| /* |
| * User emulator execution |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "hw/core/tcg-cpu-ops.h" |
| #include "disas/disas.h" |
| #include "exec/exec-all.h" |
| #include "tcg/tcg.h" |
| #include "qemu/bitops.h" |
| #include "qemu/rcu.h" |
| #include "exec/cpu_ldst.h" |
| #include "qemu/main-loop.h" |
| #include "exec/translate-all.h" |
| #include "exec/page-protection.h" |
| #include "exec/helper-proto.h" |
| #include "qemu/atomic128.h" |
| #include "trace.h" |
| #include "tcg/tcg-ldst.h" |
| #include "internal-common.h" |
| #include "internal-target.h" |
| |
| __thread uintptr_t helper_retaddr; |
| |
| //#define DEBUG_SIGNAL |
| |
| void cpu_interrupt(CPUState *cpu, int mask) |
| { |
| g_assert(bql_locked()); |
| cpu->interrupt_request |= mask; |
| qatomic_set(&cpu->neg.icount_decr.u16.high, -1); |
| } |
| |
| /* |
| * Adjust the pc to pass to cpu_restore_state; return the memop type. |
| */ |
| MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write) |
| { |
| switch (helper_retaddr) { |
| default: |
| /* |
| * Fault during host memory operation within a helper function. |
| * The helper's host return address, saved here, gives us a |
| * pointer into the generated code that will unwind to the |
| * correct guest pc. |
| */ |
| *pc = helper_retaddr; |
| break; |
| |
| case 0: |
| /* |
| * Fault during host memory operation within generated code. |
| * (Or, a unrelated bug within qemu, but we can't tell from here). |
| * |
| * We take the host pc from the signal frame. However, we cannot |
| * use that value directly. Within cpu_restore_state_from_tb, we |
| * assume PC comes from GETPC(), as used by the helper functions, |
| * so we adjust the address by -GETPC_ADJ to form an address that |
| * is within the call insn, so that the address does not accidentally |
| * match the beginning of the next guest insn. However, when the |
| * pc comes from the signal frame it points to the actual faulting |
| * host memory insn and not the return from a call insn. |
| * |
| * Therefore, adjust to compensate for what will be done later |
| * by cpu_restore_state_from_tb. |
| */ |
| *pc += GETPC_ADJ; |
| break; |
| |
| case 1: |
| /* |
| * Fault during host read for translation, or loosely, "execution". |
| * |
| * The guest pc is already pointing to the start of the TB for which |
| * code is being generated. If the guest translator manages the |
| * page crossings correctly, this is exactly the correct address |
| * (and if the translator doesn't handle page boundaries correctly |
| * there's little we can do about that here). Therefore, do not |
| * trigger the unwinder. |
| */ |
| *pc = 0; |
| return MMU_INST_FETCH; |
| } |
| |
| return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD; |
| } |
| |
| /** |
| * handle_sigsegv_accerr_write: |
| * @cpu: the cpu context |
| * @old_set: the sigset_t from the signal ucontext_t |
| * @host_pc: the host pc, adjusted for the signal |
| * @guest_addr: the guest address of the fault |
| * |
| * Return true if the write fault has been handled, and should be re-tried. |
| * |
| * Note that it is important that we don't call page_unprotect() unless |
| * this is really a "write to nonwritable page" fault, because |
| * page_unprotect() assumes that if it is called for an access to |
| * a page that's writable this means we had two threads racing and |
| * another thread got there first and already made the page writable; |
| * so we will retry the access. If we were to call page_unprotect() |
| * for some other kind of fault that should really be passed to the |
| * guest, we'd end up in an infinite loop of retrying the faulting access. |
| */ |
| bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set, |
| uintptr_t host_pc, abi_ptr guest_addr) |
| { |
| switch (page_unprotect(guest_addr, host_pc)) { |
| case 0: |
| /* |
| * Fault not caused by a page marked unwritable to protect |
| * cached translations, must be the guest binary's problem. |
| */ |
| return false; |
| case 1: |
| /* |
| * Fault caused by protection of cached translation; TBs |
| * invalidated, so resume execution. |
| */ |
| return true; |
| case 2: |
