blob: 2bf87d2d5ea3e91366ba71fe2bc7f6c7c4580f0d [file] [log] [blame]
/*
* QEMU System Emulator
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* Needed early for CONFIG_BSD etc. */
#include "config-host.h"
#include "monitor.h"
#include "sysemu.h"
#include "gdbstub.h"
#include "dma.h"
#include "kvm.h"
#include "cpus.h"
#ifdef SIGRTMIN
#define SIG_IPI (SIGRTMIN+4)
#else
#define SIG_IPI SIGUSR1
#endif
static CPUState *cur_cpu;
static CPUState *next_cpu;
/***********************************************************/
void hw_error(const char *fmt, ...)
{
va_list ap;
CPUState *env;
va_start(ap, fmt);
fprintf(stderr, "qemu: hardware error: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
for(env = first_cpu; env != NULL; env = env->next_cpu) {
fprintf(stderr, "CPU #%d:\n", env->cpu_index);
#ifdef TARGET_I386
cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
#else
cpu_dump_state(env, stderr, fprintf, 0);
#endif
}
va_end(ap);
abort();
}
void cpu_synchronize_all_states(void)
{
CPUState *cpu;
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_state(cpu);
}
}
void cpu_synchronize_all_post_reset(void)
{
CPUState *cpu;
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_post_reset(cpu);
}
}
void cpu_synchronize_all_post_init(void)
{
CPUState *cpu;
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_post_init(cpu);
}
}
static void do_vm_stop(int reason)
{
if (vm_running) {
cpu_disable_ticks();
vm_running = 0;
pause_all_vcpus();
vm_state_notify(0, reason);
monitor_protocol_event(QEVENT_STOP, NULL);
}
}
static int cpu_can_run(CPUState *env)
{
if (env->stop)
return 0;
if (env->stopped || !vm_running)
return 0;
return 1;
}
static int cpu_has_work(CPUState *env)
{
if (env->stop)
return 1;
if (env->stopped || !vm_running)
return 0;
if (!env->halted)
return 1;
if (qemu_cpu_has_work(env))
return 1;
return 0;
}
static int tcg_has_work(void)
{
CPUState *env;
for (env = first_cpu; env != NULL; env = env->next_cpu)
if (cpu_has_work(env))
return 1;
return 0;
}
#ifndef _WIN32
static int io_thread_fd = -1;
static void qemu_event_increment(void)
{
/* Write 8 bytes to be compatible with eventfd. */
static uint64_t val = 1;
ssize_t ret;
if (io_thread_fd == -1)
return;
do {
ret = write(io_thread_fd, &val, sizeof(val));
} while (ret < 0 && errno == EINTR);
/* EAGAIN is fine, a read must be pending. */
if (ret < 0 && errno != EAGAIN) {
fprintf(stderr, "qemu_event_increment: write() filed: %s\n",
strerror(errno));
exit (1);
}
}
static void qemu_event_read(void *opaque)
{
int fd = (unsigned long)opaque;
ssize_t len;
char buffer[512];
/* Drain the notify pipe. For eventfd, only 8 bytes will be read. */
do {
len = read(fd, buffer, sizeof(buffer));
} while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
}
static int qemu_event_init(void)
{
int err;
int fds[2];
err = qemu_eventfd(fds);
if (err == -1)
return -errno;
err = fcntl_setfl(fds[0], O_NONBLOCK);
if (err < 0)
goto fail;
err = fcntl_setfl(fds[1], O_NONBLOCK);
if (err < 0)
goto fail;
qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
(void *)(unsigned long)fds[0]);
io_thread_fd = fds[1];
return 0;
fail:
close(fds[0]);
close(fds[1]);
return err;
}
#else
HANDLE qemu_event_handle;
static void dummy_event_handler(void *opaque)
{
}
static int qemu_event_init(void)
{
qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
if (!qemu_event_handle) {
fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
return -1;
}
qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
return 0;
}
static void qemu_event_increment(void)
{
if (!SetEvent(qemu_event_handle)) {
fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
