| /* |
| * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator |
| * |
| * Copyright (c) 2004-2007 Fabrice Bellard |
| * Copyright (c) 2007 Jocelyn Mayer |
| * Copyright (c) 2010 David Gibson, IBM Corporation. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| * |
| */ |
| #include "sysemu.h" |
| #include "hw.h" |
| #include "elf.h" |
| #include "net.h" |
| #include "blockdev.h" |
| #include "cpus.h" |
| #include "kvm.h" |
| #include "kvm_ppc.h" |
| |
| #include "hw/boards.h" |
| #include "hw/ppc.h" |
| #include "hw/loader.h" |
| |
| #include "hw/spapr.h" |
| #include "hw/spapr_vio.h" |
| #include "hw/spapr_pci.h" |
| #include "hw/xics.h" |
| |
| #include "kvm.h" |
| #include "kvm_ppc.h" |
| #include "pci.h" |
| |
| #include "exec-memory.h" |
| |
| #include <libfdt.h> |
| |
| #define KERNEL_LOAD_ADDR 0x00000000 |
| #define INITRD_LOAD_ADDR 0x02800000 |
| #define FDT_MAX_SIZE 0x10000 |
| #define RTAS_MAX_SIZE 0x10000 |
| #define FW_MAX_SIZE 0x400000 |
| #define FW_FILE_NAME "slof.bin" |
| |
| #define MIN_RMA_SLOF 128UL |
| |
| #define TIMEBASE_FREQ 512000000ULL |
| |
| #define MAX_CPUS 256 |
| #define XICS_IRQS 1024 |
| |
| #define SPAPR_PCI_BUID 0x800000020000001ULL |
| #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000) |
| #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000 |
| #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000) |
| |
| #define PHANDLE_XICP 0x00001111 |
| |
| sPAPREnvironment *spapr; |
| |
| qemu_irq spapr_allocate_irq(uint32_t hint, uint32_t *irq_num) |
| { |
| uint32_t irq; |
| qemu_irq qirq; |
| |
| if (hint) { |
| irq = hint; |
| /* FIXME: we should probably check for collisions somehow */ |
| } else { |
| irq = spapr->next_irq++; |
| } |
| |
| qirq = xics_find_qirq(spapr->icp, irq); |
| if (!qirq) { |
| return NULL; |
| } |
| |
| if (irq_num) { |
| *irq_num = irq; |
| } |
| |
| return qirq; |
| } |
| |
| static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr) |
| { |
| int ret = 0, offset; |
| CPUState *env; |
| char cpu_model[32]; |
| int smt = kvmppc_smt_threads(); |
| |
| assert(spapr->cpu_model); |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| uint32_t associativity[] = {cpu_to_be32(0x5), |
| cpu_to_be32(0x0), |
| cpu_to_be32(0x0), |
| cpu_to_be32(0x0), |
| cpu_to_be32(env->numa_node), |
| cpu_to_be32(env->cpu_index)}; |
| |
| if ((env->cpu_index % smt) != 0) { |
| continue; |
| } |
| |
| snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model, |
| env->cpu_index); |
| |
| offset = fdt_path_offset(fdt, cpu_model); |
| if (offset < 0) { |
| return offset; |
| } |
| |
| ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, |
| sizeof(associativity)); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| return ret; |
| } |
| |
| static void *spapr_create_fdt_skel(const char *cpu_model, |
| target_phys_addr_t rma_size, |
| target_phys_addr_t initrd_base, |
| target_phys_addr_t initrd_size, |
| const char *boot_device, |
| const char *kernel_cmdline, |
| long hash_shift) |
| { |
| void *fdt; |
| CPUState *env; |
| uint64_t mem_reg_property[2]; |
| uint32_t start_prop = cpu_to_be32(initrd_base); |
| uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); |
| uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)}; |
| char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt" |
| "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk"; |
| uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)}; |
| int i; |
| char *modelname; |
| int smt = kvmppc_smt_threads(); |
| unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; |
| uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; |
| uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0), |
| cpu_to_be32(0x0), cpu_to_be32(0x0), |
| cpu_to_be32(0x0)}; |
| char mem_name[32]; |
| target_phys_addr_t node0_size, mem_start; |
| |
| #define _FDT(exp) \ |
| do { \ |
| int ret = (exp); \ |
| if (ret < 0) { \ |
| fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ |
| #exp, fdt_strerror(ret)); \ |
| exit(1); \ |
| } \ |
| } while (0) |
| |
| fdt = g_malloc0(FDT_MAX_SIZE); |
| _FDT((fdt_create(fdt, FDT_MAX_SIZE))); |
