
| } |
| |
| return block->offset + offset; |
| } |
| |
| /* Called within RCU critical section. */ |
| void memory_notdirty_write_prepare(NotDirtyInfo *ndi, |
| CPUState *cpu, |
| vaddr mem_vaddr, |
| ram_addr_t ram_addr, |
| unsigned size) |
| { |
| ndi->cpu = cpu; |
| ndi->ram_addr = ram_addr; |
| ndi->mem_vaddr = mem_vaddr; |
| ndi->size = size; |
| ndi->pages = NULL; |
| |
| assert(tcg_enabled()); |
| if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { |
| ndi->pages = page_collection_lock(ram_addr, ram_addr + size); |
| tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size); |
| } |
| } |
| |
| /* Called within RCU critical section. */ |
| void memory_notdirty_write_complete(NotDirtyInfo *ndi) |
| { |
| if (ndi->pages) { |
| assert(tcg_enabled()); |
| page_collection_unlock(ndi->pages); |
| ndi->pages = NULL; |
| } |
| |
| /* Set both VGA and migration bits for simplicity and to remove |
| * the notdirty callback faster. |
| */ |
| cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size, |
| DIRTY_CLIENTS_NOCODE); |
| /* we remove the notdirty callback only if the code has been |
| flushed */ |
| if (!cpu_physical_memory_is_clean(ndi->ram_addr)) { |
| tlb_set_dirty(ndi->cpu, ndi->mem_vaddr); |
| } |
| } |
| |
| /* Called within RCU critical section. */ |
| static void notdirty_mem_write(void *opaque, hwaddr ram_addr, |
| uint64_t val, unsigned size) |
| { |
| NotDirtyInfo ndi; |
| |
| memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr, |
| ram_addr, size); |
| |
| stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val); |
| memory_notdirty_write_complete(&ndi); |
| } |
| |
| static bool notdirty_mem_accepts(void *opaque, hwaddr addr, |
| unsigned size, bool is_write, |
| MemTxAttrs attrs) |
| { |
| return is_write; |
| } |
| |
| static const MemoryRegionOps notdirty_mem_ops = { |
| .write = notdirty_mem_write, |
| .valid.accepts = notdirty_mem_accepts, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .valid = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| .unaligned = false, |
| }, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| .unaligned = false, |
| }, |
| }; |
| |
| /* Generate a debug exception if a watchpoint has been hit. */ |
| static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags) |
| { |
| CPUState *cpu = current_cpu; |
| CPUClass *cc = CPU_GET_CLASS(cpu); |
| target_ulong vaddr; |
| CPUWatchpoint *wp; |
| |
| assert(tcg_enabled()); |
| if (cpu->watchpoint_hit) { |
| /* We re-entered the check after replacing the TB. Now raise |
| * the debug interrupt so that is will trigger after the |
| * current instruction. */ |
| cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG); |
| return; |
| } |
| vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset; |
| vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len); |
| QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { |
| if (cpu_watchpoint_address_matches(wp, vaddr, len) |
| && (wp->flags & flags)) { |
| if (flags == BP_MEM_READ) { |
| wp->flags |= BP_WATCHPOINT_HIT_READ; |
| } else { |
| wp->flags |= BP_WATCHPOINT_HIT_WRITE; |
| } |
| wp->hitaddr = vaddr; |
| wp->hitattrs = attrs; |
| if (!cpu->watchpoint_hit) { |
| if (wp->flags & BP_CPU && |
| !cc->debug_check_watchpoint(cpu, wp)) { |
| wp->flags &= ~BP_WATCHPOINT_HIT; |
| continue; |
| } |
| cpu->watchpoint_hit = wp; |
| |
| mmap_lock(); |
| tb_check_watchpoint(cpu); |
| if (wp->flags & BP_STOP_BEFORE_ACCESS) { |
| cpu->exception_index = EXCP_DEBUG; |
| mmap_unlock(); |
| cpu_loop_exit(cpu); |
| } else { |
| /* Force execution of one insn next time. */ |
| cpu->cflags_next_tb = 1 | curr_cflags(); |
| mmap_unlock(); |
| cpu_loop_exit_noexc(cpu); |
| } |
| } |
| } else { |
| wp->flags &= ~BP_WATCHPOINT_HIT; |
| } |
| } |
| } |
| |
| /* Watchpoint access routines. Watchpoints are inserted using TLB tricks, |
| so these check for a hit then pass through to the normal out-of-line |
| phys routines. */ |
| static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata, |
| unsigned size, MemTxAttrs attrs) |
| { |
| MemTxResult res; |
| uint64_t data; |
| int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
| AddressSpace *as = current_cpu->cpu_ases[asidx].as; |
| |
| check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ); |
| switch (size) { |
| case 1: |
| data = address_space_ldub(as, addr, attrs, &res); |
| break; |
| case 2: |
| data = address_space_lduw(as, addr, attrs, &res); |
| break; |
| case 4: |
| data = address_space_ldl(as, addr, attrs, &res); |
| break; |
| case 8: |
| data = address_space_ldq(as, addr, attrs, &res); |
| break; |
| default: abort(); |
| } |
| *pdata = data; |
| return res; |
| } |
| |
| static MemTxResult watch_mem_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size, |
| MemTxAttrs attrs) |
| { |
| MemTxResult res; |
| int asidx = cpu_asidx_from_attrs(current_cpu, attrs); |
| AddressSpace *as = current_cpu->cpu_ases[asidx].as; |
| |
| check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE); |
| switch (size) { |
| case 1: |
| address_space_stb(as, addr, val, attrs, &res); |
| break; |
