blob: 565dc39c8f622c05db37eea40f4391dc640d6ff6 [file] [log] [blame]
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/pci/pci_host.h"
#include "hw/xen/xen-hvm-common.h"
#include "hw/xen/xen-bus.h"
#include "hw/boards.h"
#include "hw/xen/arch_hvm.h"
MemoryRegion ram_memory;
void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
Error **errp)
{
unsigned long nr_pfn;
xen_pfn_t *pfn_list;
int i;
if (runstate_check(RUN_STATE_INMIGRATE)) {
/* RAM already populated in Xen */
fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
" bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
__func__, size, ram_addr);
return;
}
if (mr == &ram_memory) {
return;
}
trace_xen_ram_alloc(ram_addr, size);
nr_pfn = size >> TARGET_PAGE_BITS;
pfn_list = g_new(xen_pfn_t, nr_pfn);
for (i = 0; i < nr_pfn; i++) {
pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
}
if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT,
ram_addr);
}
g_free(pfn_list);
}
static void xen_set_memory(struct MemoryListener *listener,
MemoryRegionSection *section,
bool add)
{
XenIOState *state = container_of(listener, XenIOState, memory_listener);
if (section->mr == &ram_memory) {
return;
} else {
if (add) {
xen_map_memory_section(xen_domid, state->ioservid,
section);
} else {
xen_unmap_memory_section(xen_domid, state->ioservid,
section);
}
}
arch_xen_set_memory(state, section, add);
}
void xen_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
memory_region_ref(section->mr);
xen_set_memory(listener, section, true);
}
void xen_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
xen_set_memory(listener, section, false);
memory_region_unref(section->mr);
}
void xen_io_add(MemoryListener *listener,
MemoryRegionSection *section)
{
XenIOState *state = container_of(listener, XenIOState, io_listener);
MemoryRegion *mr = section->mr;
if (mr->ops == &unassigned_io_ops) {
return;
}
memory_region_ref(mr);
xen_map_io_section(xen_domid, state->ioservid, section);
}
void xen_io_del(MemoryListener *listener,
MemoryRegionSection *section)
{
XenIOState *state = container_of(listener, XenIOState, io_listener);
MemoryRegion *mr = section->mr;
if (mr->ops == &unassigned_io_ops) {
return;
}
xen_unmap_io_section(xen_domid, state->ioservid, section);
memory_region_unref(mr);
}
void xen_device_realize(DeviceListener *listener,
DeviceState *dev)
{
XenIOState *state = container_of(listener, XenIOState, device_listener);
if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
PCIDevice *pci_dev = PCI_DEVICE(dev);
XenPciDevice *xendev = g_new(XenPciDevice, 1);
xendev->pci_dev = pci_dev;
xendev->sbdf = PCI_BUILD_BDF(pci_dev_bus_num(pci_dev),
pci_dev->devfn);
QLIST_INSERT_HEAD(&state->dev_list, xendev, entry);
xen_map_pcidev(xen_domid, state->ioservid, pci_dev);
}
}
void xen_device_unrealize(DeviceListener *listener,
DeviceState *dev)
{
XenIOState *state = container_of(listener, XenIOState, device_listener);
if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
PCIDevice *pci_dev = PCI_DEVICE(dev);
XenPciDevice *xendev, *next;
xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev);
QLIST_FOREACH_SAFE(xendev, &state->dev_list, entry, next) {
if (xendev->pci_dev == pci_dev) {
QLIST_REMOVE(xendev, entry);
g_free(xendev);
break;
}
}
}
}
MemoryListener xen_io_listener = {
.name = "xen-io",
.region_add = xen_io_add,
.region_del = xen_io_del,
.priority = MEMORY_LISTENER_PRIORITY_ACCEL,
};
DeviceListener xen_device_listener = {
.realize = xen_device_realize,
.unrealize = xen_device_unrealize,
};
/* get the ioreq packets from share mem */
static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
{
ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
if (req->state != STATE_IOREQ_READY) {
DPRINTF("I/O request not ready: "
"%x, ptr: %x, port: %"PRIx64", "
"data: %"PRIx64", count: %u, size: %u\n",
req->state, req->data_is_ptr, req->addr,