GetLastError());
exit (1);
}
}
#endif
#ifndef CONFIG_IOTHREAD
int qemu_init_main_loop(void)
{
return qemu_event_init();
}
void qemu_main_loop_start(void)
{
}
void qemu_init_vcpu(void *_env)
{
CPUState *env = _env;
env->nr_cores = smp_cores;
env->nr_threads = smp_threads;
if (kvm_enabled())
kvm_init_vcpu(env);
return;
}
int qemu_cpu_self(void *env)
{
return 1;
}
void resume_all_vcpus(void)
{
}
void pause_all_vcpus(void)
{
}
void qemu_cpu_kick(void *env)
{
return;
}
void qemu_notify_event(void)
{
CPUState *env = cpu_single_env;
qemu_event_increment ();
if (env) {
cpu_exit(env);
}
if (next_cpu && env != next_cpu) {
cpu_exit(next_cpu);
}
}
void qemu_mutex_lock_iothread(void) {}
void qemu_mutex_unlock_iothread(void) {}
void vm_stop(int reason)
{
do_vm_stop(reason);
}
#else /* CONFIG_IOTHREAD */
#include "qemu-thread.h"
QemuMutex qemu_global_mutex;
static QemuMutex qemu_fair_mutex;
static QemuThread io_thread;
static QemuThread *tcg_cpu_thread;
static QemuCond *tcg_halt_cond;
static int qemu_system_ready;
/* cpu creation */
static QemuCond qemu_cpu_cond;
/* system init */
static QemuCond qemu_system_cond;
static QemuCond qemu_pause_cond;
static void tcg_block_io_signals(void);
static void kvm_block_io_signals(CPUState *env);
static void unblock_io_signals(void);
int qemu_init_main_loop(void)
{
int ret;
ret = qemu_event_init();
if (ret)
return ret;
qemu_cond_init(&qemu_pause_cond);
qemu_mutex_init(&qemu_fair_mutex);
qemu_mutex_init(&qemu_global_mutex);
qemu_mutex_lock(&qemu_global_mutex);
unblock_io_signals();
qemu_thread_self(&io_thread);
return 0;
}
void qemu_main_loop_start(void)
{
qemu_system_ready = 1;
qemu_cond_broadcast(&qemu_system_cond);
}
static void qemu_wait_io_event_common(CPUState *env)
{
if (env->stop) {
env->stop = 0;
env->stopped = 1;
qemu_cond_signal(&qemu_pause_cond);
}
}
static void qemu_wait_io_event(CPUState *env)
{
while (!tcg_has_work())
qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
qemu_mutex_unlock(&qemu_global_mutex);
/*
* Users of qemu_global_mutex can be starved, having no chance
* to acquire it since this path will get to it first.
* So use another lock to provide fairness.
*/
qemu_mutex_lock(&qemu_fair_mutex);
qemu_mutex_unlock(&qemu_fair_mutex);
qemu_mutex_lock(&qemu_global_mutex);
qemu_wait_io_event_common(env);
}
static void qemu_kvm_eat_signal(CPUState *env, int timeout)
{
struct timespec ts;
int r, e;
siginfo_t siginfo;
sigset_t waitset;
ts.tv_sec = timeout / 1000;
ts.tv_nsec = (timeout % 1000) * 1000000;
sigemptyset(&waitset);
sigaddset(&waitset, SIG_IPI);
qemu_mutex_unlock(&qemu_global_mutex);
r = sigtimedwait(&waitset, &siginfo, &ts);
e = errno;
qemu_mutex_lock(&qemu_global_mutex);
if (r == -1 && !(e == EAGAIN || e == EINTR)) {
fprintf(stderr, "sigtimedwait: %s\n", strerror(e));
exit(1);
}
}
static void qemu_kvm_wait_io_event(CPUState *env)
{
while (!cpu_has_work(env))
qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
qemu_kvm_eat_signal(env, 0);
qemu_wait_io_event_common(env);
}
static int qemu_cpu_exec(CPUState *env);
static void *kvm_cpu_thread_fn(void *arg)
{
CPUState *env = arg;
qemu_mutex_lock(&qemu_global_mutex);
qemu_thread_self(env->thread);
if (kvm_enabled())
kvm_init_vcpu(env);
kvm_block_io_signals(env);
/* signal CPU creation */
env->created = 1;
qemu_cond_signal(&qemu_cpu_cond);
/* and wait for machine initialization */
while (!qemu_system_ready)
qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
while (1) {
if (cpu_can_run(env))
qemu_cpu_exec(env);
qemu_kvm_wait_io_event(env);
}
return NULL;
}
static void *tcg_cpu_thread_fn(void *arg)
{
