| /* |
| * QEMU NVM Express Virtual Namespace |
| * |
| * Copyright (c) 2019 CNEX Labs |
| * Copyright (c) 2020 Samsung Electronics |
| * |
| * Authors: |
| * Klaus Jensen <k.jensen@samsung.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2. See the |
| * COPYING file in the top-level directory. |
| * |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/units.h" |
| #include "qemu/cutils.h" |
| #include "qemu/error-report.h" |
| #include "qapi/error.h" |
| #include "qemu/bitops.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/block-backend.h" |
| |
| #include "nvme.h" |
| #include "trace.h" |
| |
| #define MIN_DISCARD_GRANULARITY (4 * KiB) |
| #define NVME_DEFAULT_ZONE_SIZE (128 * MiB) |
| |
| void nvme_ns_init_format(NvmeNamespace *ns) |
| { |
| NvmeIdNs *id_ns = &ns->id_ns; |
| BlockDriverInfo bdi; |
| int npdg, ret; |
| int64_t nlbas; |
| |
| ns->lbaf = id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(id_ns->flbas)]; |
| ns->lbasz = 1 << ns->lbaf.ds; |
| |
| nlbas = ns->size / (ns->lbasz + ns->lbaf.ms); |
| |
| id_ns->nsze = cpu_to_le64(nlbas); |
| |
| /* no thin provisioning */ |
| id_ns->ncap = id_ns->nsze; |
| id_ns->nuse = id_ns->ncap; |
| |
| ns->moff = nlbas << ns->lbaf.ds; |
| |
| npdg = ns->blkconf.discard_granularity / ns->lbasz; |
| |
| ret = bdrv_get_info(blk_bs(ns->blkconf.blk), &bdi); |
| if (ret >= 0 && bdi.cluster_size > ns->blkconf.discard_granularity) { |
| npdg = bdi.cluster_size / ns->lbasz; |
| } |
| |
| id_ns->npda = id_ns->npdg = npdg - 1; |
| } |
| |
| static int nvme_ns_init(NvmeNamespace *ns, Error **errp) |
| { |
| static uint64_t ns_count; |
| NvmeIdNs *id_ns = &ns->id_ns; |
| NvmeIdNsNvm *id_ns_nvm = &ns->id_ns_nvm; |
| uint8_t ds; |
| uint16_t ms; |
| int i; |
| |
| ns->csi = NVME_CSI_NVM; |
| ns->status = 0x0; |
| |
| ns->id_ns.dlfeat = 0x1; |
| |
| /* support DULBE and I/O optimization fields */ |
| id_ns->nsfeat |= (0x4 | 0x10); |
| |
| if (ns->params.shared) { |
| id_ns->nmic |= NVME_NMIC_NS_SHARED; |
| } |
| |
| /* Substitute a missing EUI-64 by an autogenerated one */ |
| ++ns_count; |
| if (!ns->params.eui64 && ns->params.eui64_default) { |
| ns->params.eui64 = ns_count + NVME_EUI64_DEFAULT; |
| } |
| |
| /* simple copy */ |
| id_ns->mssrl = cpu_to_le16(ns->params.mssrl); |
| id_ns->mcl = cpu_to_le32(ns->params.mcl); |
| id_ns->msrc = ns->params.msrc; |
| id_ns->eui64 = cpu_to_be64(ns->params.eui64); |
| |
| ds = 31 - clz32(ns->blkconf.logical_block_size); |
| ms = ns->params.ms; |
| |
| id_ns->mc = NVME_ID_NS_MC_EXTENDED | NVME_ID_NS_MC_SEPARATE; |
| |
| if (ms && ns->params.mset) { |
| id_ns->flbas |= NVME_ID_NS_FLBAS_EXTENDED; |
| } |
| |
| id_ns->dpc = 0x1f; |
| id_ns->dps = ns->params.pi; |
| if (ns->params.pi && ns->params.pil) { |
| id_ns->dps |= NVME_ID_NS_DPS_FIRST_EIGHT; |
| } |
| |
| ns->pif = ns->params.pif; |
| |
| static const NvmeLBAF defaults[16] = { |
| [0] = { .ds = 9 }, |
| [1] = { .ds = 9, .ms = 8 }, |
| [2] = { .ds = 9, .ms = 16 }, |
| [3] = { .ds = 9, .ms = 64 }, |