| /* |
| * Fault caused by protection of cached translation, and the |
| * currently executing TB was modified and must be exited immediately. |
| */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| cpu_loop_exit_noexc(cpu); |
| /* NORETURN */ |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| typedef struct PageFlagsNode { |
| struct rcu_head rcu; |
| IntervalTreeNode itree; |
| int flags; |
| } PageFlagsNode; |
| |
| static IntervalTreeRoot pageflags_root; |
| |
| static PageFlagsNode *pageflags_find(target_ulong start, target_ulong last) |
| { |
| IntervalTreeNode *n; |
| |
| n = interval_tree_iter_first(&pageflags_root, start, last); |
| return n ? container_of(n, PageFlagsNode, itree) : NULL; |
| } |
| |
| static PageFlagsNode *pageflags_next(PageFlagsNode *p, target_ulong start, |
| target_ulong last) |
| { |
| IntervalTreeNode *n; |
| |
| n = interval_tree_iter_next(&p->itree, start, last); |
| return n ? container_of(n, PageFlagsNode, itree) : NULL; |
| } |
| |
| int walk_memory_regions(void *priv, walk_memory_regions_fn fn) |
| { |
| IntervalTreeNode *n; |
| int rc = 0; |
| |
| mmap_lock(); |
| for (n = interval_tree_iter_first(&pageflags_root, 0, -1); |
| n != NULL; |
| n = interval_tree_iter_next(n, 0, -1)) { |
| PageFlagsNode *p = container_of(n, PageFlagsNode, itree); |
| |
| rc = fn(priv, n->start, n->last + 1, p->flags); |
| if (rc != 0) { |
| break; |
| } |
| } |
| mmap_unlock(); |
| |
| return rc; |
| } |
| |
| static int dump_region(void *priv, target_ulong start, |
| target_ulong end, unsigned long prot) |
| { |
| FILE *f = (FILE *)priv; |
| |
| fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx" "TARGET_FMT_lx" %c%c%c\n", |
| start, end, end - start, |
| ((prot & PAGE_READ) ? 'r' : '-'), |
| ((prot & PAGE_WRITE) ? 'w' : '-'), |
| ((prot & PAGE_EXEC) ? 'x' : '-')); |
| return 0; |
| } |
| |
| /* dump memory mappings */ |
| void page_dump(FILE *f) |
| { |
| const int length = sizeof(target_ulong) * 2; |
| |
| fprintf(f, "%-*s %-*s %-*s %s\n", |
| length, "start", length, "end", length, "size", "prot"); |
| walk_memory_regions(f, dump_region); |
| } |
| |
| int page_get_flags(target_ulong address) |
| { |
| PageFlagsNode *p = pageflags_find(address, address); |
| |
| /* |
| * See util/interval-tree.c re lockless lookups: no false positives but |
| * there are false negatives. If we find nothing, retry with the mmap |
| * lock acquired. |
| */ |
| if (p) { |
| return p->flags; |
| } |
| if (have_mmap_lock()) { |
| return 0; |
| } |
| |
| mmap_lock(); |
| p = pageflags_find(address, address); |
| mmap_unlock(); |
| return p ? p->flags : 0; |
| } |
| |
| /* A subroutine of page_set_flags: insert a new node for [start,last]. */ |
| static void pageflags_create(target_ulong start, target_ulong last, int flags) |
| { |
| PageFlagsNode *p = g_new(PageFlagsNode, 1); |
| |
| p->itree.start = start; |
| p->itree.last = last; |
| p->flags = flags; |
| interval_tree_insert(&p->itree, &pageflags_root); |
| } |
| |
| /* A subroutine of page_set_flags: remove everything in [start,last]. */ |
| static bool pageflags_unset(target_ulong start, target_ulong last) |
| { |
| bool inval_tb = false; |
| |
| while (true) { |
| PageFlagsNode *p = pageflags_find(start, last); |
| target_ulong p_last; |
| |
| if (!p) { |
| break; |
| } |
| |
| if (p->flags & PAGE_EXEC) { |
| inval_tb = true; |
| } |
| |
| interval_tree_remove(&p->itree, &pageflags_root); |
| p_last = p->itree.last; |
| |
| if (p->itree.start < start) { |
| /* Truncate the node from the end, or split out the middle. */ |
| p->itree.last = start - 1; |
| interval_tree_insert(&p->itree, &pageflags_root); |
| if (last < p_last) { |
| pageflags_create(last + 1, p_last, p->flags); |
| break; |
| } |
| } else if (p_last <= last) { |
| /* Range completely covers node -- remove it. */ |
| g_free_rcu(p, rcu); |
| } else { |
| /* Truncate the node from the start. */ |
| p->itree.start = last + 1; |
| interval_tree_insert(&p->itree, &pageflags_root); |
| break; |
| } |
| } |
| |
| return inval_tb; |
| } |
| |
| /* |
| * A subroutine of page_set_flags: nothing overlaps [start,last], |