| case 2: |
| address_space_stw(as, addr, val, attrs, &res); |
| break; |
| case 4: |
| address_space_stl(as, addr, val, attrs, &res); |
| break; |
| case 8: |
| address_space_stq(as, addr, val, attrs, &res); |
| break; |
| default: abort(); |
| } |
| return res; |
| } |
| |
| static const MemoryRegionOps watch_mem_ops = { |
| .read_with_attrs = watch_mem_read, |
| .write_with_attrs = watch_mem_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .valid = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| .unaligned = false, |
| }, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| .unaligned = false, |
| }, |
| }; |
| |
| static MemTxResult flatview_read(FlatView *fv, hwaddr addr, |
| MemTxAttrs attrs, uint8_t *buf, int len); |
| static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, |
| const uint8_t *buf, int len); |
| static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len, |
| bool is_write, MemTxAttrs attrs); |
| |
| static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data, |
| unsigned len, MemTxAttrs attrs) |
| { |
| subpage_t *subpage = opaque; |
| uint8_t buf[8]; |
| MemTxResult res; |
| |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__, |
| subpage, len, addr); |
| #endif |
| res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len); |
| if (res) { |
| return res; |
| } |
| *data = ldn_p(buf, len); |
| return MEMTX_OK; |
| } |
| |
| static MemTxResult subpage_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned len, MemTxAttrs attrs) |
| { |
| subpage_t *subpage = opaque; |
| uint8_t buf[8]; |
| |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: subpage %p len %u addr " TARGET_FMT_plx |
| " value %"PRIx64"\n", |
| __func__, subpage, len, addr, value); |
| #endif |
| stn_p(buf, len, value); |
| return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len); |
| } |
| |
| static bool subpage_accepts(void *opaque, hwaddr addr, |
| unsigned len, bool is_write, |
| MemTxAttrs attrs) |
| { |
| subpage_t *subpage = opaque; |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n", |
| __func__, subpage, is_write ? 'w' : 'r', len, addr); |
| #endif |
| |
| return flatview_access_valid(subpage->fv, addr + subpage->base, |
| len, is_write, attrs); |
| } |
| |
| static const MemoryRegionOps subpage_ops = { |
| .read_with_attrs = subpage_read, |
| .write_with_attrs = subpage_write, |
| .impl.min_access_size = 1, |
| .impl.max_access_size = 8, |
| .valid.min_access_size = 1, |
| .valid.max_access_size = 8, |
| .valid.accepts = subpage_accepts, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end, |
| uint16_t section) |
| { |
| int idx, eidx; |
| |
| if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE) |
| return -1; |
| idx = SUBPAGE_IDX(start); |
| eidx = SUBPAGE_IDX(end); |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n", |
| __func__, mmio, start, end, idx, eidx, section); |
| #endif |
| for (; idx <= eidx; idx++) { |
| mmio->sub_section[idx] = section; |
| } |
| |
| return 0; |
| } |
| |
| static subpage_t *subpage_init(FlatView *fv, hwaddr base) |
| { |
| subpage_t *mmio; |
| |
| mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t)); |
| mmio->fv = fv; |
| mmio->base = base; |
| memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio, |
| NULL, TARGET_PAGE_SIZE); |
| mmio->iomem.subpage = true; |
| #if defined(DEBUG_SUBPAGE) |
| printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__, |
| mmio, base, TARGET_PAGE_SIZE); |
| #endif |
| subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED); |
| |
| return mmio; |
| } |
| |
| static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr) |
| { |
| assert(fv); |
| MemoryRegionSection section = { |
| .fv = fv, |
| .mr = mr, |
| .offset_within_address_space = 0, |
| .offset_within_region = 0, |
| .size = int128_2_64(), |
| }; |
| |
| return phys_section_add(map, §ion); |
| } |
| |
| static void readonly_mem_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| /* Ignore any write to ROM. */ |
| } |
| |
| static bool readonly_mem_accepts(void *opaque, hwaddr addr, |
| unsigned size, bool is_write, |
| MemTxAttrs attrs) |
| { |
| return is_write; |
| } |
| |
| /* This will only be used for writes, because reads are special cased |
| * to directly access the underlying host ram. |
| */ |
| static const MemoryRegionOps readonly_mem_ops = { |
| .write = readonly_mem_write, |
| .valid.accepts = readonly_mem_accepts, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .valid = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| .unaligned = false, |
| }, |
| .impl = { |
| .min_access_size = 1, |
| .max_access_size = 8, |
| .unaligned = false, |
| }, |
| }; |
| |
| MemoryRegionSection *iotlb_to_section(CPUState *cpu, |
| hwaddr index, MemTxAttrs attrs) |
| { |
| int asidx = cpu_asidx_from_attrs(cpu, attrs); |
| CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx]; |
| AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch); |
| MemoryRegionSection *sections = d->map.sections; |
| |
| return §ions[index & ~TARGET_PAGE_MASK]; |
| } |
| |
| static void io_mem_init(void) |
| { |
| memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops, |
| NULL, NULL, UINT64_MAX); |
| memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL, |
| NULL, UINT64_MAX); |
| |
| /* io_mem_notdirty calls tb_invalidate_phys_page_fast, |
| * which can be called without the iothread mutex. |
| */ |
| memory_region_init_io(&io_mem_notdirty, NULL, ¬dirty_mem_ops, NULL, |
| NULL, UINT64_MAX); |
| memory_region_clear_global_locking(&io_mem_notdirty); |
| |
| memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL, |
| NULL, UINT64_MAX); |
| } |
| |
| AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv) |
| { |
| AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1); |
| uint16_t n; |
| |
| n = dummy_section(&d->map, fv, &io_mem_unassigned); |
| assert(n == PHYS_SECTION_UNASSIGNED); |
| n = dummy_section(&d->map, fv, &io_mem_notdirty); |
| assert(n == PHYS_SECTION_NOTDIRTY); |
| n = dummy_section(&d->map, fv, &io_mem_rom); |
| assert(n == PHYS_SECTION_ROM); |
| n = dummy_section(&d->map, fv, &io_mem_watch); |
| assert(n == PHYS_SECTION_WATCH); |
| |
| d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 }; |
| |
| return d; |
| } |
| |
| void address_space_dispatch_free(AddressSpaceDispatch *d) |
| { |
| phys_sections_free(&d->map); |
| g_free(d); |
| } |
| |
| static void tcg_commit(MemoryListener *listener) |
| { |
| CPUAddressSpace *cpuas; |
| AddressSpaceDispatch *d; |
| |
| assert(tcg_enabled()); |
| /* since each CPU stores ram addresses in its TLB cache, we must |
| reset the modified entries */ |
| cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener); |
| cpu_reloading_memory_map(); |
| /* The CPU and TLB are protected by the iothread lock. |
| * We reload the dispatch pointer now because cpu_reloading_memory_map() |
| * may have split the RCU critical section. |
| */ |
| d = address_space_to_dispatch(cpuas->as); |
| atomic_rcu_set(&cpuas->memory_dispatch, d); |
| tlb_flush(cpuas->cpu); |
| } |
| |
| static void memory_map_init(void) |
| { |
| system_memory = g_malloc(sizeof(*system_memory)); |
| |
| memory_region_init(system_memory, NULL, "system", UINT64_MAX); |
| address_space_init(&address_space_memory, system_memory, "memory"); |
| |
| system_io = g_malloc(sizeof(*system_io)); |
| memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io", |
| 65536); |
| address_space_init(&address_space_io, system_io, "I/O"); |
| } |
| |
| MemoryRegion *get_system_memory(void) |
| { |
| return system_memory; |
| } |
| |
| MemoryRegion *get_system_io(void) |
| { |
| return system_io; |
| } |
| |
| #endif /* !defined(CONFIG_USER_ONLY) */ |
| |
| /* physical memory access (slow version, mainly for debug) */ |
| #if defined(CONFIG_USER_ONLY) |
| int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
| uint8_t *buf, int len, int is_write) |
| { |
| int l, flags; |
| target_ulong page; |
| void * p; |
| |
| while (len > 0) { |
| page = addr & TARGET_PAGE_MASK; |
| l = (page + TARGET_PAGE_SIZE) - addr; |
| if (l > len) |
| l = len; |
| flags = page_get_flags(page); |
| if (!(flags & PAGE_VALID)) |
| return -1; |
| if (is_write) { |
| if (!(flags & PAGE_WRITE)) |
| return -1; |
| /* XXX: this code should not depend on lock_user */ |
| if (!(p = lock_user(VERIFY_WRITE, addr, l, 0))) |
| return -1; |
| memcpy(p, buf, l); |
| unlock_user(p, addr, l); |
| } else { |
| if (!(flags & PAGE_READ)) |
| return -1; |
| /* XXX: this code should not depend on lock_user */ |
| if (!(p = lock_user(VERIFY_READ, addr, l, 1))) |
| return -1; |
| memcpy(buf, p, l); |
| unlock_user(p, addr, 0); |
| } |
| len -= l; |
| buf += l; |
| addr += l; |
| } |
| return 0; |
| } |
| |
| #else |
| |
| static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr, |
| hwaddr length) |
| { |
| uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr); |
| addr += memory_region_get_ram_addr(mr); |
| |
| /* No early return if dirty_log_mask is or becomes 0, because |
| * cpu_physical_memory_set_dirty_range will still call |
| * xen_modified_memory. |
| */ |
| if (dirty_log_mask) { |
| dirty_log_mask = |
| cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask); |
| } |
| if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) { |
| assert(tcg_enabled()); |
| tb_invalidate_phys_range(addr, addr + length); |
| dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE); |
| } |
| cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask); |
| } |
| |
| static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr) |
| { |
| unsigned access_size_max = mr->ops->valid.max_access_size; |
| |
| /* Regions are assumed to support 1-4 byte accesses unless |
| otherwise specified. */ |
| if (access_size_max == 0) { |
| access_size_max = 4; |
| } |
| |
| /* Bound the maximum access by the alignment of the address. */ |
| if (!mr->ops->impl.unaligned) { |
| unsigned align_size_max = addr & -addr; |
| if (align_size_max != 0 && align_size_max < access_size_max) { |
| access_size_max = align_size_max; |
| } |
| } |
| |
| /* Don't attempt accesses larger than the maximum. */ |
| if (l > access_size_max) { |
| l = access_size_max; |
| } |