| [4] = { .ds = 12 }, |
| [5] = { .ds = 12, .ms = 8 }, |
| [6] = { .ds = 12, .ms = 16 }, |
| [7] = { .ds = 12, .ms = 64 }, |
| }; |
| |
| ns->nlbaf = 8; |
| |
| memcpy(&id_ns->lbaf, &defaults, sizeof(defaults)); |
| |
| for (i = 0; i < ns->nlbaf; i++) { |
| NvmeLBAF *lbaf = &id_ns->lbaf[i]; |
| if (lbaf->ds == ds) { |
| if (lbaf->ms == ms) { |
| id_ns->flbas |= i; |
| goto lbaf_found; |
| } |
| } |
| } |
| |
| /* add non-standard lba format */ |
| id_ns->lbaf[ns->nlbaf].ds = ds; |
| id_ns->lbaf[ns->nlbaf].ms = ms; |
| ns->nlbaf++; |
| |
| id_ns->flbas |= i; |
| |
| |
| lbaf_found: |
| id_ns_nvm->elbaf[i] = (ns->pif & 0x3) << 7; |
| id_ns->nlbaf = ns->nlbaf - 1; |
| nvme_ns_init_format(ns); |
| |
| return 0; |
| } |
| |
| static int nvme_ns_init_blk(NvmeNamespace *ns, Error **errp) |
| { |
| bool read_only; |
| |
| if (!blkconf_blocksizes(&ns->blkconf, errp)) { |
| return -1; |
| } |
| |
| read_only = !blk_supports_write_perm(ns->blkconf.blk); |
| if (!blkconf_apply_backend_options(&ns->blkconf, read_only, false, errp)) { |
| return -1; |
| } |
| |
| if (ns->blkconf.discard_granularity == -1) { |
| ns->blkconf.discard_granularity = |
| MAX(ns->blkconf.logical_block_size, MIN_DISCARD_GRANULARITY); |
| } |
| |
| ns->size = blk_getlength(ns->blkconf.blk); |
| if (ns->size < 0) { |
| error_setg_errno(errp, -ns->size, "could not get blockdev size"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int nvme_ns_zoned_check_calc_geometry(NvmeNamespace *ns, Error **errp) |
| { |
| uint64_t zone_size, zone_cap; |
| |
| /* Make sure that the values of ZNS properties are sane */ |
| if (ns->params.zone_size_bs) { |
| zone_size = ns->params.zone_size_bs; |
| } else { |
| zone_size = NVME_DEFAULT_ZONE_SIZE; |
| } |
| if (ns->params.zone_cap_bs) { |
| zone_cap = ns->params.zone_cap_bs; |
| } else { |
| zone_cap = zone_size; |
| } |
| if (zone_cap > zone_size) { |
| error_setg(errp, "zone capacity %"PRIu64"B exceeds " |
| "zone size %"PRIu64"B", zone_cap, zone_size); |
| return -1; |
| } |
| if (zone_size < ns->lbasz) { |
| error_setg(errp, "zone size %"PRIu64"B too small, " |
| "must be at least %zuB", zone_size, ns->lbasz); |
| return -1; |
| } |
| if (zone_cap < ns->lbasz) { |
| error_setg(errp, "zone capacity %"PRIu64"B too small, " |
| "must be at least %zuB", zone_cap, ns->lbasz); |
| return -1; |
| } |
| |
| /* |
| * Save the main zone geometry values to avoid |
| * calculating them later again. |
| */ |
| ns->zone_size = zone_size / ns->lbasz; |
| ns->zone_capacity = zone_cap / ns->lbasz; |
| ns->num_zones = le64_to_cpu(ns->id_ns.nsze) / ns->zone_size; |
| |
| /* Do a few more sanity checks of ZNS properties */ |
| if (!ns->num_zones) { |
| error_setg(errp, |
| "insufficient drive capacity, must be at least the size " |
| "of one zone (%"PRIu64"B)", zone_size); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static void nvme_ns_zoned_init_state(NvmeNamespace *ns) |
| { |
| uint64_t start = 0, zone_size = ns->zone_size; |