| * but check adjacent mappings and maybe merge into a single range. |
| */ |
| static void pageflags_create_merge(target_ulong start, target_ulong last, |
| int flags) |
| { |
| PageFlagsNode *next = NULL, *prev = NULL; |
| |
| if (start > 0) { |
| prev = pageflags_find(start - 1, start - 1); |
| if (prev) { |
| if (prev->flags == flags) { |
| interval_tree_remove(&prev->itree, &pageflags_root); |
| } else { |
| prev = NULL; |
| } |
| } |
| } |
| if (last + 1 != 0) { |
| next = pageflags_find(last + 1, last + 1); |
| if (next) { |
| if (next->flags == flags) { |
| interval_tree_remove(&next->itree, &pageflags_root); |
| } else { |
| next = NULL; |
| } |
| } |
| } |
| |
| if (prev) { |
| if (next) { |
| prev->itree.last = next->itree.last; |
| g_free_rcu(next, rcu); |
| } else { |
| prev->itree.last = last; |
| } |
| interval_tree_insert(&prev->itree, &pageflags_root); |
| } else if (next) { |
| next->itree.start = start; |
| interval_tree_insert(&next->itree, &pageflags_root); |
| } else { |
| pageflags_create(start, last, flags); |
| } |
| } |
| |
| /* |
| * Allow the target to decide if PAGE_TARGET_[12] may be reset. |
| * By default, they are not kept. |
| */ |
| #ifndef PAGE_TARGET_STICKY |
| #define PAGE_TARGET_STICKY 0 |
| #endif |
| #define PAGE_STICKY (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY) |
| |
| /* A subroutine of page_set_flags: add flags to [start,last]. */ |
| static bool pageflags_set_clear(target_ulong start, target_ulong last, |
| int set_flags, int clear_flags) |
| { |
| PageFlagsNode *p; |
| target_ulong p_start, p_last; |
| int p_flags, merge_flags; |
| bool inval_tb = false; |
| |
| restart: |
| p = pageflags_find(start, last); |
| if (!p) { |
| if (set_flags) { |
| pageflags_create_merge(start, last, set_flags); |
| } |
| goto done; |
| } |
| |
| p_start = p->itree.start; |
| p_last = p->itree.last; |
| p_flags = p->flags; |
| /* Using mprotect on a page does not change sticky bits. */ |
| merge_flags = (p_flags & ~clear_flags) | set_flags; |
| |
| /* |
| * Need to flush if an overlapping executable region |
| * removes exec, or adds write. |
| */ |
| if ((p_flags & PAGE_EXEC) |
| && (!(merge_flags & PAGE_EXEC) |
| || (merge_flags & ~p_flags & PAGE_WRITE))) { |
| inval_tb = true; |
| } |
| |
| /* |
| * If there is an exact range match, update and return without |
| * attempting to merge with adjacent regions. |
| */ |
| if (start == p_start && last == p_last) { |
| if (merge_flags) { |
| p->flags = merge_flags; |
| } else { |
| interval_tree_remove(&p->itree, &pageflags_root); |
| g_free_rcu(p, rcu); |
| } |
| goto done; |
| } |
| |
| /* |
| * If sticky bits affect the original mapping, then we must be more |
| * careful about the existing intervals and the separate flags. |
| */ |
| if (set_flags != merge_flags) { |
| if (p_start < start) { |
| interval_tree_remove(&p->itree, &pageflags_root); |
| p->itree.last = start - 1; |
| interval_tree_insert(&p->itree, &pageflags_root); |
| |
| if (last < p_last) { |
| if (merge_flags) { |
| pageflags_create(start, last, merge_flags); |
| } |
| pageflags_create(last + 1, p_last, p_flags); |
| } else { |
| if (merge_flags) { |
| pageflags_create(start, p_last, merge_flags); |
| } |
| if (p_last < last) { |
| start = p_last + 1; |
| goto restart; |
| } |
| } |
| } else { |
| if (start < p_start && set_flags) { |
| pageflags_create(start, p_start - 1, set_flags); |
| } |
| if (last < p_last) { |
| interval_tree_remove(&p->itree, &pageflags_root); |
| p->itree.start = last + 1; |
| interval_tree_insert(&p->itree, &pageflags_root); |
| if (merge_flags) { |
| pageflags_create(start, last, merge_flags); |
| } |
| } else { |
| if (merge_flags) { |
| p->flags = merge_flags; |
| } else { |
| interval_tree_remove(&p->itree, &pageflags_root); |
| g_free_rcu(p, rcu); |
| } |
| if (p_last < last) { |
| start = p_last + 1; |
| goto restart; |
| } |
| } |
| } |
| goto done; |
| } |
| |
| /* If flags are not changing for this range, incorporate it. */ |
| if (set_flags == p_flags) { |
| if (start < p_start) { |
| interval_tree_remove(&p->itree, &pageflags_root); |
| p->itree.start = start; |
| interval_tree_insert(&p->itree, &pageflags_root); |
| } |