| l = pow2floor(l); |
| |
| return l; |
| } |
| |
| static bool prepare_mmio_access(MemoryRegion *mr) |
| { |
| bool unlocked = !qemu_mutex_iothread_locked(); |
| bool release_lock = false; |
| |
| if (unlocked && mr->global_locking) { |
| qemu_mutex_lock_iothread(); |
| unlocked = false; |
| release_lock = true; |
| } |
| if (mr->flush_coalesced_mmio) { |
| if (unlocked) { |
| qemu_mutex_lock_iothread(); |
| } |
| qemu_flush_coalesced_mmio_buffer(); |
| if (unlocked) { |
| qemu_mutex_unlock_iothread(); |
| } |
| } |
| |
| return release_lock; |
| } |
| |
| /* Called within RCU critical section. */ |
| static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr, |
| MemTxAttrs attrs, |
| const uint8_t *buf, |
| int len, hwaddr addr1, |
| hwaddr l, MemoryRegion *mr) |
| { |
| uint8_t *ptr; |
| uint64_t val; |
| MemTxResult result = MEMTX_OK; |
| bool release_lock = false; |
| |
| for (;;) { |
| if (!memory_access_is_direct(mr, true)) { |
| release_lock |= prepare_mmio_access(mr); |
| l = memory_access_size(mr, l, addr1); |
| /* XXX: could force current_cpu to NULL to avoid |
| potential bugs */ |
| val = ldn_p(buf, l); |
| result |= memory_region_dispatch_write(mr, addr1, val, l, attrs); |
| } else { |
| /* RAM case */ |
| ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); |
| memcpy(ptr, buf, l); |
| invalidate_and_set_dirty(mr, addr1, l); |
| } |
| |
| if (release_lock) { |
| qemu_mutex_unlock_iothread(); |
| release_lock = false; |
| } |
| |
| len -= l; |
| buf += l; |
| addr += l; |
| |
| if (!len) { |
| break; |
| } |
| |
| l = len; |
| mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); |
| } |
| |
| return result; |
| } |
| |
| /* Called from RCU critical section. */ |
| static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs, |
| const uint8_t *buf, int len) |
| { |
| hwaddr l; |
| hwaddr addr1; |
| MemoryRegion *mr; |
| MemTxResult result = MEMTX_OK; |
| |
| l = len; |
| mr = flatview_translate(fv, addr, &addr1, &l, true, attrs); |
| result = flatview_write_continue(fv, addr, attrs, buf, len, |
| addr1, l, mr); |
| |
| return result; |
| } |
| |
| /* Called within RCU critical section. */ |
| MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr, |
| MemTxAttrs attrs, uint8_t *buf, |
| int len, hwaddr addr1, hwaddr l, |
| MemoryRegion *mr) |
| { |
| uint8_t *ptr; |
| uint64_t val; |
| MemTxResult result = MEMTX_OK; |
| bool release_lock = false; |
| |
| for (;;) { |
| if (!memory_access_is_direct(mr, false)) { |
| /* I/O case */ |
| release_lock |= prepare_mmio_access(mr); |
| l = memory_access_size(mr, l, addr1); |
| result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs); |
| stn_p(buf, l, val); |
| } else { |
| /* RAM case */ |
| ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false); |
| memcpy(buf, ptr, l); |
| } |
| |
| if (release_lock) { |
| qemu_mutex_unlock_iothread(); |
| release_lock = false; |
| } |
| |
| len -= l; |
| buf += l; |
| addr += l; |
| |
| if (!len) { |
| break; |
| } |
| |
| l = len; |
| mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); |
| } |
| |
| return result; |
| } |
| |
| /* Called from RCU critical section. */ |
| static MemTxResult flatview_read(FlatView *fv, hwaddr addr, |
| MemTxAttrs attrs, uint8_t *buf, int len) |
| { |
| hwaddr l; |
| hwaddr addr1; |
| MemoryRegion *mr; |
| |
| l = len; |
| mr = flatview_translate(fv, addr, &addr1, &l, false, attrs); |
| return flatview_read_continue(fv, addr, attrs, buf, len, |
| addr1, l, mr); |
| } |
| |
| MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr, |
| MemTxAttrs attrs, uint8_t *buf, int len) |
| { |
| MemTxResult result = MEMTX_OK; |
| FlatView *fv; |
| |
| if (len > 0) { |
| rcu_read_lock(); |
| fv = address_space_to_flatview(as); |
| result = flatview_read(fv, addr, attrs, buf, len); |
| rcu_read_unlock(); |
| } |
| |
| return result; |
| } |
| |
| MemTxResult address_space_write(AddressSpace *as, hwaddr addr, |
| MemTxAttrs attrs, |
| const uint8_t *buf, int len) |
| { |
| MemTxResult result = MEMTX_OK; |
| FlatView *fv; |
| |
| if (len > 0) { |
| rcu_read_lock(); |
| fv = address_space_to_flatview(as); |
| result = flatview_write(fv, addr, attrs, buf, len); |
| rcu_read_unlock(); |
| } |
| |
| return result; |
| } |
| |
| MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs, |
| uint8_t *buf, int len, bool is_write) |
| { |
| if (is_write) { |
| return address_space_write(as, addr, attrs, buf, len); |
| } else { |
| return address_space_read_full(as, addr, attrs, buf, len); |
| } |
| } |
| |
| void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf, |
| int len, int is_write) |
| { |
| address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, |
| buf, len, is_write); |
| } |
| |
| enum write_rom_type { |
| WRITE_DATA, |
| FLUSH_CACHE, |
| }; |
| |
| static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as, |
| hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type) |
| { |
| hwaddr l; |
| uint8_t *ptr; |
| hwaddr addr1; |
| MemoryRegion *mr; |
| |
| rcu_read_lock(); |
| while (len > 0) { |
| l = len; |
| mr = address_space_translate(as, addr, &addr1, &l, true, |