| uint64_t capacity = ns->num_zones * zone_size; |
| NvmeZone *zone; |
| int i; |
| |
| ns->zone_array = g_new0(NvmeZone, ns->num_zones); |
| if (ns->params.zd_extension_size) { |
| ns->zd_extensions = g_malloc0(ns->params.zd_extension_size * |
| ns->num_zones); |
| } |
| |
| QTAILQ_INIT(&ns->exp_open_zones); |
| QTAILQ_INIT(&ns->imp_open_zones); |
| QTAILQ_INIT(&ns->closed_zones); |
| QTAILQ_INIT(&ns->full_zones); |
| |
| zone = ns->zone_array; |
| for (i = 0; i < ns->num_zones; i++, zone++) { |
| if (start + zone_size > capacity) { |
| zone_size = capacity - start; |
| } |
| zone->d.zt = NVME_ZONE_TYPE_SEQ_WRITE; |
| nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY); |
| zone->d.za = 0; |
| zone->d.zcap = ns->zone_capacity; |
| zone->d.zslba = start; |
| zone->d.wp = start; |
| zone->w_ptr = start; |
| start += zone_size; |
| } |
| |
| ns->zone_size_log2 = 0; |
| if (is_power_of_2(ns->zone_size)) { |
| ns->zone_size_log2 = 63 - clz64(ns->zone_size); |
| } |
| } |
| |
| static void nvme_ns_init_zoned(NvmeNamespace *ns) |
| { |
| NvmeIdNsZoned *id_ns_z; |
| int i; |
| |
| nvme_ns_zoned_init_state(ns); |
| |
| id_ns_z = g_new0(NvmeIdNsZoned, 1); |
| |
| /* MAR/MOR are zeroes-based, FFFFFFFFFh means no limit */ |
| id_ns_z->mar = cpu_to_le32(ns->params.max_active_zones - 1); |
| id_ns_z->mor = cpu_to_le32(ns->params.max_open_zones - 1); |
| id_ns_z->zoc = 0; |
| id_ns_z->ozcs = ns->params.cross_zone_read ? |
| NVME_ID_NS_ZONED_OZCS_RAZB : 0x00; |
| |
| for (i = 0; i <= ns->id_ns.nlbaf; i++) { |
| id_ns_z->lbafe[i].zsze = cpu_to_le64(ns->zone_size); |
| id_ns_z->lbafe[i].zdes = |
| ns->params.zd_extension_size >> 6; /* Units of 64B */ |
| } |
| |
| if (ns->params.zrwas) { |
| ns->zns.numzrwa = ns->params.numzrwa ? |
| ns->params.numzrwa : ns->num_zones; |
| |
| ns->zns.zrwas = ns->params.zrwas >> ns->lbaf.ds; |
| ns->zns.zrwafg = ns->params.zrwafg >> ns->lbaf.ds; |
| |
| id_ns_z->ozcs |= NVME_ID_NS_ZONED_OZCS_ZRWASUP; |
| id_ns_z->zrwacap = NVME_ID_NS_ZONED_ZRWACAP_EXPFLUSHSUP; |
| |
| id_ns_z->numzrwa = cpu_to_le32(ns->params.numzrwa); |
| id_ns_z->zrwas = cpu_to_le16(ns->zns.zrwas); |
| id_ns_z->zrwafg = cpu_to_le16(ns->zns.zrwafg); |
| } |
| |
| id_ns_z->ozcs = cpu_to_le16(id_ns_z->ozcs); |
| |
| ns->csi = NVME_CSI_ZONED; |
| ns->id_ns.nsze = cpu_to_le64(ns->num_zones * ns->zone_size); |
| ns->id_ns.ncap = ns->id_ns.nsze; |
| ns->id_ns.nuse = ns->id_ns.ncap; |
| |
| /* |
| * The device uses the BDRV_BLOCK_ZERO flag to determine the "deallocated" |
| * status of logical blocks. Since the spec defines that logical blocks |
| * SHALL be deallocated when then zone is in the Empty or Offline states, |
| * we can only support DULBE if the zone size is a multiple of the |
| * calculated NPDG. |
| */ |
| if (ns->zone_size % (ns->id_ns.npdg + 1)) { |
| warn_report("the zone size (%"PRIu64" blocks) is not a multiple of " |
| "the calculated deallocation granularity (%d blocks); " |
| "DULBE support disabled", |
| ns->zone_size, ns->id_ns.npdg + 1); |