| if (p_last < last) { |
| start = p_last + 1; |
| goto restart; |
| } |
| goto done; |
| } |
| |
| /* Maybe split out head and/or tail ranges with the original flags. */ |
| interval_tree_remove(&p->itree, &pageflags_root); |
| if (p_start < start) { |
| p->itree.last = start - 1; |
| interval_tree_insert(&p->itree, &pageflags_root); |
| |
| if (p_last < last) { |
| goto restart; |
| } |
| if (last < p_last) { |
| pageflags_create(last + 1, p_last, p_flags); |
| } |
| } else if (last < p_last) { |
| p->itree.start = last + 1; |
| interval_tree_insert(&p->itree, &pageflags_root); |
| } else { |
| g_free_rcu(p, rcu); |
| goto restart; |
| } |
| if (set_flags) { |
| pageflags_create(start, last, set_flags); |
| } |
| |
| done: |
| return inval_tb; |
| } |
| |
| void page_set_flags(target_ulong start, target_ulong last, int flags) |
| { |
| bool reset = false; |
| bool inval_tb = false; |
| |
| /* This function should never be called with addresses outside the |
| guest address space. If this assert fires, it probably indicates |
| a missing call to h2g_valid. */ |
| assert(start <= last); |
| assert(last <= GUEST_ADDR_MAX); |
| /* Only set PAGE_ANON with new mappings. */ |
| assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET)); |
| assert_memory_lock(); |
| |
| start &= TARGET_PAGE_MASK; |
| last |= ~TARGET_PAGE_MASK; |
| |
| if (!(flags & PAGE_VALID)) { |
| flags = 0; |
| } else { |
| reset = flags & PAGE_RESET; |
| flags &= ~PAGE_RESET; |
| if (flags & PAGE_WRITE) { |
| flags |= PAGE_WRITE_ORG; |
| } |
| } |
| |
| if (!flags || reset) { |
| page_reset_target_data(start, last); |
| inval_tb |= pageflags_unset(start, last); |
| } |
| if (flags) { |
| inval_tb |= pageflags_set_clear(start, last, flags, |
| ~(reset ? 0 : PAGE_STICKY)); |
| } |
| if (inval_tb) { |
| tb_invalidate_phys_range(start, last); |
| } |
| } |
| |
| bool page_check_range(target_ulong start, target_ulong len, int flags) |
| { |
| target_ulong last; |
| int locked; /* tri-state: =0: unlocked, +1: global, -1: local */ |
| bool ret; |
| |
| if (len == 0) { |
| return true; /* trivial length */ |
| } |
| |
| last = start + len - 1; |
| if (last < start) { |
| return false; /* wrap around */ |
| } |
| |
| locked = have_mmap_lock(); |
| while (true) { |
| PageFlagsNode *p = pageflags_find(start, last); |
| int missing; |
| |
| if (!p) { |
| if (!locked) { |
| /* |
| * Lockless lookups have false negatives. |
| * Retry with the lock held. |
| */ |
| mmap_lock(); |
| locked = -1; |
| p = pageflags_find(start, last); |
| } |
| if (!p) { |
| ret = false; /* entire region invalid */ |
| break; |
| } |
| } |
| if (start < p->itree.start) { |
| ret = false; /* initial bytes invalid */ |
| break; |
| } |
| |
| missing = flags & ~p->flags; |
| if (missing & ~PAGE_WRITE) { |
| ret = false; /* page doesn't match */ |
| break; |
| } |
| if (missing & PAGE_WRITE) { |
| if (!(p->flags & PAGE_WRITE_ORG)) { |
| ret = false; /* page not writable */ |
| break; |
| } |
| /* Asking about writable, but has been protected: undo. */ |
| if (!page_unprotect(start, 0)) { |
| ret = false; |
| break; |
| } |
| /* TODO: page_unprotect should take a range, not a single page. */ |
| if (last - start < TARGET_PAGE_SIZE) { |
| ret = true; /* ok */ |
| break; |
| } |
| start += TARGET_PAGE_SIZE; |
| continue; |
| } |
| |
| if (last <= p->itree.last) { |
| ret = true; /* ok */ |
| break; |
| } |
| start = p->itree.last + 1; |
| } |
| |
| /* Release the lock if acquired locally. */ |
| if (locked < 0) { |
| mmap_unlock(); |
| } |
| return ret; |
| } |
| |
| bool page_check_range_empty(target_ulong start, target_ulong last) |
| { |
| assert(last >= start); |
| assert_memory_lock(); |
| return pageflags_find(start, last) == NULL; |
| } |
| |
| target_ulong page_find_range_empty(target_ulong min, target_ulong max, |
| target_ulong len, target_ulong align) |
| { |
| target_ulong len_m1, align_m1; |
| |
| assert(min <= max); |
| assert(max <= GUEST_ADDR_MAX); |
| assert(len != 0); |
| assert(is_power_of_2(align)); |
| assert_memory_lock(); |
| |
| len_m1 = len - 1; |
| align_m1 = align - 1; |
| |
| /* Iteratively narrow the search region. */ |
