blob: 2a0e2ed1d071da1a78150652b1e1750102586071 [file] [log] [blame]
/*
* ARM SBSA Reference Platform emulation
*
* Copyright (c) 2018 Linaro Limited
* Written by Hongbo Zhang <hongbo.zhang@linaro.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/units.h"
#include "sysemu/device_tree.h"
#include "sysemu/numa.h"
#include "sysemu/sysemu.h"
#include "exec/address-spaces.h"
#include "exec/hwaddr.h"
#include "kvm_arm.h"
#include "hw/arm/boot.h"
#include "hw/block/flash.h"
#include "hw/boards.h"
#include "hw/ide/internal.h"
#include "hw/ide/ahci_internal.h"
#include "hw/intc/arm_gicv3_common.h"
#include "hw/loader.h"
#include "hw/pci-host/gpex.h"
#include "hw/qdev-properties.h"
#include "hw/usb.h"
#include "net/net.h"
#define RAMLIMIT_GB 8192
#define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
#define NUM_IRQS 256
#define NUM_SMMU_IRQS 4
#define NUM_SATA_PORTS 6
#define VIRTUAL_PMU_IRQ 7
#define ARCH_GIC_MAINT_IRQ 9
#define ARCH_TIMER_VIRT_IRQ 11
#define ARCH_TIMER_S_EL1_IRQ 13
#define ARCH_TIMER_NS_EL1_IRQ 14
#define ARCH_TIMER_NS_EL2_IRQ 10
enum {
SBSA_FLASH,
SBSA_MEM,
SBSA_CPUPERIPHS,
SBSA_GIC_DIST,
SBSA_GIC_REDIST,
SBSA_SMMU,
SBSA_UART,
SBSA_RTC,
SBSA_PCIE,
SBSA_PCIE_MMIO,
SBSA_PCIE_MMIO_HIGH,
SBSA_PCIE_PIO,
SBSA_PCIE_ECAM,
SBSA_GPIO,
SBSA_SECURE_UART,
SBSA_SECURE_UART_MM,
SBSA_SECURE_MEM,
SBSA_AHCI,
SBSA_EHCI,
};
typedef struct MemMapEntry {
hwaddr base;
hwaddr size;
} MemMapEntry;
typedef struct {
MachineState parent;
struct arm_boot_info bootinfo;
int smp_cpus;
void *fdt;
int fdt_size;
int psci_conduit;
PFlashCFI01 *flash[2];
} SBSAMachineState;
#define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref")
#define SBSA_MACHINE(obj) \
OBJECT_CHECK(SBSAMachineState, (obj), TYPE_SBSA_MACHINE)
static const MemMapEntry sbsa_ref_memmap[] = {
/* 512M boot ROM */
[SBSA_FLASH] = { 0, 0x20000000 },
/* 512M secure memory */
[SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 },
/* Space reserved for CPU peripheral devices */
[SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 },
[SBSA_GIC_DIST] = { 0x40060000, 0x00010000 },
[SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 },
[SBSA_UART] = { 0x60000000, 0x00001000 },
[SBSA_RTC] = { 0x60010000, 0x00001000 },
[SBSA_GPIO] = { 0x60020000, 0x00001000 },
[SBSA_SECURE_UART] = { 0x60030000, 0x00001000 },
[SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 },
[SBSA_SMMU] = { 0x60050000, 0x00020000 },
/* Space here reserved for more SMMUs */
[SBSA_AHCI] = { 0x60100000, 0x00010000 },
[SBSA_EHCI] = { 0x60110000, 0x00010000 },
/* Space here reserved for other devices */
[SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 },
/* 32-bit address PCIE MMIO space */
[SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 },
/* 256M PCIE ECAM space */
[SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 },
/* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
[SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL },
[SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES },
};
static const int sbsa_ref_irqmap[] = {
[SBSA_UART] = 1,
[SBSA_RTC] = 2,
[SBSA_PCIE] = 3, /* ... to 6 */
[SBSA_GPIO] = 7,
[SBSA_SECURE_UART] = 8,
[SBSA_SECURE_UART_MM] = 9,
[SBSA_AHCI] = 10,
[SBSA_EHCI] = 11,
};
/*
* Firmware on this machine only uses ACPI table to load OS, these limited
* device tree nodes are just to let firmware know the info which varies from
* command line parameters, so it is not necessary to be fully compatible
* with the kernel CPU and NUMA binding rules.