| |
| _FDT((fdt_finish_reservemap(fdt))); |
| |
| /* Root node */ |
| _FDT((fdt_begin_node(fdt, ""))); |
| _FDT((fdt_property_string(fdt, "device_type", "chrp"))); |
| _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); |
| |
| _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); |
| _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); |
| |
| /* /chosen */ |
| _FDT((fdt_begin_node(fdt, "chosen"))); |
| |
| /* Set Form1_affinity */ |
| _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); |
| |
| _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); |
| _FDT((fdt_property(fdt, "linux,initrd-start", |
| &start_prop, sizeof(start_prop)))); |
| _FDT((fdt_property(fdt, "linux,initrd-end", |
| &end_prop, sizeof(end_prop)))); |
| _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device))); |
| |
| /* |
| * Because we don't always invoke any firmware, we can't rely on |
| * that to do BAR allocation. Long term, we should probably do |
| * that ourselves, but for now, this setting (plus advertising the |
| * current BARs as 0) causes sufficiently recent kernels to to the |
| * BAR assignment themselves */ |
| _FDT((fdt_property_cell(fdt, "linux,pci-probe-only", 0))); |
| |
| _FDT((fdt_end_node(fdt))); |
| |
| /* memory node(s) */ |
| node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; |
| if (rma_size > node0_size) { |
| rma_size = node0_size; |
| } |
| |
| /* RMA */ |
| mem_reg_property[0] = 0; |
| mem_reg_property[1] = cpu_to_be64(rma_size); |
| _FDT((fdt_begin_node(fdt, "memory@0"))); |
| _FDT((fdt_property_string(fdt, "device_type", "memory"))); |
| _FDT((fdt_property(fdt, "reg", mem_reg_property, |
| sizeof(mem_reg_property)))); |
| _FDT((fdt_property(fdt, "ibm,associativity", associativity, |
| sizeof(associativity)))); |
| _FDT((fdt_end_node(fdt))); |
| |
| /* RAM: Node 0 */ |
| if (node0_size > rma_size) { |
| mem_reg_property[0] = cpu_to_be64(rma_size); |
| mem_reg_property[1] = cpu_to_be64(node0_size - rma_size); |
| |
| sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size); |
| _FDT((fdt_begin_node(fdt, mem_name))); |
| _FDT((fdt_property_string(fdt, "device_type", "memory"))); |
| _FDT((fdt_property(fdt, "reg", mem_reg_property, |
| sizeof(mem_reg_property)))); |
| _FDT((fdt_property(fdt, "ibm,associativity", associativity, |
| sizeof(associativity)))); |
| _FDT((fdt_end_node(fdt))); |
| } |
| |
| /* RAM: Node 1 and beyond */ |
| mem_start = node0_size; |
| for (i = 1; i < nb_numa_nodes; i++) { |
| mem_reg_property[0] = cpu_to_be64(mem_start); |
| mem_reg_property[1] = cpu_to_be64(node_mem[i]); |
| associativity[3] = associativity[4] = cpu_to_be32(i); |
| sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start); |
| _FDT((fdt_begin_node(fdt, mem_name))); |
| _FDT((fdt_property_string(fdt, "device_type", "memory"))); |
| _FDT((fdt_property(fdt, "reg", mem_reg_property, |
| sizeof(mem_reg_property)))); |
| _FDT((fdt_property(fdt, "ibm,associativity", associativity, |
| sizeof(associativity)))); |
| _FDT((fdt_end_node(fdt))); |
| mem_start += node_mem[i]; |
| } |
| |
| /* cpus */ |
| _FDT((fdt_begin_node(fdt, "cpus"))); |
| |
| _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); |
| _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); |
| |
| modelname = g_strdup(cpu_model); |
| |
| for (i = 0; i < strlen(modelname); i++) { |
| modelname[i] = toupper(modelname[i]); |
| } |
| |
| /* This is needed during FDT finalization */ |
| spapr->cpu_model = g_strdup(modelname); |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| int index = env->cpu_index; |
| uint32_t servers_prop[smp_threads]; |
| uint32_t gservers_prop[smp_threads * 2]; |
| char *nodename; |
| uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), |
| 0xffffffff, 0xffffffff}; |
| uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; |
| uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; |
| |
| if ((index % smt) != 0) { |
| continue; |
| } |
| |
| if (asprintf(&nodename, "%s@%x", modelname, index) < 0) { |
| fprintf(stderr, "Allocation failure\n"); |
| exit(1); |
| } |
| |