req->data, req->count, req->size);
return NULL;
}
xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
req->state = STATE_IOREQ_INPROCESS;
return req;
}
/* use poll to get the port notification */
/* ioreq_vec--out,the */
/* retval--the number of ioreq packet */
static ioreq_t *cpu_get_ioreq(XenIOState *state)
{
MachineState *ms = MACHINE(qdev_get_machine());
unsigned int max_cpus = ms->smp.max_cpus;
int i;
evtchn_port_t port;
port = qemu_xen_evtchn_pending(state->xce_handle);
if (port == state->bufioreq_local_port) {
timer_mod(state->buffered_io_timer,
BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
return NULL;
}
if (port != -1) {
for (i = 0; i < max_cpus; i++) {
if (state->ioreq_local_port[i] == port) {
break;
}
}
if (i == max_cpus) {
hw_error("Fatal error while trying to get io event!\n");
}
/* unmask the wanted port again */
qemu_xen_evtchn_unmask(state->xce_handle, port);
/* get the io packet from shared memory */
state->send_vcpu = i;
return cpu_get_ioreq_from_shared_memory(state, i);
}
/* read error or read nothing */
return NULL;
}
static uint32_t do_inp(uint32_t addr, unsigned long size)
{
switch (size) {
case 1:
return cpu_inb(addr);
case 2:
return cpu_inw(addr);
case 4:
return cpu_inl(addr);
default:
hw_error("inp: bad size: %04x %lx", addr, size);
}
}
static void do_outp(uint32_t addr,
unsigned long size, uint32_t val)
{
switch (size) {
case 1:
return cpu_outb(addr, val);
case 2:
return cpu_outw(addr, val);
case 4:
return cpu_outl(addr, val);
default:
hw_error("outp: bad size: %04x %lx", addr, size);
}
}
/*
* Helper functions which read/write an object from/to physical guest
* memory, as part of the implementation of an ioreq.
*
* Equivalent to
* cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
* val, req->size, 0/1)
* except without the integer overflow problems.
*/
static void rw_phys_req_item(hwaddr addr,
ioreq_t *req, uint32_t i, void *val, int rw)
{
/* Do everything unsigned so overflow just results in a truncated result
* and accesses to undesired parts of guest memory, which is up
* to the guest */
hwaddr offset = (hwaddr)req->size * i;
if (req->df) {
addr -= offset;
} else {
addr += offset;
}
cpu_physical_memory_rw(addr, val, req->size, rw);
}
static inline void read_phys_req_item(hwaddr addr,
ioreq_t *req, uint32_t i, void *val)
{
rw_phys_req_item(addr, req, i, val, 0);
}
static inline void write_phys_req_item(hwaddr addr,
ioreq_t *req, uint32_t i, void *val)
{
rw_phys_req_item(addr, req, i, val, 1);
}
void cpu_ioreq_pio(ioreq_t *req)
{
uint32_t i;
trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
req->data, req->count, req->size);
if (req->size > sizeof(uint32_t)) {
hw_error("PIO: bad size (%u)", req->size);
}
if (req->dir == IOREQ_READ) {
if (!req->data_is_ptr) {
req->data = do_inp(req->addr, req->size);
trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
req->size);
} else {
uint32_t tmp;
for (i = 0; i < req->count; i++) {
tmp = do_inp(req->addr, req->size);
write_phys_req_item(req->data, req, i, &tmp);
}
}
} else if (req->dir == IOREQ_WRITE) {
if (!req->data_is_ptr) {
trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
req->size);
do_outp(req->addr, req->size, req->data);
} else {
for (i = 0; i < req->count; i++) {
uint32_t tmp = 0;
read_phys_req_item(req->data, req, i, &tmp);
do_outp(req->addr, req->size, tmp);
}
}
}
}
static void cpu_ioreq_move(ioreq_t *req)
{
uint32_t i;
trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
req->data, req->count, req->size);
if (req->size > sizeof(req->data)) {
hw_error("MMIO: bad size (%u)", req->size);
}
if (!req->data_is_ptr) {
if (req->dir == IOREQ_READ) {
for (i = 0; i < req->count; i++) {
read_phys_req_item(req->addr, req, i, &req->data);
}
} else if (req->dir == IOREQ_WRITE) {
for (i = 0; i < req->count; i++) {
write_phys_req_item(req->addr, req, i, &req->data);
}
}
} else {
uint64_t tmp;