*/
static void create_fdt(SBSAMachineState *sms)
{
void *fdt = create_device_tree(&sms->fdt_size);
const MachineState *ms = MACHINE(sms);
int cpu;
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
sms->fdt = fdt;
qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
if (have_numa_distance) {
int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
uint32_t *matrix = g_malloc0(size);
int idx, i, j;
for (i = 0; i < nb_numa_nodes; i++) {
for (j = 0; j < nb_numa_nodes; j++) {
idx = (i * nb_numa_nodes + j) * 3;
matrix[idx + 0] = cpu_to_be32(i);
matrix[idx + 1] = cpu_to_be32(j);
matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
}
}
qemu_fdt_add_subnode(fdt, "/distance-map");
qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
matrix, size);
g_free(matrix);
}
qemu_fdt_add_subnode(sms->fdt, "/cpus");
for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
CPUState *cs = CPU(armcpu);
qemu_fdt_add_subnode(sms->fdt, nodename);
if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
}
g_free(nodename);
}
}
#define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
const char *name,
const char *alias_prop_name)
{
/*
* Create a single flash device. We use the same parameters as
* the flash devices on the Versatile Express board.
*/
DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
qdev_prop_set_uint8(dev, "width", 4);
qdev_prop_set_uint8(dev, "device-width", 2);
qdev_prop_set_bit(dev, "big-endian", false);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x00);
qdev_prop_set_uint16(dev, "id3", 0x00);
qdev_prop_set_string(dev, "name", name);
object_property_add_child(OBJECT(sms), name, OBJECT(dev),
&error_abort);
object_property_add_alias(OBJECT(sms), alias_prop_name,
OBJECT(dev), "drive", &error_abort);
return PFLASH_CFI01(dev);
}
static void sbsa_flash_create(SBSAMachineState *sms)
{
sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
}
static void sbsa_flash_map1(PFlashCFI01 *flash,
hwaddr base, hwaddr size,
MemoryRegion *sysmem)
{
DeviceState *dev = DEVICE(flash);
assert(size % SBSA_FLASH_SECTOR_SIZE == 0);
assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
qdev_init_nofail(dev);
memory_region_add_subregion(sysmem, base,
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
0));
}
static void sbsa_flash_map(SBSAMachineState *sms,
MemoryRegion *sysmem,
MemoryRegion *secure_sysmem)
{
/*
* Map two flash devices to fill the SBSA_FLASH space in the memmap.
* sysmem is the system memory space. secure_sysmem is the secure view
* of the system, and the first flash device should be made visible only
* there. The second flash device is visible to both secure and nonsecure.
*/
hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
secure_sysmem);
sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
sysmem);
}
static bool sbsa_firmware_init(SBSAMachineState *sms,
MemoryRegion *sysmem,
MemoryRegion *secure_sysmem)
{
int i;
BlockBackend *pflash_blk0;
/* Map legacy -drive if=pflash to machine properties */
for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
pflash_cfi01_legacy_drive(sms->flash[i],
drive_get(IF_PFLASH, 0, i));
}
sbsa_flash_map(sms, sysmem, secure_sysmem);
pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
if (bios_name) {
char *fname;
MemoryRegion *mr;
int image_size;
if (pflash_blk0) {
error_report("The contents of the first flash device may be "
"specified with -bios or with -drive if=pflash... "
"but you cannot use both options at once");
exit(1);
}
/* Fall back to -bios */
fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (!fname) {
error_report("Could not find ROM image '%s'", bios_name);
exit(1);
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
image_size = load_image_mr(fname, mr);
g_free(fname);
if (image_size < 0) {
error_report("Could not load ROM image '%s'", bios_name);
exit(1);
}
}
return pflash_blk0 || bios_name;
}
static void create_secure_ram(SBSAMachineState *sms,
MemoryRegion *secure_sysmem)
{
MemoryRegion *secram = g_new(MemoryRegion, 1);
hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
&error_fatal);
memory_region_add_subregion(secure_sysmem, base, secram);
}
static void create_gic(SBSAMachineState *sms, qemu_irq *pic)
{
unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
DeviceState *gicdev;
SysBusDevice *gicbusdev;
const char *gictype;
uint32_t redist0_capacity, redist0_count;
int i;
gictype = gicv3_class_name();
gicdev = qdev_create(NULL, gictype);
qdev_prop_set_uint32(gicdev, "revision", 3);
qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
/*
* Note that the num-irq property counts both internal and external
* interrupts; there are always 32 of the former (mandated by GIC spec).