| |
| ns->id_ns.nsfeat &= ~0x4; |
| } |
| |
| ns->id_ns_zoned = id_ns_z; |
| } |
| |
| static void nvme_clear_zone(NvmeNamespace *ns, NvmeZone *zone) |
| { |
| uint8_t state; |
| |
| zone->w_ptr = zone->d.wp; |
| state = nvme_get_zone_state(zone); |
| if (zone->d.wp != zone->d.zslba || |
| (zone->d.za & NVME_ZA_ZD_EXT_VALID)) { |
| if (state != NVME_ZONE_STATE_CLOSED) { |
| trace_pci_nvme_clear_ns_close(state, zone->d.zslba); |
| nvme_set_zone_state(zone, NVME_ZONE_STATE_CLOSED); |
| } |
| nvme_aor_inc_active(ns); |
| QTAILQ_INSERT_HEAD(&ns->closed_zones, zone, entry); |
| } else { |
| trace_pci_nvme_clear_ns_reset(state, zone->d.zslba); |
| if (zone->d.za & NVME_ZA_ZRWA_VALID) { |
| zone->d.za &= ~NVME_ZA_ZRWA_VALID; |
| ns->zns.numzrwa++; |
| } |
| nvme_set_zone_state(zone, NVME_ZONE_STATE_EMPTY); |
| } |
| } |
| |
| /* |
| * Close all the zones that are currently open. |
| */ |
| static void nvme_zoned_ns_shutdown(NvmeNamespace *ns) |
| { |
| NvmeZone *zone, *next; |
| |
| QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { |
| QTAILQ_REMOVE(&ns->closed_zones, zone, entry); |
| nvme_aor_dec_active(ns); |
| nvme_clear_zone(ns, zone); |
| } |
| QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { |
| QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); |
| nvme_aor_dec_open(ns); |
| nvme_aor_dec_active(ns); |
| nvme_clear_zone(ns, zone); |
| } |
| QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { |
| QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); |
| nvme_aor_dec_open(ns); |
| nvme_aor_dec_active(ns); |
| nvme_clear_zone(ns, zone); |
| } |
| |
| assert(ns->nr_open_zones == 0); |
| } |
| |
| static NvmeRuHandle *nvme_find_ruh_by_attr(NvmeEnduranceGroup *endgrp, |
| uint8_t ruha, uint16_t *ruhid) |
| { |
| for (uint16_t i = 0; i < endgrp->fdp.nruh; i++) { |
| NvmeRuHandle *ruh = &endgrp->fdp.ruhs[i]; |
| |
| if (ruh->ruha == ruha) { |
| *ruhid = i; |
| return ruh; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static bool nvme_ns_init_fdp(NvmeNamespace *ns, Error **errp) |
| { |
| NvmeEnduranceGroup *endgrp = ns->endgrp; |
| NvmeRuHandle *ruh; |
| uint8_t lbafi = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas); |
| g_autofree unsigned int *ruhids = NULL; |
| unsigned int n, m, *ruhid; |
| const char *endptr, *token; |
| char *r, *p; |
| uint16_t *ph; |
| |
| if (!ns->params.fdp.ruhs) { |
| ns->fdp.nphs = 1; |
| ph = ns->fdp.phs = g_new(uint16_t, 1); |
| |
| ruh = nvme_find_ruh_by_attr(endgrp, NVME_RUHA_CTRL, ph); |
| if (!ruh) { |
| ruh = nvme_find_ruh_by_attr(endgrp, NVME_RUHA_UNUSED, ph); |
| if (!ruh) { |
| error_setg(errp, "no unused reclaim unit handles left"); |
| return false; |
| } |
| |
| ruh->ruha = NVME_RUHA_CTRL; |
| ruh->lbafi = lbafi; |
| ruh->ruamw = endgrp->fdp.runs >> ns->lbaf.ds; |
| |
| for (uint16_t rg = 0; rg < endgrp->fdp.nrg; rg++) { |
| ruh->rus[rg].ruamw = ruh->ruamw; |
| } |
| } else if (ruh->lbafi != lbafi) { |
| error_setg(errp, "lba format index of controller assigned " |