if (req->dir == IOREQ_READ) {
for (i = 0; i < req->count; i++) {
read_phys_req_item(req->addr, req, i, &tmp);
write_phys_req_item(req->data, req, i, &tmp);
}
} else if (req->dir == IOREQ_WRITE) {
for (i = 0; i < req->count; i++) {
read_phys_req_item(req->data, req, i, &tmp);
write_phys_req_item(req->addr, req, i, &tmp);
}
}
}
}
static void cpu_ioreq_config(XenIOState *state, ioreq_t *req)
{
uint32_t sbdf = req->addr >> 32;
uint32_t reg = req->addr;
XenPciDevice *xendev;
if (req->size != sizeof(uint8_t) && req->size != sizeof(uint16_t) &&
req->size != sizeof(uint32_t)) {
hw_error("PCI config access: bad size (%u)", req->size);
}
if (req->count != 1) {
hw_error("PCI config access: bad count (%u)", req->count);
}
QLIST_FOREACH(xendev, &state->dev_list, entry) {
if (xendev->sbdf != sbdf) {
continue;
}
if (!req->data_is_ptr) {
if (req->dir == IOREQ_READ) {
req->data = pci_host_config_read_common(
xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
req->size);
trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
req->size, req->data);
} else if (req->dir == IOREQ_WRITE) {
trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
req->size, req->data);
pci_host_config_write_common(
xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
req->data, req->size);
}
} else {
uint32_t tmp;
if (req->dir == IOREQ_READ) {
tmp = pci_host_config_read_common(
xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
req->size);
trace_cpu_ioreq_config_read(req, xendev->sbdf, reg,
req->size, tmp);
write_phys_req_item(req->data, req, 0, &tmp);
} else if (req->dir == IOREQ_WRITE) {
read_phys_req_item(req->data, req, 0, &tmp);
trace_cpu_ioreq_config_write(req, xendev->sbdf, reg,
req->size, tmp);
pci_host_config_write_common(
xendev->pci_dev, reg, PCI_CONFIG_SPACE_SIZE,
tmp, req->size);
}
}
}
}
static void handle_ioreq(XenIOState *state, ioreq_t *req)
{
trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
req->addr, req->data, req->count, req->size);
if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
(req->size < sizeof (target_ulong))) {
req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
}
if (req->dir == IOREQ_WRITE)
trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
req->addr, req->data, req->count, req->size);
switch (req->type) {
case IOREQ_TYPE_PIO:
cpu_ioreq_pio(req);
break;
case IOREQ_TYPE_COPY:
cpu_ioreq_move(req);
break;
case IOREQ_TYPE_TIMEOFFSET:
break;
case IOREQ_TYPE_INVALIDATE:
xen_invalidate_map_cache();
break;
case IOREQ_TYPE_PCI_CONFIG:
cpu_ioreq_config(state, req);
break;
default:
arch_handle_ioreq(state, req);
}
if (req->dir == IOREQ_READ) {
trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
req->addr, req->data, req->count, req->size);
}
}
static bool handle_buffered_iopage(XenIOState *state)
{
buffered_iopage_t *buf_page = state->buffered_io_page;
buf_ioreq_t *buf_req = NULL;
bool handled_ioreq = false;
ioreq_t req;
int qw;
if (!buf_page) {
return 0;
}
memset(&req, 0x00, sizeof(req));
req.state = STATE_IOREQ_READY;
req.count = 1;
req.dir = IOREQ_WRITE;
for (;;) {
uint32_t rdptr = buf_page->read_pointer, wrptr;
xen_rmb();
wrptr = buf_page->write_pointer;
xen_rmb();
if (rdptr != buf_page->read_pointer) {
continue;
}
if (rdptr == wrptr) {
break;
}
buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
req.size = 1U << buf_req->size;
req.addr = buf_req->addr;
req.data = buf_req->data;
req.type = buf_req->type;
xen_rmb();
qw = (req.size == 8);
if (qw) {
if (rdptr + 1 == wrptr) {
hw_error("Incomplete quad word buffered ioreq");
}
buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
IOREQ_BUFFER_SLOT_NUM];
req.data |= ((uint64_t)buf_req->data) << 32;
xen_rmb();
}
handle_ioreq(state, &req);
/* Only req.data may get updated by handle_ioreq(), albeit even that
* should not happen as such data would never make it to the guest (we
* can only usefully see writes here after all).