| while (1) { |
| PageFlagsNode *p; |
| |
| /* Align min and double-check there's enough space remaining. */ |
| min = (min + align_m1) & ~align_m1; |
| if (min > max) { |
| return -1; |
| } |
| if (len_m1 > max - min) { |
| return -1; |
| } |
| |
| p = pageflags_find(min, min + len_m1); |
| if (p == NULL) { |
| /* Found! */ |
| return min; |
| } |
| if (max <= p->itree.last) { |
| /* Existing allocation fills the remainder of the search region. */ |
| return -1; |
| } |
| /* Skip across existing allocation. */ |
| min = p->itree.last + 1; |
| } |
| } |
| |
| void page_protect(tb_page_addr_t address) |
| { |
| PageFlagsNode *p; |
| target_ulong start, last; |
| int host_page_size = qemu_real_host_page_size(); |
| int prot; |
| |
| assert_memory_lock(); |
| |
| if (host_page_size <= TARGET_PAGE_SIZE) { |
| start = address & TARGET_PAGE_MASK; |
| last = start + TARGET_PAGE_SIZE - 1; |
| } else { |
| start = address & -host_page_size; |
| last = start + host_page_size - 1; |
| } |
| |
| p = pageflags_find(start, last); |
| if (!p) { |
| return; |
| } |
| prot = p->flags; |
| |
| if (unlikely(p->itree.last < last)) { |
| /* More than one protection region covers the one host page. */ |
| assert(TARGET_PAGE_SIZE < host_page_size); |
| while ((p = pageflags_next(p, start, last)) != NULL) { |
| prot |= p->flags; |
| } |
| } |
| |
| if (prot & PAGE_WRITE) { |
| pageflags_set_clear(start, last, 0, PAGE_WRITE); |
| mprotect(g2h_untagged(start), last - start + 1, |
| prot & (PAGE_READ | PAGE_EXEC) ? PROT_READ : PROT_NONE); |
| } |
| } |
| |
| /* |
| * Called from signal handler: invalidate the code and unprotect the |
| * page. Return 0 if the fault was not handled, 1 if it was handled, |
| * and 2 if it was handled but the caller must cause the TB to be |
| * immediately exited. (We can only return 2 if the 'pc' argument is |
| * non-zero.) |
| */ |
| int page_unprotect(target_ulong address, uintptr_t pc) |
| { |
| PageFlagsNode *p; |
| bool current_tb_invalidated; |
| |
| /* |
| * Technically this isn't safe inside a signal handler. However we |
| * know this only ever happens in a synchronous SEGV handler, so in |
| * practice it seems to be ok. |
| */ |
| mmap_lock(); |
| |
| p = pageflags_find(address, address); |
| |
| /* If this address was not really writable, nothing to do. */ |
| if (!p || !(p->flags & PAGE_WRITE_ORG)) { |
| mmap_unlock(); |
| return 0; |
| } |
| |
| current_tb_invalidated = false; |
| if (p->flags & PAGE_WRITE) { |
| /* |
| * If the page is actually marked WRITE then assume this is because |
| * this thread raced with another one which got here first and |
| * set the page to PAGE_WRITE and did the TB invalidate for us. |
| */ |
| #ifdef TARGET_HAS_PRECISE_SMC |
| TranslationBlock *current_tb = tcg_tb_lookup(pc); |
| if (current_tb) { |
| current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID; |
| } |
| #endif |
| } else { |
| int host_page_size = qemu_real_host_page_size(); |
| target_ulong start, len, i; |
| int prot; |
| |
| if (host_page_size <= TARGET_PAGE_SIZE) { |
| start = address & TARGET_PAGE_MASK; |
| len = TARGET_PAGE_SIZE; |
| prot = p->flags | PAGE_WRITE; |
| pageflags_set_clear(start, start + len - 1, PAGE_WRITE, 0); |
| current_tb_invalidated = tb_invalidate_phys_page_unwind(start, pc); |
| } else { |
| start = address & -host_page_size; |
| len = host_page_size; |
| prot = 0; |
| |
| for (i = 0; i < len; i += TARGET_PAGE_SIZE) { |
| target_ulong addr = start + i; |
| |
| p = pageflags_find(addr, addr); |
| if (p) { |
| prot |= p->flags; |
| if (p->flags & PAGE_WRITE_ORG) { |
| prot |= PAGE_WRITE; |
| pageflags_set_clear(addr, addr + TARGET_PAGE_SIZE - 1, |
| PAGE_WRITE, 0); |
| } |
| } |
| /* |
| * Since the content will be modified, we must invalidate |
| * the corresponding translated code. |
| */ |
| current_tb_invalidated |= |
| tb_invalidate_phys_page_unwind(addr, pc); |
| } |
| } |
| if (prot & PAGE_EXEC) { |
| prot = (prot & ~PAGE_EXEC) | PAGE_READ; |
| } |
| mprotect((void *)g2h_untagged(start), len, prot & PAGE_RWX); |
| } |
| mmap_unlock(); |
| |
| /* If current TB was invalidated return to main loop */ |