| MEMTXATTRS_UNSPECIFIED); |
| |
| if (!(memory_region_is_ram(mr) || |
| memory_region_is_romd(mr))) { |
| l = memory_access_size(mr, l, addr1); |
| } else { |
| /* ROM/RAM case */ |
| ptr = qemu_map_ram_ptr(mr->ram_block, addr1); |
| switch (type) { |
| case WRITE_DATA: |
| memcpy(ptr, buf, l); |
| invalidate_and_set_dirty(mr, addr1, l); |
| break; |
| case FLUSH_CACHE: |
| flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l); |
| break; |
| } |
| } |
| len -= l; |
| buf += l; |
| addr += l; |
| } |
| rcu_read_unlock(); |
| } |
| |
| /* used for ROM loading : can write in RAM and ROM */ |
| void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr, |
| const uint8_t *buf, int len) |
| { |
| cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA); |
| } |
| |
| void cpu_flush_icache_range(hwaddr start, int len) |
| { |
| /* |
| * This function should do the same thing as an icache flush that was |
| * triggered from within the guest. For TCG we are always cache coherent, |
| * so there is no need to flush anything. For KVM / Xen we need to flush |
| * the host's instruction cache at least. |
| */ |
| if (tcg_enabled()) { |
| return; |
| } |
| |
| cpu_physical_memory_write_rom_internal(&address_space_memory, |
| start, NULL, len, FLUSH_CACHE); |
| } |
| |
| typedef struct { |
| MemoryRegion *mr; |
| void *buffer; |
| hwaddr addr; |
| hwaddr len; |
| bool in_use; |
| } BounceBuffer; |
| |
| static BounceBuffer bounce; |
| |
| typedef struct MapClient { |
| QEMUBH *bh; |
| QLIST_ENTRY(MapClient) link; |
| } MapClient; |
| |
| QemuMutex map_client_list_lock; |
| static QLIST_HEAD(map_client_list, MapClient) map_client_list |
| = QLIST_HEAD_INITIALIZER(map_client_list); |
| |
| static void cpu_unregister_map_client_do(MapClient *client) |
| { |
| QLIST_REMOVE(client, link); |
| g_free(client); |
| } |
| |
| static void cpu_notify_map_clients_locked(void) |
| { |
| MapClient *client; |
| |
| while (!QLIST_EMPTY(&map_client_list)) { |
| client = QLIST_FIRST(&map_client_list); |
| qemu_bh_schedule(client->bh); |
| cpu_unregister_map_client_do(client); |
| } |
| } |
| |
| void cpu_register_map_client(QEMUBH *bh) |
| { |
| MapClient *client = g_malloc(sizeof(*client)); |
| |
| qemu_mutex_lock(&map_client_list_lock); |
| client->bh = bh; |
| QLIST_INSERT_HEAD(&map_client_list, client, link); |
| if (!atomic_read(&bounce.in_use)) { |
| cpu_notify_map_clients_locked(); |
| } |
| qemu_mutex_unlock(&map_client_list_lock); |
| } |
| |
| void cpu_exec_init_all(void) |
| { |
| qemu_mutex_init(&ram_list.mutex); |
| /* The data structures we set up here depend on knowing the page size, |
| * so no more changes can be made after this point. |
| * In an ideal world, nothing we did before we had finished the |
| * machine setup would care about the target page size, and we could |
| * do this much later, rather than requiring board models to state |
| * up front what their requirements are. |
| */ |
| finalize_target_page_bits(); |
| io_mem_init(); |
| memory_map_init(); |
| qemu_mutex_init(&map_client_list_lock); |
| } |
| |
| void cpu_unregister_map_client(QEMUBH *bh) |
| { |
| MapClient *client; |
| |
| qemu_mutex_lock(&map_client_list_lock); |
| QLIST_FOREACH(client, &map_client_list, link) { |
| if (client->bh == bh) { |
| cpu_unregister_map_client_do(client); |
| break; |
| } |
| } |
| qemu_mutex_unlock(&map_client_list_lock); |
| } |
| |
| static void cpu_notify_map_clients(void) |
| { |
| qemu_mutex_lock(&map_client_list_lock); |
| cpu_notify_map_clients_locked(); |
| qemu_mutex_unlock(&map_client_list_lock); |
| } |
| |
| static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len, |
| bool is_write, MemTxAttrs attrs) |
| { |
| MemoryRegion *mr; |
| hwaddr l, xlat; |
| |
| while (len > 0) { |
| l = len; |
| mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); |
| if (!memory_access_is_direct(mr, is_write)) { |
| l = memory_access_size(mr, l, addr); |
| if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) { |
| return false; |
| } |
| } |
| |
| len -= l; |
| addr += l; |
| } |
| return true; |
| } |
| |
| bool address_space_access_valid(AddressSpace *as, hwaddr addr, |
| int len, bool is_write, |
| MemTxAttrs attrs) |
| { |
| FlatView *fv; |
| bool result; |
| |
| rcu_read_lock(); |
| fv = address_space_to_flatview(as); |
| result = flatview_access_valid(fv, addr, len, is_write, attrs); |
| rcu_read_unlock(); |
| return result; |
| } |
| |
| static hwaddr |
| flatview_extend_translation(FlatView *fv, hwaddr addr, |
| hwaddr target_len, |
| MemoryRegion *mr, hwaddr base, hwaddr len, |
| bool is_write, MemTxAttrs attrs) |
| { |
| hwaddr done = 0; |
| hwaddr xlat; |
| MemoryRegion *this_mr; |
| |
| for (;;) { |
| target_len -= len; |
| addr += len; |
| done += len; |
| if (target_len == 0) { |
| return done; |
| } |
| |
| len = target_len; |
| this_mr = flatview_translate(fv, addr, &xlat, |
| &len, is_write, attrs); |
| if (this_mr != mr || xlat != base + done) { |
| return done; |
| } |
| } |
| } |
| |
| /* Map a physical memory region into a host virtual address. |