*/
assert(req.state == STATE_IOREQ_READY);
assert(req.count == 1);
assert(req.dir == IOREQ_WRITE);
assert(!req.data_is_ptr);
qatomic_add(&buf_page->read_pointer, qw + 1);
handled_ioreq = true;
}
return handled_ioreq;
}
static void handle_buffered_io(void *opaque)
{
XenIOState *state = opaque;
if (handle_buffered_iopage(state)) {
timer_mod(state->buffered_io_timer,
BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
} else {
timer_del(state->buffered_io_timer);
qemu_xen_evtchn_unmask(state->xce_handle, state->bufioreq_local_port);
}
}
static void cpu_handle_ioreq(void *opaque)
{
XenIOState *state = opaque;
ioreq_t *req = cpu_get_ioreq(state);
handle_buffered_iopage(state);
if (req) {
ioreq_t copy = *req;
xen_rmb();
handle_ioreq(state, &copy);
req->data = copy.data;
if (req->state != STATE_IOREQ_INPROCESS) {
fprintf(stderr, "Badness in I/O request ... not in service?!: "
"%x, ptr: %x, port: %"PRIx64", "
"data: %"PRIx64", count: %u, size: %u, type: %u\n",
req->state, req->data_is_ptr, req->addr,
req->data, req->count, req->size, req->type);
destroy_hvm_domain(false);
return;
}
xen_wmb(); /* Update ioreq contents /then/ update state. */
/*
* We do this before we send the response so that the tools
* have the opportunity to pick up on the reset before the
* guest resumes and does a hlt with interrupts disabled which
* causes Xen to powerdown the domain.
*/
if (runstate_is_running()) {
ShutdownCause request;
if (qemu_shutdown_requested_get()) {
destroy_hvm_domain(false);
}
request = qemu_reset_requested_get();
if (request) {
qemu_system_reset(request);
destroy_hvm_domain(true);
}
}
req->state = STATE_IORESP_READY;
qemu_xen_evtchn_notify(state->xce_handle,
state->ioreq_local_port[state->send_vcpu]);
}
}
static void xen_main_loop_prepare(XenIOState *state)
{
int evtchn_fd = -1;
if (state->xce_handle != NULL) {
evtchn_fd = qemu_xen_evtchn_fd(state->xce_handle);
}
state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
state);
if (evtchn_fd != -1) {
CPUState *cpu_state;
DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
CPU_FOREACH(cpu_state) {
DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
__func__, cpu_state->cpu_index, cpu_state);
state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
}
qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
}
}
void xen_hvm_change_state_handler(void *opaque, bool running,
RunState rstate)
{
XenIOState *state = opaque;
if (running) {
xen_main_loop_prepare(state);
}
xen_set_ioreq_server_state(xen_domid,
state->ioservid,
(rstate == RUN_STATE_RUNNING));
}
void xen_exit_notifier(Notifier *n, void *data)
{
XenIOState *state = container_of(n, XenIOState, exit);
xen_destroy_ioreq_server(xen_domid, state->ioservid);
if (state->fres != NULL) {
xenforeignmemory_unmap_resource(xen_fmem, state->fres);
}
qemu_xen_evtchn_close(state->xce_handle);
xs_daemon_close(state->xenstore);
}
static int xen_map_ioreq_server(XenIOState *state)
{
void *addr = NULL;
xen_pfn_t ioreq_pfn;
xen_pfn_t bufioreq_pfn;
evtchn_port_t bufioreq_evtchn;
int rc;
/*
* Attempt to map using the resource API and fall back to normal
* foreign mapping if this is not supported.
*/
QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_bufioreq != 0);
QEMU_BUILD_BUG_ON(XENMEM_resource_ioreq_server_frame_ioreq(0) != 1);
state->fres = xenforeignmemory_map_resource(xen_fmem, xen_domid,
XENMEM_resource_ioreq_server,
state->ioservid, 0, 2,
&addr,
PROT_READ | PROT_WRITE, 0);
if (state->fres != NULL) {
trace_xen_map_resource_ioreq(state->ioservid, addr);
state->buffered_io_page = addr;
state->shared_page = addr + XC_PAGE_SIZE;
} else if (errno != EOPNOTSUPP) {
error_report("failed to map ioreq server resources: error %d handle=%p",
errno, xen_xc);
return -1;
}
rc = xen_get_ioreq_server_info(xen_domid, state->ioservid,
(state->shared_page == NULL) ?
&ioreq_pfn : NULL,
(state->buffered_io_page == NULL) ?