*/
qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
qdev_prop_set_bit(gicdev, "has-security-extensions", true);
redist0_capacity =
sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
redist0_count = MIN(smp_cpus, redist0_capacity);
qdev_prop_set_uint32(gicdev, "len-redist-region-count", 1);
qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
qdev_init_nofail(gicdev);
gicbusdev = SYS_BUS_DEVICE(gicdev);
sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
/*
* Wire the outputs from each CPU's generic timer and the GICv3
* maintenance interrupt signal to the appropriate GIC PPI inputs,
* and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
*/
for (i = 0; i < smp_cpus; i++) {
DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
int irq;
/*
* Mapping from the output timer irq lines from the CPU to the
* GIC PPI inputs used for this board.
*/
const int timer_irq[] = {
[GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
[GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
[GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
[GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
};
for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
qdev_connect_gpio_out(cpudev, irq,
qdev_get_gpio_in(gicdev,
ppibase + timer_irq[irq]));
}
qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
qdev_get_gpio_in(gicdev, ppibase
+ ARCH_GIC_MAINT_IRQ));
qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
qdev_get_gpio_in(gicdev, ppibase
+ VIRTUAL_PMU_IRQ));
sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
sysbus_connect_irq(gicbusdev, i + smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
}
for (i = 0; i < NUM_IRQS; i++) {
pic[i] = qdev_get_gpio_in(gicdev, i);
}
}
static void create_uart(const SBSAMachineState *sms, qemu_irq *pic, int uart,
MemoryRegion *mem, Chardev *chr)
{
hwaddr base = sbsa_ref_memmap[uart].base;
int irq = sbsa_ref_irqmap[uart];
DeviceState *dev = qdev_create(NULL, "pl011");
SysBusDevice *s = SYS_BUS_DEVICE(dev);
qdev_prop_set_chr(dev, "chardev", chr);
qdev_init_nofail(dev);
memory_region_add_subregion(mem, base,
sysbus_mmio_get_region(s, 0));
sysbus_connect_irq(s, 0, pic[irq]);
}
static void create_rtc(const SBSAMachineState *sms, qemu_irq *pic)
{
hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
int irq = sbsa_ref_irqmap[SBSA_RTC];
sysbus_create_simple("pl031", base, pic[irq]);
}
static DeviceState *gpio_key_dev;
static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
{
/* use gpio Pin 3 for power button event */
qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
}
static Notifier sbsa_ref_powerdown_notifier = {
.notify = sbsa_ref_powerdown_req
};
static void create_gpio(const SBSAMachineState *sms, qemu_irq *pic)
{
DeviceState *pl061_dev;
hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
int irq = sbsa_ref_irqmap[SBSA_GPIO];
pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
gpio_key_dev = sysbus_create_simple("gpio-key", -1,
qdev_get_gpio_in(pl061_dev, 3));
/* connect powerdown request */
qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
}
static void create_ahci(const SBSAMachineState *sms, qemu_irq *pic)
{
hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
int irq = sbsa_ref_irqmap[SBSA_AHCI];
DeviceState *dev;
DriveInfo *hd[NUM_SATA_PORTS];
SysbusAHCIState *sysahci;
AHCIState *ahci;
int i;
dev = qdev_create(NULL, "sysbus-ahci");
qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, pic[irq]);
sysahci = SYSBUS_AHCI(dev);
ahci = &sysahci->ahci;
ide_drive_get(hd, ARRAY_SIZE(hd));
for (i = 0; i < ahci->ports; i++) {
if (hd[i] == NULL) {
continue;
}
ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
}
}
static void create_ehci(const SBSAMachineState *sms, qemu_irq *pic)