| * May map a subset of the requested range, given by and returned in *plen. |
| * May return NULL if resources needed to perform the mapping are exhausted. |
| * Use only for reads OR writes - not for read-modify-write operations. |
| * Use cpu_register_map_client() to know when retrying the map operation is |
| * likely to succeed. |
| */ |
| void *address_space_map(AddressSpace *as, |
| hwaddr addr, |
| hwaddr *plen, |
| bool is_write, |
| MemTxAttrs attrs) |
| { |
| hwaddr len = *plen; |
| hwaddr l, xlat; |
| MemoryRegion *mr; |
| void *ptr; |
| FlatView *fv; |
| |
| if (len == 0) { |
| return NULL; |
| } |
| |
| l = len; |
| rcu_read_lock(); |
| fv = address_space_to_flatview(as); |
| mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs); |
| |
| if (!memory_access_is_direct(mr, is_write)) { |
| if (atomic_xchg(&bounce.in_use, true)) { |
| rcu_read_unlock(); |
| return NULL; |
| } |
| /* Avoid unbounded allocations */ |
| l = MIN(l, TARGET_PAGE_SIZE); |
| bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l); |
| bounce.addr = addr; |
| bounce.len = l; |
| |
| memory_region_ref(mr); |
| bounce.mr = mr; |
| if (!is_write) { |
| flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED, |
| bounce.buffer, l); |
| } |
| |
| rcu_read_unlock(); |
| *plen = l; |
| return bounce.buffer; |
| } |
| |
| |
| memory_region_ref(mr); |
| *plen = flatview_extend_translation(fv, addr, len, mr, xlat, |
| l, is_write, attrs); |
| ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true); |
| rcu_read_unlock(); |
| |
| return ptr; |
| } |
| |
| /* Unmaps a memory region previously mapped by address_space_map(). |
| * Will also mark the memory as dirty if is_write == 1. access_len gives |
| * the amount of memory that was actually read or written by the caller. |
| */ |
| void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len, |
| int is_write, hwaddr access_len) |
| { |
| if (buffer != bounce.buffer) { |
| MemoryRegion *mr; |
| ram_addr_t addr1; |
| |
| mr = memory_region_from_host(buffer, &addr1); |
| assert(mr != NULL); |
| if (is_write) { |
| invalidate_and_set_dirty(mr, addr1, access_len); |
| } |
| if (xen_enabled()) { |
| xen_invalidate_map_cache_entry(buffer); |
| } |
| memory_region_unref(mr); |
| return; |
| } |
| if (is_write) { |
| address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED, |
| bounce.buffer, access_len); |
| } |
| qemu_vfree(bounce.buffer); |
| bounce.buffer = NULL; |
| memory_region_unref(bounce.mr); |
| atomic_mb_set(&bounce.in_use, false); |
| cpu_notify_map_clients(); |
| } |
| |
| void *cpu_physical_memory_map(hwaddr addr, |
| hwaddr *plen, |
| int is_write) |
| { |
| return address_space_map(&address_space_memory, addr, plen, is_write, |
| MEMTXATTRS_UNSPECIFIED); |
| } |
| |
| void cpu_physical_memory_unmap(void *buffer, hwaddr len, |
| int is_write, hwaddr access_len) |
| { |
| return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len); |
| } |
| |
| #define ARG1_DECL AddressSpace *as |
| #define ARG1 as |
| #define SUFFIX |
| #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__) |
| #define RCU_READ_LOCK(...) rcu_read_lock() |
| #define RCU_READ_UNLOCK(...) rcu_read_unlock() |
| #include "memory_ldst.inc.c" |
| |
| int64_t address_space_cache_init(MemoryRegionCache *cache, |
| AddressSpace *as, |
| hwaddr addr, |
| hwaddr len, |
| bool is_write) |
| { |
| AddressSpaceDispatch *d; |
| hwaddr l; |
| MemoryRegion *mr; |
| |
| assert(len > 0); |
| |
| l = len; |
| cache->fv = address_space_get_flatview(as); |
| d = flatview_to_dispatch(cache->fv); |
| cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true); |
| |
| mr = cache->mrs.mr; |
| memory_region_ref(mr); |
| if (memory_access_is_direct(mr, is_write)) { |
| /* We don't care about the memory attributes here as we're only |
| * doing this if we found actual RAM, which behaves the same |
| * regardless of attributes; so UNSPECIFIED is fine. |
| */ |
| l = flatview_extend_translation(cache->fv, addr, len, mr, |
| cache->xlat, l, is_write, |
| MEMTXATTRS_UNSPECIFIED); |
| cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true); |
| } else { |
| cache->ptr = NULL; |
| } |
| |
| cache->len = l; |
| cache->is_write = is_write; |
| return l; |
| } |
| |
| void address_space_cache_invalidate(MemoryRegionCache *cache, |
| hwaddr addr, |
| hwaddr access_len) |
| { |
| assert(cache->is_write); |
| if (likely(cache->ptr)) { |
| invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len); |
| } |
| } |
| |
| void address_space_cache_destroy(MemoryRegionCache *cache) |
| { |
| if (!cache->mrs.mr) { |
| return; |
| } |
| |
| if (xen_enabled()) { |
| xen_invalidate_map_cache_entry(cache->ptr); |
| } |
| memory_region_unref(cache->mrs.mr); |
| flatview_unref(cache->fv); |
| cache->mrs.mr = NULL; |
| cache->fv = NULL; |
| } |
| |
| /* Called from RCU critical section. This function has the same |
| * semantics as address_space_translate, but it only works on a |
| * predefined range of a MemoryRegion that was mapped with |
| * address_space_cache_init. |
| */ |
| static inline MemoryRegion *address_space_translate_cached( |
| MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat, |
| hwaddr *plen, bool is_write, MemTxAttrs attrs) |
| { |
| MemoryRegionSection section; |
| MemoryRegion *mr; |
| IOMMUMemoryRegion *iommu_mr; |
| AddressSpace *target_as; |
| |
| assert(!cache->ptr); |
| *xlat = addr + cache->xlat; |
| |
| mr = cache->mrs.mr; |
| iommu_mr = memory_region_get_iommu(mr); |
| if (!iommu_mr) { |
| /* MMIO region. */ |
| return mr; |
| } |
| |
| section = address_space_translate_iommu(iommu_mr, xlat, plen, |
| NULL, is_write, true, |
| &target_as, attrs); |
| return section.mr; |
| } |
| |
| /* Called from RCU critical section. address_space_read_cached uses this |
| * out of line function when the target is an MMIO or IOMMU region. |
| */ |
| void |
| address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr, |
| void *buf, int len) |
| { |
| hwaddr addr1, l; |
| MemoryRegion *mr; |
| |
| l = len; |
| mr = address_space_translate_cached(cache, addr, &addr1, &l, false, |
| MEMTXATTRS_UNSPECIFIED); |
| flatview_read_continue(cache->fv, |
| addr, MEMTXATTRS_UNSPECIFIED, buf, len, |
| addr1, l, mr); |
| } |
| |
| /* Called from RCU critical section. address_space_write_cached uses this |
| * out of line function when the target is an MMIO or IOMMU region. |
| */ |
| void |
| address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr, |
| const void *buf, int len) |
| { |
| hwaddr addr1, l; |
| MemoryRegion *mr; |
| |
| l = len; |
| mr = address_space_translate_cached(cache, addr, &addr1, &l, true, |
| MEMTXATTRS_UNSPECIFIED); |
| flatview_write_continue(cache->fv, |
| addr, MEMTXATTRS_UNSPECIFIED, buf, len, |
| addr1, l, mr); |
| } |
| |
| #define ARG1_DECL MemoryRegionCache *cache |
| #define ARG1 cache |
| #define SUFFIX _cached_slow |
| #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__) |
| #define RCU_READ_LOCK() ((void)0) |
| #define RCU_READ_UNLOCK() ((void)0) |
| #include "memory_ldst.inc.c" |
| |
| /* virtual memory access for debug (includes writing to ROM) */ |
| int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, |
| uint8_t *buf, int len, int is_write) |
| { |
| int l; |
| hwaddr phys_addr; |
| target_ulong page; |
| |
| cpu_synchronize_state(cpu); |
| while (len > 0) { |
| int asidx; |
| MemTxAttrs attrs; |
| |
| page = addr & TARGET_PAGE_MASK; |
| phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs); |
| asidx = cpu_asidx_from_attrs(cpu, attrs); |
| /* if no physical page mapped, return an error */ |
| if (phys_addr == -1) |
| return -1; |
| l = (page + TARGET_PAGE_SIZE) - addr; |
| if (l > len) |
| l = len; |
| phys_addr += (addr & ~TARGET_PAGE_MASK); |
| if (is_write) { |
| cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as, |
| phys_addr, buf, l); |
| } else { |
| address_space_rw(cpu->cpu_ases[asidx].as, phys_addr, |
| MEMTXATTRS_UNSPECIFIED, |
| buf, l, 0); |
| } |
| len -= l; |
| buf += l; |
| addr += l; |
| } |
| return 0; |
| } |
| |
| /* |
| * Allows code that needs to deal with migration bitmaps etc to still be built |
| * target independent. |
| */ |
| size_t qemu_target_page_size(void) |
| { |
| return TARGET_PAGE_SIZE; |
| } |
| |
| int qemu_target_page_bits(void) |
| { |
| return TARGET_PAGE_BITS; |
| } |
| |
| int qemu_target_page_bits_min(void) |
| { |
| return TARGET_PAGE_BITS_MIN; |
| } |
| #endif |
| |
| /* |
| * A helper function for the _utterly broken_ virtio device model to find out if |
| * it's running on a big endian machine. Don't do this at home kids! |
| */ |
| bool target_words_bigendian(void); |
| bool target_words_bigendian(void) |
| { |
| #if defined(TARGET_WORDS_BIGENDIAN) |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| bool cpu_physical_memory_is_io(hwaddr phys_addr) |
| { |
| MemoryRegion*mr; |
| hwaddr l = 1; |
| bool res; |
| |
| rcu_read_lock(); |
| mr = address_space_translate(&address_space_memory, |
| phys_addr, &phys_addr, &l, false, |
| MEMTXATTRS_UNSPECIFIED); |
| |
| res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr)); |
| rcu_read_unlock(); |
| return res; |
| } |
| |
| int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque) |
| { |
| RAMBlock *block; |
| int ret = 0; |
| |
| rcu_read_lock(); |
| RAMBLOCK_FOREACH(block) { |
| ret = func(block->idstr, block->host, block->offset, |
| block->used_length, opaque); |
| if (ret) { |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque) |
| { |
| RAMBlock *block; |
| int ret = 0; |
| |
| rcu_read_lock(); |
| RAMBLOCK_FOREACH(block) { |
| if (!qemu_ram_is_migratable(block)) { |
| continue; |
| } |
| ret = func(block->idstr, block->host, block->offset, |
| block->used_length, opaque); |
| if (ret) { |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| /* |
| * Unmap pages of memory from start to start+length such that |
| * they a) read as 0, b) Trigger whatever fault mechanism |
| * the OS provides for postcopy. |
| * The pages must be unmapped by the end of the function. |
| * Returns: 0 on success, none-0 on failure |
| * |
| */ |
| int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length) |
| { |
| int ret = -1; |
| |
| uint8_t *host_startaddr = rb->host + start; |