CPUState *env = arg;
tcg_block_io_signals();
qemu_thread_self(env->thread);
/* signal CPU creation */
qemu_mutex_lock(&qemu_global_mutex);
for (env = first_cpu; env != NULL; env = env->next_cpu)
env->created = 1;
qemu_cond_signal(&qemu_cpu_cond);
/* and wait for machine initialization */
while (!qemu_system_ready)
qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
while (1) {
tcg_cpu_exec();
qemu_wait_io_event(cur_cpu);
}
return NULL;
}
void qemu_cpu_kick(void *_env)
{
CPUState *env = _env;
qemu_cond_broadcast(env->halt_cond);
if (kvm_enabled())
qemu_thread_signal(env->thread, SIG_IPI);
}
int qemu_cpu_self(void *_env)
{
CPUState *env = _env;
QemuThread this;
qemu_thread_self(&this);
return qemu_thread_equal(&this, env->thread);
}
static void cpu_signal(int sig)
{
if (cpu_single_env)
cpu_exit(cpu_single_env);
}
static void tcg_block_io_signals(void)
{
sigset_t set;
struct sigaction sigact;
sigemptyset(&set);
sigaddset(&set, SIGUSR2);
sigaddset(&set, SIGIO);
sigaddset(&set, SIGALRM);
sigaddset(&set, SIGCHLD);
pthread_sigmask(SIG_BLOCK, &set, NULL);
sigemptyset(&set);
sigaddset(&set, SIG_IPI);
pthread_sigmask(SIG_UNBLOCK, &set, NULL);
memset(&sigact, 0, sizeof(sigact));
sigact.sa_handler = cpu_signal;
sigaction(SIG_IPI, &sigact, NULL);
}
static void dummy_signal(int sig)
{
}
static void kvm_block_io_signals(CPUState *env)
{
int r;
sigset_t set;
struct sigaction sigact;
sigemptyset(&set);
sigaddset(&set, SIGUSR2);
sigaddset(&set, SIGIO);
sigaddset(&set, SIGALRM);
sigaddset(&set, SIGCHLD);
sigaddset(&set, SIG_IPI);
pthread_sigmask(SIG_BLOCK, &set, NULL);
pthread_sigmask(SIG_BLOCK, NULL, &set);
sigdelset(&set, SIG_IPI);
memset(&sigact, 0, sizeof(sigact));
sigact.sa_handler = dummy_signal;
sigaction(SIG_IPI, &sigact, NULL);
r = kvm_set_signal_mask(env, &set);
if (r) {
fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(r));
exit(1);
}
}
static void unblock_io_signals(void)
{
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGUSR2);
sigaddset(&set, SIGIO);
sigaddset(&set, SIGALRM);
pthread_sigmask(SIG_UNBLOCK, &set, NULL);
sigemptyset(&set);
sigaddset(&set, SIG_IPI);
pthread_sigmask(SIG_BLOCK, &set, NULL);
}
static void qemu_signal_lock(unsigned int msecs)
{
qemu_mutex_lock(&qemu_fair_mutex);
while (qemu_mutex_trylock(&qemu_global_mutex)) {
qemu_thread_signal(tcg_cpu_thread, SIG_IPI);
if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
break;
}
qemu_mutex_unlock(&qemu_fair_mutex);
}
void qemu_mutex_lock_iothread(void)
{
if (kvm_enabled()) {
qemu_mutex_lock(&qemu_fair_mutex);
qemu_mutex_lock(&qemu_global_mutex);
qemu_mutex_unlock(&qemu_fair_mutex);
} else
qemu_signal_lock(100);
}
void qemu_mutex_unlock_iothread(void)
{
qemu_mutex_unlock(&qemu_global_mutex);
}
static int all_vcpus_paused(void)
{
CPUState *penv = first_cpu;
while (penv) {
if (!penv->stopped)
return 0;
penv = (CPUState *)penv->next_cpu;
}
return 1;
}
void pause_all_vcpus(void)
{
CPUState *penv = first_cpu;
while (penv) {
penv->stop = 1;
qemu_thread_signal(penv->thread, SIG_IPI);
qemu_cpu_kick(penv);
penv = (CPUState *)penv->next_cpu;
}
while (!all_vcpus_paused()) {
qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
penv = first_cpu;
while (penv) {
qemu_thread_signal(penv->thread, SIG_IPI);
penv = (CPUState *)penv->next_cpu;
}
}
}
void resume_all_vcpus(void)
{
CPUState *penv = first_cpu;
while (penv) {
penv->stop = 0;
penv->stopped = 0;
qemu_thread_signal(penv->thread, SIG_IPI);
qemu_cpu_kick(penv);
penv = (CPUState *)penv->next_cpu;
}
}
static void tcg_init_vcpu(void *_env)
{
CPUState *env = _env;
/* share a single thread for all cpus with TCG */
if (!tcg_cpu_thread) {