| return current_tb_invalidated ? 2 : 1; |
| } |
| |
| static int probe_access_internal(CPUArchState *env, vaddr addr, |
| int fault_size, MMUAccessType access_type, |
| bool nonfault, uintptr_t ra) |
| { |
| int acc_flag; |
| bool maperr; |
| |
| switch (access_type) { |
| case MMU_DATA_STORE: |
| acc_flag = PAGE_WRITE_ORG; |
| break; |
| case MMU_DATA_LOAD: |
| acc_flag = PAGE_READ; |
| break; |
| case MMU_INST_FETCH: |
| acc_flag = PAGE_EXEC; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| if (guest_addr_valid_untagged(addr)) { |
| int page_flags = page_get_flags(addr); |
| if (page_flags & acc_flag) { |
| if ((acc_flag == PAGE_READ || acc_flag == PAGE_WRITE) |
| && cpu_plugin_mem_cbs_enabled(env_cpu(env))) { |
| return TLB_MMIO; |
| } |
| return 0; /* success */ |
| } |
| maperr = !(page_flags & PAGE_VALID); |
| } else { |
| maperr = true; |
| } |
| |
| if (nonfault) { |
| return TLB_INVALID_MASK; |
| } |
| |
| cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra); |
| } |
| |
| int probe_access_flags(CPUArchState *env, vaddr addr, int size, |
| MMUAccessType access_type, int mmu_idx, |
| bool nonfault, void **phost, uintptr_t ra) |
| { |
| int flags; |
| |
| g_assert(-(addr | TARGET_PAGE_MASK) >= size); |
| flags = probe_access_internal(env, addr, size, access_type, nonfault, ra); |
| *phost = (flags & TLB_INVALID_MASK) ? NULL : g2h(env_cpu(env), addr); |
| return flags; |
| } |
| |
| void *probe_access(CPUArchState *env, vaddr addr, int size, |
| MMUAccessType access_type, int mmu_idx, uintptr_t ra) |
| { |
| int flags; |
| |
| g_assert(-(addr | TARGET_PAGE_MASK) >= size); |
| flags = probe_access_internal(env, addr, size, access_type, false, ra); |
| g_assert((flags & ~TLB_MMIO) == 0); |
| |
| return size ? g2h(env_cpu(env), addr) : NULL; |
| } |
| |
| tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, |
| void **hostp) |
| { |
| int flags; |
| |
| flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0); |
| g_assert(flags == 0); |
| |
| if (hostp) { |
| *hostp = g2h_untagged(addr); |
| } |
| return addr; |
| } |
| |
| #ifdef TARGET_PAGE_DATA_SIZE |
| /* |
| * Allocate chunks of target data together. For the only current user, |
| * if we allocate one hunk per page, we have overhead of 40/128 or 40%. |
| * Therefore, allocate memory for 64 pages at a time for overhead < 1%. |
| */ |
| #define TPD_PAGES 64 |
| #define TBD_MASK (TARGET_PAGE_MASK * TPD_PAGES) |
| |
| typedef struct TargetPageDataNode { |
| struct rcu_head rcu; |
| IntervalTreeNode itree; |
| char data[] __attribute__((aligned)); |
| } TargetPageDataNode; |
| |
| static IntervalTreeRoot targetdata_root; |
| |
| void page_reset_target_data(target_ulong start, target_ulong last) |
| { |
| IntervalTreeNode *n, *next; |
| |
| assert_memory_lock(); |
| |
| start &= TARGET_PAGE_MASK; |
| last |= ~TARGET_PAGE_MASK; |
| |
| for (n = interval_tree_iter_first(&targetdata_root, start, last), |
| next = n ? interval_tree_iter_next(n, start, last) : NULL; |
| n != NULL; |
| n = next, |
| next = next ? interval_tree_iter_next(n, start, last) : NULL) { |
| target_ulong n_start, n_last, p_ofs, p_len; |
| TargetPageDataNode *t = container_of(n, TargetPageDataNode, itree); |
| |
| if (n->start >= start && n->last <= last) { |
| interval_tree_remove(n, &targetdata_root); |
| g_free_rcu(t, rcu); |
| continue; |
| } |
| |
| if (n->start < start) { |
| n_start = start; |
| p_ofs = (start - n->start) >> TARGET_PAGE_BITS; |
| } else { |
| n_start = n->start; |
| p_ofs = 0; |
| } |
| n_last = MIN(last, n->last); |
| p_len = (n_last + 1 - n_start) >> TARGET_PAGE_BITS; |
| |
| memset(t->data + p_ofs * TARGET_PAGE_DATA_SIZE, 0, |
| p_len * TARGET_PAGE_DATA_SIZE); |
| } |
| } |
| |
| void *page_get_target_data(target_ulong address) |
| { |
| IntervalTreeNode *n; |
| TargetPageDataNode *t; |
| target_ulong page, region, p_ofs; |
| |
| page = address & TARGET_PAGE_MASK; |
| region = address & TBD_MASK; |
| |
| n = interval_tree_iter_first(&targetdata_root, page, page); |
| if (!n) { |
| /* |
| * See util/interval-tree.c re lockless lookups: no false positives |
| * but there are false negatives. If we find nothing, retry with |