| "reclaim unit handle does not match namespace lba " |
| "format index"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| ruhid = ruhids = g_new0(unsigned int, endgrp->fdp.nruh); |
| r = p = strdup(ns->params.fdp.ruhs); |
| |
| /* parse the placement handle identifiers */ |
| while ((token = qemu_strsep(&p, ";")) != NULL) { |
| if (qemu_strtoui(token, &endptr, 0, &n) < 0) { |
| error_setg(errp, "cannot parse reclaim unit handle identifier"); |
| free(r); |
| return false; |
| } |
| |
| m = n; |
| |
| /* parse range */ |
| if (*endptr == '-') { |
| token = endptr + 1; |
| |
| if (qemu_strtoui(token, NULL, 0, &m) < 0) { |
| error_setg(errp, "cannot parse reclaim unit handle identifier"); |
| free(r); |
| return false; |
| } |
| |
| if (m < n) { |
| error_setg(errp, "invalid reclaim unit handle identifier range"); |
| free(r); |
| return false; |
| } |
| } |
| |
| for (; n <= m; n++) { |
| if (ns->fdp.nphs++ == endgrp->fdp.nruh) { |
| error_setg(errp, "too many placement handles"); |
| free(r); |
| return false; |
| } |
| |
| *ruhid++ = n; |
| } |
| } |
| |
| free(r); |
| |
| /* verify that the ruhids are unique */ |
| for (unsigned int i = 0; i < ns->fdp.nphs; i++) { |
| for (unsigned int j = i + 1; j < ns->fdp.nphs; j++) { |
| if (ruhids[i] == ruhids[j]) { |
| error_setg(errp, "duplicate reclaim unit handle identifier: %u", |
| ruhids[i]); |
| return false; |
| } |
| } |
| } |
| |
| ph = ns->fdp.phs = g_new(uint16_t, ns->fdp.nphs); |
| |
| ruhid = ruhids; |
| |
| /* verify the identifiers */ |
| for (unsigned int i = 0; i < ns->fdp.nphs; i++, ruhid++, ph++) { |
| if (*ruhid >= endgrp->fdp.nruh) { |
| error_setg(errp, "invalid reclaim unit handle identifier"); |
| return false; |
| } |
| |
| ruh = &endgrp->fdp.ruhs[*ruhid]; |
| |
| switch (ruh->ruha) { |
| case NVME_RUHA_UNUSED: |
| ruh->ruha = NVME_RUHA_HOST; |
| ruh->lbafi = lbafi; |
| ruh->ruamw = endgrp->fdp.runs >> ns->lbaf.ds; |
| |
| for (uint16_t rg = 0; rg < endgrp->fdp.nrg; rg++) { |
| ruh->rus[rg].ruamw = ruh->ruamw; |
| } |
| |
| break; |
| |
| case NVME_RUHA_HOST: |
| if (ruh->lbafi != lbafi) { |
| error_setg(errp, "lba format index of host assigned" |
| "reclaim unit handle does not match namespace " |
| "lba format index"); |
| return false; |
| } |
| |
| break; |
| |
| case NVME_RUHA_CTRL: |
| error_setg(errp, "reclaim unit handle is controller assigned"); |
| return false; |
| |
| default: |
| abort(); |
| } |
| |
| *ph = *ruhid; |
| } |
| |
| return true; |
| } |
| |
| static int nvme_ns_check_constraints(NvmeNamespace *ns, Error **errp) |
| { |
| unsigned int pi_size; |
| |
| if (!ns->blkconf.blk) { |
| error_setg(errp, "block backend not configured"); |
| return -1; |
| } |
| |
| if (ns->params.pi) { |
| if (ns->params.pi > NVME_ID_NS_DPS_TYPE_3) { |
| error_setg(errp, "invalid 'pi' value"); |
| return -1; |
| } |
| |
| switch (ns->params.pif) { |
| case NVME_PI_GUARD_16: |
| pi_size = 8; |
| break; |
| case NVME_PI_GUARD_64: |