{
hwaddr base = sbsa_ref_memmap[SBSA_EHCI].base;
int irq = sbsa_ref_irqmap[SBSA_EHCI];
sysbus_create_simple("platform-ehci-usb", base, pic[irq]);
}
static void create_smmu(const SBSAMachineState *sms, qemu_irq *pic,
PCIBus *bus)
{
hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
int irq = sbsa_ref_irqmap[SBSA_SMMU];
DeviceState *dev;
int i;
dev = qdev_create(NULL, "arm-smmuv3");
object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
&error_abort);
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
for (i = 0; i < NUM_SMMU_IRQS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
}
}
static void create_pcie(SBSAMachineState *sms, qemu_irq *pic)
{
hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
int irq = sbsa_ref_irqmap[SBSA_PCIE];
MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
MemoryRegion *ecam_alias, *ecam_reg;
DeviceState *dev;
PCIHostState *pci;
int i;
dev = qdev_create(NULL, TYPE_GPEX_HOST);
qdev_init_nofail(dev);
/* Map ECAM space */
ecam_alias = g_new0(MemoryRegion, 1);
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
ecam_reg, 0, size_ecam);
memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
/* Map the MMIO space */
mmio_alias = g_new0(MemoryRegion, 1);
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
mmio_reg, base_mmio, size_mmio);
memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
/* Map the MMIO_HIGH space */
mmio_alias_high = g_new0(MemoryRegion, 1);
memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
mmio_reg, base_mmio_high, size_mmio_high);
memory_region_add_subregion(get_system_memory(), base_mmio_high,
mmio_alias_high);
/* Map IO port space */
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
for (i = 0; i < GPEX_NUM_IRQS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
}
pci = PCI_HOST_BRIDGE(dev);
if (pci->bus) {
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!nd->model) {
nd->model = g_strdup("e1000e");
}
pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
}
}
pci_create_simple(pci->bus, -1, "VGA");
create_smmu(sms, pic, pci->bus);
}
static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
{
const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
bootinfo);
*fdt_size = board->fdt_size;
return board->fdt;
}
static void sbsa_ref_init(MachineState *machine)
{
unsigned int smp_cpus = machine->smp.cpus;
unsigned int max_cpus = machine->smp.max_cpus;
SBSAMachineState *sms = SBSA_MACHINE(machine);
MachineClass *mc = MACHINE_GET_CLASS(machine);
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
MemoryRegion *ram = g_new(MemoryRegion, 1);
bool firmware_loaded;
const CPUArchIdList *possible_cpus;
int n, sbsa_max_cpus;
qemu_irq pic[NUM_IRQS];
if (strcmp(machine->cpu_type, ARM_CPU_TYPE_NAME("cortex-a57"))) {
error_report("sbsa-ref: CPU type other than the built-in "
"cortex-a57 not supported");
exit(1);
}
if (kvm_enabled()) {
error_report("sbsa-ref: KVM is not supported for this machine");
exit(1);
}
/*
* The Secure view of the world is the same as the NonSecure,
* but with a few extra devices. Create it as a container region
* containing the system memory at low priority; any secure-only
* devices go in at higher priority and take precedence.
*/
memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
UINT64_MAX);
memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
if (machine->kernel_filename && firmware_loaded) {
error_report("sbsa-ref: No fw_cfg device on this machine, "
"so -kernel option is not supported when firmware loaded, "
"please load OS from hard disk instead");
exit(1);
}
/*
* This machine has EL3 enabled, external firmware should supply PSCI
* implementation, so the QEMU's internal PSCI is disabled.