| |
| if ((uintptr_t)host_startaddr & (rb->page_size - 1)) { |
| error_report("ram_block_discard_range: Unaligned start address: %p", |
| host_startaddr); |
| goto err; |
| } |
| |
| if ((start + length) <= rb->used_length) { |
| bool need_madvise, need_fallocate; |
| uint8_t *host_endaddr = host_startaddr + length; |
| if ((uintptr_t)host_endaddr & (rb->page_size - 1)) { |
| error_report("ram_block_discard_range: Unaligned end address: %p", |
| host_endaddr); |
| goto err; |
| } |
| |
| errno = ENOTSUP; /* If we are missing MADVISE etc */ |
| |
| /* The logic here is messy; |
| * madvise DONTNEED fails for hugepages |
| * fallocate works on hugepages and shmem |
| */ |
| need_madvise = (rb->page_size == qemu_host_page_size); |
| need_fallocate = rb->fd != -1; |
| if (need_fallocate) { |
| /* For a file, this causes the area of the file to be zero'd |
| * if read, and for hugetlbfs also causes it to be unmapped |
| * so a userfault will trigger. |
| */ |
| #ifdef CONFIG_FALLOCATE_PUNCH_HOLE |
| ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, |
| start, length); |
| if (ret) { |
| ret = -errno; |
| error_report("ram_block_discard_range: Failed to fallocate " |
| "%s:%" PRIx64 " +%zx (%d)", |
| rb->idstr, start, length, ret); |
| goto err; |
| } |
| #else |
| ret = -ENOSYS; |
| error_report("ram_block_discard_range: fallocate not available/file" |
| "%s:%" PRIx64 " +%zx (%d)", |
| rb->idstr, start, length, ret); |
| goto err; |
| #endif |
| } |
| if (need_madvise) { |
| /* For normal RAM this causes it to be unmapped, |
| * for shared memory it causes the local mapping to disappear |
| * and to fall back on the file contents (which we just |
| * fallocate'd away). |
| */ |
| #if defined(CONFIG_MADVISE) |
| ret = madvise(host_startaddr, length, MADV_DONTNEED); |
| if (ret) { |
| ret = -errno; |
| error_report("ram_block_discard_range: Failed to discard range " |
| "%s:%" PRIx64 " +%zx (%d)", |
| rb->idstr, start, length, ret); |
| goto err; |
| } |
| #else |
| ret = -ENOSYS; |
| error_report("ram_block_discard_range: MADVISE not available" |
| "%s:%" PRIx64 " +%zx (%d)", |
| rb->idstr, start, length, ret); |
| goto err; |
| #endif |
| } |
| trace_ram_block_discard_range(rb->idstr, host_startaddr, length, |
| need_madvise, need_fallocate, ret); |
| } else { |
| error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64 |
| "/%zx/" RAM_ADDR_FMT")", |
| rb->idstr, start, length, rb->used_length); |
| } |
| |
| err: |
| return ret; |
| } |
| |
| #endif |
| |
| void page_size_init(void) |
| { |
| /* NOTE: we can always suppose that qemu_host_page_size >= |
| TARGET_PAGE_SIZE */ |
| if (qemu_host_page_size == 0) { |
| qemu_host_page_size = qemu_real_host_page_size; |
| } |
| if (qemu_host_page_size < TARGET_PAGE_SIZE) { |
| qemu_host_page_size = TARGET_PAGE_SIZE; |
| } |
| qemu_host_page_mask = -(intptr_t)qemu_host_page_size; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| static void mtree_print_phys_entries(fprintf_function mon, void *f, |
| int start, int end, int skip, int ptr) |
| { |
| if (start == end - 1) { |
| mon(f, "\t%3d ", start); |
| } else { |
| mon(f, "\t%3d..%-3d ", start, end - 1); |
| } |
| mon(f, " skip=%d ", skip); |
| if (ptr == PHYS_MAP_NODE_NIL) { |
| mon(f, " ptr=NIL"); |
| } else if (!skip) { |
| mon(f, " ptr=#%d", ptr); |
| } else { |
| mon(f, " ptr=[%d]", ptr); |
| } |
| mon(f, "\n"); |
| } |
| |
| #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \ |
| int128_sub((size), int128_one())) : 0) |
| |
| void mtree_print_dispatch(fprintf_function mon, void *f, |
| AddressSpaceDispatch *d, MemoryRegion *root) |
| { |
| int i; |
| |
| mon(f, " Dispatch\n"); |
| mon(f, " Physical sections\n"); |
| |
| for (i = 0; i < d->map.sections_nb; ++i) { |
| MemoryRegionSection *s = d->map.sections + i; |
| const char *names[] = { " [unassigned]", " [not dirty]", |
| " [ROM]", " [watch]" }; |
| |
| mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s", |
| i, |
| s->offset_within_address_space, |
| s->offset_within_address_space + MR_SIZE(s->mr->size), |
| s->mr->name ? s->mr->name : "(noname)", |
| i < ARRAY_SIZE(names) ? names[i] : "", |
| s->mr == root ? " [ROOT]" : "", |
| s == d->mru_section ? " [MRU]" : "", |
| s->mr->is_iommu ? " [iommu]" : ""); |
| |
| if (s->mr->alias) { |
| mon(f, " alias=%s", s->mr->alias->name ? |
| s->mr->alias->name : "noname"); |
| } |
| mon(f, "\n"); |
| } |
| |
| mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n", |
| P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip); |
| for (i = 0; i < d->map.nodes_nb; ++i) { |
| int j, jprev; |
| PhysPageEntry prev; |
| Node *n = d->map.nodes + i; |
| |
| mon(f, " [%d]\n", i); |
| |
| for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) { |
| PhysPageEntry *pe = *n + j; |
| |
| if (pe->ptr == prev.ptr && pe->skip == prev.skip) { |
| continue; |
| } |
| |
| mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr); |
| |
| jprev = j; |
| prev = *pe; |
| } |
| |
| if (jprev != ARRAY_SIZE(*n)) { |
| mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr); |
| } |
| } |
| } |
| |
| #endif |