| pi_size = 16; |
| break; |
| default: |
| error_setg(errp, "invalid 'pif'"); |
| return -1; |
| } |
| |
| if (ns->params.ms < pi_size) { |
| error_setg(errp, "at least %u bytes of metadata required to " |
| "enable protection information", pi_size); |
| return -1; |
| } |
| } |
| |
| if (ns->params.nsid > NVME_MAX_NAMESPACES) { |
| error_setg(errp, "invalid namespace id (must be between 0 and %d)", |
| NVME_MAX_NAMESPACES); |
| return -1; |
| } |
| |
| if (ns->params.zoned && ns->endgrp && ns->endgrp->fdp.enabled) { |
| error_setg(errp, "cannot be a zoned- in an FDP configuration"); |
| return -1; |
| } |
| |
| if (ns->params.zoned) { |
| if (ns->params.max_active_zones) { |
| if (ns->params.max_open_zones > ns->params.max_active_zones) { |
| error_setg(errp, "max_open_zones (%u) exceeds " |
| "max_active_zones (%u)", ns->params.max_open_zones, |
| ns->params.max_active_zones); |
| return -1; |
| } |
| |
| if (!ns->params.max_open_zones) { |
| ns->params.max_open_zones = ns->params.max_active_zones; |
| } |
| } |
| |
| if (ns->params.zd_extension_size) { |
| if (ns->params.zd_extension_size & 0x3f) { |
| error_setg(errp, "zone descriptor extension size must be a " |
| "multiple of 64B"); |
| return -1; |
| } |
| if ((ns->params.zd_extension_size >> 6) > 0xff) { |
| error_setg(errp, |
| "zone descriptor extension size is too large"); |
| return -1; |
| } |
| } |
| |
| if (ns->params.zrwas) { |
| if (ns->params.zrwas % ns->blkconf.logical_block_size) { |
| error_setg(errp, "zone random write area size (zoned.zrwas " |
| "%"PRIu64") must be a multiple of the logical " |
| "block size (logical_block_size %"PRIu32")", |
| ns->params.zrwas, ns->blkconf.logical_block_size); |
| return -1; |
| } |
| |
| if (ns->params.zrwafg == -1) { |
| ns->params.zrwafg = ns->blkconf.logical_block_size; |
| } |
| |
| if (ns->params.zrwas % ns->params.zrwafg) { |
| error_setg(errp, "zone random write area size (zoned.zrwas " |
| "%"PRIu64") must be a multiple of the zone random " |
| "write area flush granularity (zoned.zrwafg, " |
| "%"PRIu64")", ns->params.zrwas, ns->params.zrwafg); |
| return -1; |
| } |
| |
| if (ns->params.max_active_zones) { |
| if (ns->params.numzrwa > ns->params.max_active_zones) { |
| error_setg(errp, "number of zone random write area " |
| "resources (zoned.numzrwa, %d) must be less " |
| "than or equal to maximum active resources " |
| "(zoned.max_active_zones, %d)", |
| ns->params.numzrwa, |
| ns->params.max_active_zones); |
| return -1; |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| int nvme_ns_setup(NvmeNamespace *ns, Error **errp) |
| { |
| if (nvme_ns_check_constraints(ns, errp)) { |
| return -1; |
| } |
| |
| if (nvme_ns_init_blk(ns, errp)) { |
| return -1; |
| } |
| |
| if (nvme_ns_init(ns, errp)) { |
| return -1; |
| } |
| if (ns->params.zoned) { |
| if (nvme_ns_zoned_check_calc_geometry(ns, errp) != 0) { |
| return -1; |
| } |
| nvme_ns_init_zoned(ns); |
| } |
| |
| if (ns->endgrp && ns->endgrp->fdp.enabled) { |