| _FDT((fdt_begin_node(fdt, nodename))); |
| |
| free(nodename); |
| |
| _FDT((fdt_property_cell(fdt, "reg", index))); |
| _FDT((fdt_property_string(fdt, "device_type", "cpu"))); |
| |
| _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR]))); |
| _FDT((fdt_property_cell(fdt, "dcache-block-size", |
| env->dcache_line_size))); |
| _FDT((fdt_property_cell(fdt, "icache-block-size", |
| env->icache_line_size))); |
| _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq))); |
| _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq))); |
| _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr))); |
| _FDT((fdt_property(fdt, "ibm,pft-size", |
| pft_size_prop, sizeof(pft_size_prop)))); |
| _FDT((fdt_property_string(fdt, "status", "okay"))); |
| _FDT((fdt_property(fdt, "64-bit", NULL, 0))); |
| |
| /* Build interrupt servers and gservers properties */ |
| for (i = 0; i < smp_threads; i++) { |
| servers_prop[i] = cpu_to_be32(index + i); |
| /* Hack, direct the group queues back to cpu 0 */ |
| gservers_prop[i*2] = cpu_to_be32(index + i); |
| gservers_prop[i*2 + 1] = 0; |
| } |
| _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s", |
| servers_prop, sizeof(servers_prop)))); |
| _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s", |
| gservers_prop, sizeof(gservers_prop)))); |
| |
| if (env->mmu_model & POWERPC_MMU_1TSEG) { |
| _FDT((fdt_property(fdt, "ibm,processor-segment-sizes", |
| segs, sizeof(segs)))); |
| } |
| |
| /* Advertise VMX/VSX (vector extensions) if available |
| * 0 / no property == no vector extensions |
| * 1 == VMX / Altivec available |
| * 2 == VSX available */ |
| if (env->insns_flags & PPC_ALTIVEC) { |
| uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; |
| |
| _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx))); |
| } |
| |
| /* Advertise DFP (Decimal Floating Point) if available |
| * 0 / no property == no DFP |
| * 1 == DFP available */ |
| if (env->insns_flags2 & PPC2_DFP) { |
| _FDT((fdt_property_cell(fdt, "ibm,dfp", 1))); |
| } |
| |
| _FDT((fdt_end_node(fdt))); |
| } |
| |
| g_free(modelname); |
| |
| _FDT((fdt_end_node(fdt))); |
| |
| /* RTAS */ |
| _FDT((fdt_begin_node(fdt, "rtas"))); |
| |
| _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop, |
| sizeof(hypertas_prop)))); |
| |
| _FDT((fdt_property(fdt, "ibm,associativity-reference-points", |
| refpoints, sizeof(refpoints)))); |
| |
| _FDT((fdt_end_node(fdt))); |
| |
| /* interrupt controller */ |
| _FDT((fdt_begin_node(fdt, "interrupt-controller"))); |
| |
| _FDT((fdt_property_string(fdt, "device_type", |
| "PowerPC-External-Interrupt-Presentation"))); |
| _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); |
| _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); |
| _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", |
| interrupt_server_ranges_prop, |
| sizeof(interrupt_server_ranges_prop)))); |
| _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); |
| _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); |
| _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); |
| |
| _FDT((fdt_end_node(fdt))); |
| |
| /* vdevice */ |
| _FDT((fdt_begin_node(fdt, "vdevice"))); |
| |
| _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); |
| _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); |
| _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); |
| _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); |
| _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); |
| _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); |
| |
| _FDT((fdt_end_node(fdt))); |
| |
| _FDT((fdt_end_node(fdt))); /* close root node */ |
| _FDT((fdt_finish(fdt))); |
| |
| return fdt; |
| } |
| |
| static void spapr_finalize_fdt(sPAPREnvironment *spapr, |
| target_phys_addr_t fdt_addr, |
| target_phys_addr_t rtas_addr, |
| target_phys_addr_t rtas_size) |
| { |
| int ret; |
| void *fdt; |
| sPAPRPHBState *phb; |
| |
| fdt = g_malloc(FDT_MAX_SIZE); |
| |
| /* open out the base tree into a temp buffer for the final tweaks */ |
| _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); |
| |