env->thread = qemu_mallocz(sizeof(QemuThread));
env->halt_cond = qemu_mallocz(sizeof(QemuCond));
qemu_cond_init(env->halt_cond);
qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
while (env->created == 0)
qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
tcg_cpu_thread = env->thread;
tcg_halt_cond = env->halt_cond;
} else {
env->thread = tcg_cpu_thread;
env->halt_cond = tcg_halt_cond;
}
}
static void kvm_start_vcpu(CPUState *env)
{
env->thread = qemu_mallocz(sizeof(QemuThread));
env->halt_cond = qemu_mallocz(sizeof(QemuCond));
qemu_cond_init(env->halt_cond);
qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
while (env->created == 0)
qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
}
void qemu_init_vcpu(void *_env)
{
CPUState *env = _env;
env->nr_cores = smp_cores;
env->nr_threads = smp_threads;
if (kvm_enabled())
kvm_start_vcpu(env);
else
tcg_init_vcpu(env);
}
void qemu_notify_event(void)
{
qemu_event_increment();
}
static void qemu_system_vmstop_request(int reason)
{
vmstop_requested = reason;
qemu_notify_event();
}
void vm_stop(int reason)
{
QemuThread me;
qemu_thread_self(&me);
if (!qemu_thread_equal(&me, &io_thread)) {
qemu_system_vmstop_request(reason);
/*
* FIXME: should not return to device code in case
* vm_stop() has been requested.
*/
if (cpu_single_env) {
cpu_exit(cpu_single_env);
cpu_single_env->stop = 1;
}
return;
}
do_vm_stop(reason);
}
#endif
static int qemu_cpu_exec(CPUState *env)
{
int ret;
#ifdef CONFIG_PROFILER
int64_t ti;
#endif
#ifdef CONFIG_PROFILER
ti = profile_getclock();
#endif
if (use_icount) {
int64_t count;
int decr;
qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
env->icount_decr.u16.low = 0;
env->icount_extra = 0;
count = qemu_icount_round (qemu_next_deadline());
qemu_icount += count;
decr = (count > 0xffff) ? 0xffff : count;
count -= decr;
env->icount_decr.u16.low = decr;
env->icount_extra = count;
}
ret = cpu_exec(env);
#ifdef CONFIG_PROFILER
qemu_time += profile_getclock() - ti;
#endif
if (use_icount) {
/* Fold pending instructions back into the
instruction counter, and clear the interrupt flag. */
qemu_icount -= (env->icount_decr.u16.low
+ env->icount_extra);
env->icount_decr.u32 = 0;
env->icount_extra = 0;
}
return ret;
}
bool tcg_cpu_exec(void)
{
int ret = 0;
if (next_cpu == NULL)
next_cpu = first_cpu;
for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
CPUState *env = cur_cpu = next_cpu;
qemu_clock_enable(vm_clock,
(cur_cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
if (qemu_alarm_pending())
break;
if (cpu_can_run(env))
ret = qemu_cpu_exec(env);
else if (env->stop)
break;
if (ret == EXCP_DEBUG) {
gdb_set_stop_cpu(env);
debug_requested = EXCP_DEBUG;
break;
}
}
return tcg_has_work();
}
void set_numa_modes(void)
{
CPUState *env;
int i;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (i = 0; i < nb_numa_nodes; i++) {
if (node_cpumask[i] & (1 << env->cpu_index)) {
env->numa_node = i;
}
}
}
}
void set_cpu_log(const char *optarg)
{
int mask;
const CPULogItem *item;
mask = cpu_str_to_log_mask(optarg);
if (!mask) {
printf("Log items (comma separated):\n");
for (item = cpu_log_items; item->mask != 0; item++) {
printf("%-10s %s\n", item->name, item->help);
}
exit(1);
}
cpu_set_log(mask);
}
/* Return the virtual CPU time, based on the instruction counter. */
int64_t cpu_get_icount(void)
{
int64_t icount;
CPUState *env = cpu_single_env;;
icount = qemu_icount;
if (env) {
if (!can_do_io(env)) {
fprintf(stderr, "Bad clock read\n");
}
icount -= (env->icount_decr.u16.low + env->icount_extra);
}
return qemu_icount_bias + (icount << icount_time_shift);
}