*/
sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
if (max_cpus > sbsa_max_cpus) {
error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
"supported by machine 'sbsa-ref' (%d)",
max_cpus, sbsa_max_cpus);
exit(1);
}
sms->smp_cpus = smp_cpus;
if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
exit(1);
}
possible_cpus = mc->possible_cpu_arch_ids(machine);
for (n = 0; n < possible_cpus->len; n++) {
Object *cpuobj;
CPUState *cs;
if (n >= smp_cpus) {
break;
}
cpuobj = object_new(possible_cpus->cpus[n].type);
object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
"mp-affinity", NULL);
cs = CPU(cpuobj);
cs->cpu_index = n;
numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
&error_fatal);
if (object_property_find(cpuobj, "reset-cbar", NULL)) {
object_property_set_int(cpuobj,
sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
"reset-cbar", &error_abort);
}
object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
&error_abort);
object_property_set_link(cpuobj, OBJECT(secure_sysmem),
"secure-memory", &error_abort);
object_property_set_bool(cpuobj, true, "realized", &error_fatal);
object_unref(cpuobj);
}
memory_region_allocate_system_memory(ram, NULL, "sbsa-ref.ram",
machine->ram_size);
memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base, ram);
create_fdt(sms);
create_secure_ram(sms, secure_sysmem);
create_gic(sms, pic);
create_uart(sms, pic, SBSA_UART, sysmem, serial_hd(0));
create_uart(sms, pic, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
/* Second secure UART for RAS and MM from EL0 */
create_uart(sms, pic, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
create_rtc(sms, pic);
create_gpio(sms, pic);
create_ahci(sms, pic);
create_ehci(sms, pic);
create_pcie(sms, pic);
sms->bootinfo.ram_size = machine->ram_size;
sms->bootinfo.kernel_filename = machine->kernel_filename;
sms->bootinfo.nb_cpus = smp_cpus;
sms->bootinfo.board_id = -1;
sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
sms->bootinfo.get_dtb = sbsa_ref_dtb;
sms->bootinfo.firmware_loaded = firmware_loaded;
arm_load_kernel(ARM_CPU(first_cpu), &sms->bootinfo);
}
static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
{
uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
return arm_cpu_mp_affinity(idx, clustersz);
}
static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
{
unsigned int max_cpus = ms->smp.max_cpus;
SBSAMachineState *sms = SBSA_MACHINE(ms);
int n;
if (ms->possible_cpus) {
assert(ms->possible_cpus->len == max_cpus);
return ms->possible_cpus;
}
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * max_cpus);
ms->possible_cpus->len = max_cpus;
for (n = 0; n < ms->possible_cpus->len; n++) {
ms->possible_cpus->cpus[n].type = ms->cpu_type;
ms->possible_cpus->cpus[n].arch_id =
sbsa_ref_cpu_mp_affinity(sms, n);
ms->possible_cpus->cpus[n].props.has_thread_id = true;
ms->possible_cpus->cpus[n].props.thread_id = n;
}
return ms->possible_cpus;
}
static CpuInstanceProperties
sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
assert(cpu_index < possible_cpus->len);
return possible_cpus->cpus[cpu_index].props;
}
static int64_t
sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
{
return idx % nb_numa_nodes;
}
static void sbsa_ref_instance_init(Object *obj)
{
SBSAMachineState *sms = SBSA_MACHINE(obj);
sbsa_flash_create(sms);
}
static void sbsa_ref_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->init = sbsa_ref_init;
mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a57");
mc->max_cpus = 512;
mc->pci_allow_0_address = true;
mc->minimum_page_bits = 12;
mc->block_default_type = IF_IDE;
mc->no_cdrom = 1;
mc->default_ram_size = 1 * GiB;
mc->default_cpus = 4;
mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
}
static const TypeInfo sbsa_ref_info = {
.name = TYPE_SBSA_MACHINE,
.parent = TYPE_MACHINE,
.instance_init = sbsa_ref_instance_init,
.class_init = sbsa_ref_class_init,
.instance_size = sizeof(SBSAMachineState),
};
static void sbsa_ref_machine_init(void)
{
type_register_static(&sbsa_ref_info);
}
type_init(sbsa_ref_machine_init);