| ret = spapr_populate_vdevice(spapr->vio_bus, fdt); |
| if (ret < 0) { |
| fprintf(stderr, "couldn't setup vio devices in fdt\n"); |
| exit(1); |
| } |
| |
| QLIST_FOREACH(phb, &spapr->phbs, list) { |
| ret = spapr_populate_pci_devices(phb, PHANDLE_XICP, fdt); |
| } |
| |
| if (ret < 0) { |
| fprintf(stderr, "couldn't setup PCI devices in fdt\n"); |
| exit(1); |
| } |
| |
| /* RTAS */ |
| ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); |
| if (ret < 0) { |
| fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); |
| } |
| |
| /* Advertise NUMA via ibm,associativity */ |
| if (nb_numa_nodes > 1) { |
| ret = spapr_set_associativity(fdt, spapr); |
| if (ret < 0) { |
| fprintf(stderr, "Couldn't set up NUMA device tree properties\n"); |
| } |
| } |
| |
| spapr_populate_chosen_stdout(fdt, spapr->vio_bus); |
| |
| _FDT((fdt_pack(fdt))); |
| |
| cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); |
| |
| g_free(fdt); |
| } |
| |
| static uint64_t translate_kernel_address(void *opaque, uint64_t addr) |
| { |
| return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; |
| } |
| |
| static void emulate_spapr_hypercall(CPUState *env) |
| { |
| env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]); |
| } |
| |
| static void spapr_reset(void *opaque) |
| { |
| sPAPREnvironment *spapr = (sPAPREnvironment *)opaque; |
| |
| fprintf(stderr, "sPAPR reset\n"); |
| |
| /* flush out the hash table */ |
| memset(spapr->htab, 0, spapr->htab_size); |
| |
| /* Load the fdt */ |
| spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, |
| spapr->rtas_size); |
| |
| /* Set up the entry state */ |
| first_cpu->gpr[3] = spapr->fdt_addr; |
| first_cpu->gpr[5] = 0; |
| first_cpu->halted = 0; |
| first_cpu->nip = spapr->entry_point; |
| |
| } |
| |
| /* pSeries LPAR / sPAPR hardware init */ |
| static void ppc_spapr_init(ram_addr_t ram_size, |
| const char *boot_device, |
| const char *kernel_filename, |
| const char *kernel_cmdline, |
| const char *initrd_filename, |
| const char *cpu_model) |
| { |
| CPUState *env; |
| int i; |
| MemoryRegion *sysmem = get_system_memory(); |
| MemoryRegion *ram = g_new(MemoryRegion, 1); |
| target_phys_addr_t rma_alloc_size, rma_size; |
| uint32_t initrd_base; |
| long kernel_size, initrd_size, fw_size; |
| long pteg_shift = 17; |
| char *filename; |
| |
| spapr = g_malloc0(sizeof(*spapr)); |
| QLIST_INIT(&spapr->phbs); |
| |
| cpu_ppc_hypercall = emulate_spapr_hypercall; |
| |
| /* Allocate RMA if necessary */ |
| rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem); |
| |
| if (rma_alloc_size == -1) { |
| hw_error("qemu: Unable to create RMA\n"); |
| exit(1); |
| } |
| if (rma_alloc_size && (rma_alloc_size < ram_size)) { |
| rma_size = rma_alloc_size; |
| } else { |
| rma_size = ram_size; |
| } |
| |
| /* We place the device tree just below either the top of the RMA, |
| * or just below 2GB, whichever is lowere, so that it can be |
| * processed with 32-bit real mode code if necessary */ |
| spapr->fdt_addr = MIN(rma_size, 0x80000000) - FDT_MAX_SIZE; |
| spapr->rtas_addr = spapr->fdt_addr - RTAS_MAX_SIZE; |
| |
| /* init CPUs */ |
| if (cpu_model == NULL) { |
| cpu_model = kvm_enabled() ? "host" : "POWER7"; |
| } |
| for (i = 0; i < smp_cpus; i++) { |
| env = cpu_init(cpu_model); |
| |
| if (!env) { |
| fprintf(stderr, "Unable to find PowerPC CPU definition\n"); |
| exit(1); |
| } |
| /* Set time-base frequency to 512 MHz */ |
| cpu_ppc_tb_init(env, TIMEBASE_FREQ); |
| qemu_register_reset((QEMUResetHandler *)&cpu_reset, env); |
| |
| env->hreset_vector = 0x60; |
| env->hreset_excp_prefix = 0; |
| env->gpr[3] = env->cpu_index; |
| } |
| |
| /* allocate RAM */ |
| spapr->ram_limit = ram_size; |
| if (spapr->ram_limit > rma_alloc_size) { |
| ram_addr_t nonrma_base = rma_alloc_size; |
| ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size; |
| |
| memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size); |
| vmstate_register_ram_global(ram); |
| memory_region_add_subregion(sysmem, nonrma_base, ram); |
| } |
| |
| /* allocate hash page table. For now we always make this 16mb, |