&bufioreq_pfn : NULL,
&bufioreq_evtchn);
if (rc < 0) {
error_report("failed to get ioreq server info: error %d handle=%p",
errno, xen_xc);
return rc;
}
if (state->shared_page == NULL) {
DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid,
PROT_READ | PROT_WRITE,
1, &ioreq_pfn, NULL);
if (state->shared_page == NULL) {
error_report("map shared IO page returned error %d handle=%p",
errno, xen_xc);
}
}
if (state->buffered_io_page == NULL) {
DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid,
PROT_READ | PROT_WRITE,
1, &bufioreq_pfn,
NULL);
if (state->buffered_io_page == NULL) {
error_report("map buffered IO page returned error %d", errno);
return -1;
}
}
if (state->shared_page == NULL || state->buffered_io_page == NULL) {
return -1;
}
DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
state->bufioreq_remote_port = bufioreq_evtchn;
return 0;
}
void destroy_hvm_domain(bool reboot)
{
xc_interface *xc_handle;
int sts;
int rc;
unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff;
if (xen_dmod) {
rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason);
if (!rc) {
return;
}
if (errno != ENOTTY /* old Xen */) {
error_report("xendevicemodel_shutdown failed with error %d", errno);
}
/* well, try the old thing then */
}
xc_handle = xc_interface_open(0, 0, 0);
if (xc_handle == NULL) {
fprintf(stderr, "Cannot acquire xenctrl handle\n");
} else {
sts = xc_domain_shutdown(xc_handle, xen_domid, reason);
if (sts != 0) {
fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
"sts %d, %s\n", reboot ? "reboot" : "poweroff",
sts, strerror(errno));
} else {
fprintf(stderr, "Issued domain %d %s\n", xen_domid,
reboot ? "reboot" : "poweroff");
}
xc_interface_close(xc_handle);
}
}
void xen_shutdown_fatal_error(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "Will destroy the domain.\n");
/* destroy the domain */
qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR);
}
static void xen_do_ioreq_register(XenIOState *state,
unsigned int max_cpus,
const MemoryListener *xen_memory_listener)
{
int i, rc;
state->exit.notify = xen_exit_notifier;
qemu_add_exit_notifier(&state->exit);
/*
* Register wake-up support in QMP query-current-machine API
*/
qemu_register_wakeup_support();
rc = xen_map_ioreq_server(state);
if (rc < 0) {
goto err;
}
/* Note: cpus is empty at this point in init */
state->cpu_by_vcpu_id = g_new0(CPUState *, max_cpus);
rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true);
if (rc < 0) {
error_report("failed to enable ioreq server info: error %d handle=%p",
errno, xen_xc);
goto err;
}
state->ioreq_local_port = g_new0(evtchn_port_t, max_cpus);
/* FIXME: how about if we overflow the page here? */
for (i = 0; i < max_cpus; i++) {
rc = qemu_xen_evtchn_bind_interdomain(state->xce_handle, xen_domid,
xen_vcpu_eport(state->shared_page,
i));
if (rc == -1) {
error_report("shared evtchn %d bind error %d", i, errno);
goto err;
}
state->ioreq_local_port[i] = rc;
}
rc = qemu_xen_evtchn_bind_interdomain(state->xce_handle, xen_domid,
state->bufioreq_remote_port);
if (rc == -1) {
error_report("buffered evtchn bind error %d", errno);
goto err;
}
state->bufioreq_local_port = rc;
/* Init RAM management */
#ifdef XEN_COMPAT_PHYSMAP
xen_map_cache_init(xen_phys_offset_to_gaddr, state);
#else
xen_map_cache_init(NULL, state);
#endif
qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
state->memory_listener = *xen_memory_listener;
memory_listener_register(&state->memory_listener, &address_space_memory);
state->io_listener = xen_io_listener;
memory_listener_register(&state->io_listener, &address_space_io);
state->device_listener = xen_device_listener;
QLIST_INIT(&state->dev_list);
device_listener_register(&state->device_listener);
return;
err:
error_report("xen hardware virtual machine initialisation failed");
exit(1);
}
void xen_register_ioreq(XenIOState *state, unsigned int max_cpus,
const MemoryListener *xen_memory_listener)
{
int rc;
setup_xen_backend_ops();
state->xce_handle = qemu_xen_evtchn_open();
if (state->xce_handle == NULL) {
error_report("xen: event channel open failed with error %d", errno);
goto err;
}
state->xenstore = xs_daemon_open();
if (state->xenstore == NULL) {
error_report("xen: xenstore open failed with error %d", errno);
goto err;
}
rc = xen_create_ioreq_server(xen_domid, &state->ioservid);
if (!rc) {
xen_do_ioreq_register(state, max_cpus, xen_memory_listener);
} else {
warn_report("xen: failed to create ioreq server");
}
xen_bus_init();
xen_be_init();
return;
err:
error_report("xen hardware virtual machine backend registration failed");
exit(1);
}