| * the mmap lock acquired. We also need the lock for the |
| * allocation + insert. |
| */ |
| mmap_lock(); |
| n = interval_tree_iter_first(&targetdata_root, page, page); |
| if (!n) { |
| t = g_malloc0(sizeof(TargetPageDataNode) |
| + TPD_PAGES * TARGET_PAGE_DATA_SIZE); |
| n = &t->itree; |
| n->start = region; |
| n->last = region | ~TBD_MASK; |
| interval_tree_insert(n, &targetdata_root); |
| } |
| mmap_unlock(); |
| } |
| |
| t = container_of(n, TargetPageDataNode, itree); |
| p_ofs = (page - region) >> TARGET_PAGE_BITS; |
| return t->data + p_ofs * TARGET_PAGE_DATA_SIZE; |
| } |
| #else |
| void page_reset_target_data(target_ulong start, target_ulong last) { } |
| #endif /* TARGET_PAGE_DATA_SIZE */ |
| |
| /* The system-mode versions of these helpers are in cputlb.c. */ |
| |
| static void *cpu_mmu_lookup(CPUState *cpu, vaddr addr, |
| MemOp mop, uintptr_t ra, MMUAccessType type) |
| { |
| int a_bits = memop_alignment_bits(mop); |
| void *ret; |
| |
| /* Enforce guest required alignment. */ |
| if (unlikely(addr & ((1 << a_bits) - 1))) { |
| cpu_loop_exit_sigbus(cpu, addr, type, ra); |
| } |
| |
| ret = g2h(cpu, addr); |
| set_helper_retaddr(ra); |
| return ret; |
| } |
| |
| #include "ldst_atomicity.c.inc" |
| |
| static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, |
| uintptr_t ra, MMUAccessType access_type) |
| { |
| void *haddr; |
| uint8_t ret; |
| |
| cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); |
| haddr = cpu_mmu_lookup(cpu, addr, get_memop(oi), ra, access_type); |
| ret = ldub_p(haddr); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, |
| uintptr_t ra, MMUAccessType access_type) |
| { |
| void *haddr; |
| uint16_t ret; |
| MemOp mop = get_memop(oi); |
| |
| cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); |
| haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type); |
| ret = load_atom_2(cpu, ra, haddr, mop); |
| clear_helper_retaddr(); |
| |
| if (mop & MO_BSWAP) { |
| ret = bswap16(ret); |
| } |
| return ret; |
| } |
| |
| static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, |
| uintptr_t ra, MMUAccessType access_type) |
| { |
| void *haddr; |
| uint32_t ret; |
| MemOp mop = get_memop(oi); |
| |
| cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); |
| haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type); |
| ret = load_atom_4(cpu, ra, haddr, mop); |
| clear_helper_retaddr(); |
| |
| if (mop & MO_BSWAP) { |
| ret = bswap32(ret); |
| } |
| return ret; |
| } |
| |
| static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, |
| uintptr_t ra, MMUAccessType access_type) |
| { |
| void *haddr; |
| uint64_t ret; |
| MemOp mop = get_memop(oi); |
| |
| cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); |
| haddr = cpu_mmu_lookup(cpu, addr, mop, ra, access_type); |
| ret = load_atom_8(cpu, ra, haddr, mop); |
| clear_helper_retaddr(); |
| |
| if (mop & MO_BSWAP) { |
| ret = bswap64(ret); |
| } |
| return ret; |
| } |
| |
| static Int128 do_ld16_mmu(CPUState *cpu, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| Int128 ret; |
| MemOp mop = get_memop(oi); |
| |
| tcg_debug_assert((mop & MO_SIZE) == MO_128); |
| cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); |
| haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_LOAD); |
| ret = load_atom_16(cpu, ra, haddr, mop); |
| clear_helper_retaddr(); |
| |
| if (mop & MO_BSWAP) { |
| ret = bswap128(ret); |
| } |
| return ret; |
| } |
| |
| static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| |
| cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); |
| haddr = cpu_mmu_lookup(cpu, addr, get_memop(oi), ra, MMU_DATA_STORE); |
| stb_p(haddr, val); |
| clear_helper_retaddr(); |
| } |
| |
| static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| MemOp mop = get_memop(oi); |
| |
| cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); |
| haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE); |
| |
| if (mop & MO_BSWAP) { |
| val = bswap16(val); |
| } |
| store_atom_2(cpu, ra, haddr, mop, val); |
| clear_helper_retaddr(); |
| } |
| |
| static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| MemOp mop = get_memop(oi); |
| |
| cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); |
| haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE); |
| |
| if (mop & MO_BSWAP) { |
| val = bswap32(val); |
| } |
| store_atom_4(cpu, ra, haddr, mop, val); |
| clear_helper_retaddr(); |
| } |
| |
| static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| MemOp mop = get_memop(oi); |
| |
| cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); |
| haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE); |
| |
| if (mop & MO_BSWAP) { |
| val = bswap64(val); |
| } |
| store_atom_8(cpu, ra, haddr, mop, val); |
| clear_helper_retaddr(); |
| } |
| |
| static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| MemOpIdx mop = get_memop(oi); |
| |
| cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); |
| haddr = cpu_mmu_lookup(cpu, addr, mop, ra, MMU_DATA_STORE); |
| |
| if (mop & MO_BSWAP) { |
| val = bswap128(val); |
| } |
| store_atom_16(cpu, ra, haddr, mop, val); |
| clear_helper_retaddr(); |
| } |
| |
| uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr) |
| { |
| uint32_t ret; |
| |
| set_helper_retaddr(1); |
| ret = ldub_p(g2h_untagged(ptr)); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr) |
| { |
| uint32_t ret; |
| |
| set_helper_retaddr(1); |
| ret = lduw_p(g2h_untagged(ptr)); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr) |
| { |
| uint32_t ret; |
| |
| set_helper_retaddr(1); |
| ret = ldl_p(g2h_untagged(ptr)); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr) |
| { |
| uint64_t ret; |
| |
| set_helper_retaddr(1); |
| ret = ldq_p(g2h_untagged(ptr)); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| uint8_t ret; |
| |
| haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH); |
| ret = ldub_p(haddr); |
| clear_helper_retaddr(); |
| return ret; |
| } |
| |
| uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| uint16_t ret; |
| |
| haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH); |
| ret = lduw_p(haddr); |
| clear_helper_retaddr(); |
| if (get_memop(oi) & MO_BSWAP) { |
| ret = bswap16(ret); |
| } |
| return ret; |
| } |
| |
| uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| uint32_t ret; |
| |
| haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_INST_FETCH); |
| ret = ldl_p(haddr); |
| clear_helper_retaddr(); |
| if (get_memop(oi) & MO_BSWAP) { |
| ret = bswap32(ret); |
| } |
| return ret; |
| } |
| |
| uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, |
| MemOpIdx oi, uintptr_t ra) |
| { |
| void *haddr; |
| uint64_t ret; |
| |
| haddr = cpu_mmu_lookup(env_cpu(env), addr, oi, ra, MMU_DATA_LOAD); |
| ret = ldq_p(haddr); |
| clear_helper_retaddr(); |
| if (get_memop(oi) & MO_BSWAP) { |
| ret = bswap64(ret); |
| } |
| return ret; |
| } |
| |
| #include "ldst_common.c.inc" |
| |
| /* |
| * Do not allow unaligned operations to proceed. Return the host address. |
| */ |
| static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, |
| int size, uintptr_t retaddr) |
| { |
| MemOp mop = get_memop(oi); |
| int a_bits = memop_alignment_bits(mop); |
| void *ret; |
| |
| /* Enforce guest required alignment. */ |
| if (unlikely(addr & ((1 << a_bits) - 1))) { |
| cpu_loop_exit_sigbus(cpu, addr, MMU_DATA_STORE, retaddr); |
| } |
| |
| /* Enforce qemu required alignment. */ |
| if (unlikely(addr & (size - 1))) { |
| cpu_loop_exit_atomic(cpu, retaddr); |
| } |
| |
| ret = g2h(cpu, addr); |
| set_helper_retaddr(retaddr); |
| return ret; |
| } |
| |
| #include "atomic_common.c.inc" |
| |
| /* |
| * First set of functions passes in OI and RETADDR. |
| * This makes them callable from other helpers. |
| */ |
| |
| #define ATOMIC_NAME(X) \ |
| glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) |
| #define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0) |
| |
| #define DATA_SIZE 1 |
| #include "atomic_template.h" |
| |
| #define DATA_SIZE 2 |
| #include "atomic_template.h" |
| |
| #define DATA_SIZE 4 |
| #include "atomic_template.h" |
| |
| #ifdef CONFIG_ATOMIC64 |
| #define DATA_SIZE 8 |
| #include "atomic_template.h" |
| #endif |
| |
| #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 |
| #define DATA_SIZE 16 |
| #include "atomic_template.h" |
| #endif |