| * later we should probably make it scale to the size of guest |
| * RAM */ |
| spapr->htab_size = 1ULL << (pteg_shift + 7); |
| spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size); |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| env->external_htab = spapr->htab; |
| env->htab_base = -1; |
| env->htab_mask = spapr->htab_size - 1; |
| |
| /* Tell KVM that we're in PAPR mode */ |
| env->spr[SPR_SDR1] = (unsigned long)spapr->htab | |
| ((pteg_shift + 7) - 18); |
| env->spr[SPR_HIOR] = 0; |
| |
| if (kvm_enabled()) { |
| kvmppc_set_papr(env); |
| } |
| } |
| |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); |
| spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr, |
| ram_size - spapr->rtas_addr); |
| if (spapr->rtas_size < 0) { |
| hw_error("qemu: could not load LPAR rtas '%s'\n", filename); |
| exit(1); |
| } |
| g_free(filename); |
| |
| /* Set up Interrupt Controller */ |
| spapr->icp = xics_system_init(XICS_IRQS); |
| spapr->next_irq = 16; |
| |
| /* Set up VIO bus */ |
| spapr->vio_bus = spapr_vio_bus_init(); |
| |
| for (i = 0; i < MAX_SERIAL_PORTS; i++) { |
| if (serial_hds[i]) { |
| spapr_vty_create(spapr->vio_bus, SPAPR_VTY_BASE_ADDRESS + i, |
| serial_hds[i]); |
| } |
| } |
| |
| /* Set up PCI */ |
| spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID, |
| SPAPR_PCI_MEM_WIN_ADDR, |
| SPAPR_PCI_MEM_WIN_SIZE, |
| SPAPR_PCI_IO_WIN_ADDR); |
| |
| for (i = 0; i < nb_nics; i++) { |
| NICInfo *nd = &nd_table[i]; |
| |
| if (!nd->model) { |
| nd->model = g_strdup("ibmveth"); |
| } |
| |
| if (strcmp(nd->model, "ibmveth") == 0) { |
| spapr_vlan_create(spapr->vio_bus, 0x1000 + i, nd); |
| } else { |
| pci_nic_init_nofail(&nd_table[i], nd->model, NULL); |
| } |
| } |
| |
| for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { |
| spapr_vscsi_create(spapr->vio_bus, 0x2000 + i); |
| } |
| |
| if (kernel_filename) { |
| uint64_t lowaddr = 0; |
| |
| kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, |
| NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0); |
| if (kernel_size < 0) { |
| kernel_size = load_image_targphys(kernel_filename, |
| KERNEL_LOAD_ADDR, |
| ram_size - KERNEL_LOAD_ADDR); |
| } |
| if (kernel_size < 0) { |
| fprintf(stderr, "qemu: could not load kernel '%s'\n", |
| kernel_filename); |
| exit(1); |
| } |
| |
| /* load initrd */ |
| if (initrd_filename) { |
| initrd_base = INITRD_LOAD_ADDR; |
| initrd_size = load_image_targphys(initrd_filename, initrd_base, |
| ram_size - initrd_base); |
| if (initrd_size < 0) { |
| fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", |
| initrd_filename); |
| exit(1); |
| } |
| } else { |
| initrd_base = 0; |
| initrd_size = 0; |
| } |
| |
| spapr->entry_point = KERNEL_LOAD_ADDR; |
| } else { |
| if (rma_size < (MIN_RMA_SLOF << 20)) { |
| fprintf(stderr, "qemu: pSeries SLOF firmware requires >= " |
| "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF); |
| exit(1); |
| } |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME); |
| fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); |
| if (fw_size < 0) { |
| hw_error("qemu: could not load LPAR rtas '%s'\n", filename); |
| exit(1); |
| } |
| g_free(filename); |
| spapr->entry_point = 0x100; |
| initrd_base = 0; |
| initrd_size = 0; |
| |
| /* SLOF will startup the secondary CPUs using RTAS, |
| rather than expecting a kexec() style entry */ |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| env->halted = 1; |
| } |
| } |
| |
| /* Prepare the device tree */ |
| spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size, |
| initrd_base, initrd_size, |
| boot_device, kernel_cmdline, |
| pteg_shift + 7); |
| assert(spapr->fdt_skel != NULL); |
| |
| qemu_register_reset(spapr_reset, spapr); |
| } |
| |
| static QEMUMachine spapr_machine = { |
| .name = "pseries", |
| .desc = "pSeries Logical Partition (PAPR compliant)", |
| .init = ppc_spapr_init, |
| .max_cpus = MAX_CPUS, |
| .no_vga = 1, |
| .no_parallel = 1, |
| .use_scsi = 1, |
| }; |
| |
| static void spapr_machine_init(void) |
| { |
| qemu_register_machine(&spapr_machine); |
| } |
| |
| machine_init(spapr_machine_init); |