| if (!nvme_ns_init_fdp(ns, errp)) { |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| void nvme_ns_drain(NvmeNamespace *ns) |
| { |
| blk_drain(ns->blkconf.blk); |
| } |
| |
| void nvme_ns_shutdown(NvmeNamespace *ns) |
| { |
| blk_flush(ns->blkconf.blk); |
| if (ns->params.zoned) { |
| nvme_zoned_ns_shutdown(ns); |
| } |
| } |
| |
| void nvme_ns_cleanup(NvmeNamespace *ns) |
| { |
| if (ns->params.zoned) { |
| g_free(ns->id_ns_zoned); |
| g_free(ns->zone_array); |
| g_free(ns->zd_extensions); |
| } |
| |
| if (ns->endgrp && ns->endgrp->fdp.enabled) { |
| g_free(ns->fdp.phs); |
| } |
| } |
| |
| static void nvme_ns_unrealize(DeviceState *dev) |
| { |
| NvmeNamespace *ns = NVME_NS(dev); |
| |
| nvme_ns_drain(ns); |
| nvme_ns_shutdown(ns); |
| nvme_ns_cleanup(ns); |
| } |
| |
| static void nvme_ns_realize(DeviceState *dev, Error **errp) |
| { |
| NvmeNamespace *ns = NVME_NS(dev); |
| BusState *s = qdev_get_parent_bus(dev); |
| NvmeCtrl *n = NVME(s->parent); |
| NvmeSubsystem *subsys = n->subsys; |
| uint32_t nsid = ns->params.nsid; |
| int i; |
| |
| if (!n->subsys) { |
| /* If no subsys, the ns cannot be attached to more than one ctrl. */ |
| ns->params.shared = false; |
| if (ns->params.detached) { |
| error_setg(errp, "detached requires that the nvme device is " |
| "linked to an nvme-subsys device"); |
| return; |
| } |
| } else { |
| /* |
| * If this namespace belongs to a subsystem (through a link on the |
| * controller device), reparent the device. |
| */ |
| if (!qdev_set_parent_bus(dev, &subsys->bus.parent_bus, errp)) { |
| return; |
| } |
| ns->subsys = subsys; |
| ns->endgrp = &subsys->endgrp; |
| } |
| |
| if (nvme_ns_setup(ns, errp)) { |
| return; |
| } |
| |
| if (!nsid) { |
| for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { |
| if (nvme_ns(n, i) || nvme_subsys_ns(subsys, i)) { |
| continue; |
| } |
| |
| nsid = ns->params.nsid = i; |
| break; |
| } |
| |
| if (!nsid) { |
| error_setg(errp, "no free namespace id"); |
| return; |
| } |
| } else { |
| if (nvme_ns(n, nsid) || nvme_subsys_ns(subsys, nsid)) { |
| error_setg(errp, "namespace id '%d' already allocated", nsid); |
| return; |
| } |
| } |
| |
| if (subsys) { |
| subsys->namespaces[nsid] = ns; |
| |
| ns->id_ns.endgid = cpu_to_le16(0x1); |
| |
| if (ns->params.detached) { |
| return; |
| } |
| |
| if (ns->params.shared) { |
| for (i = 0; i < ARRAY_SIZE(subsys->ctrls); i++) { |
| NvmeCtrl *ctrl = subsys->ctrls[i]; |
| |
| if (ctrl && ctrl != SUBSYS_SLOT_RSVD) { |
| nvme_attach_ns(ctrl, ns); |
| } |
| } |
| |
| return; |
| } |
| |
| } |
| |
| nvme_attach_ns(n, ns); |
| } |
| |
| static Property nvme_ns_props[] = { |
| DEFINE_BLOCK_PROPERTIES(NvmeNamespace, blkconf), |
| DEFINE_PROP_BOOL("detached", NvmeNamespace, params.detached, false), |
| DEFINE_PROP_BOOL("shared", NvmeNamespace, params.shared, true), |
| DEFINE_PROP_UINT32("nsid", NvmeNamespace, params.nsid, 0), |
| DEFINE_PROP_UUID_NODEFAULT("uuid", NvmeNamespace, params.uuid), |
| DEFINE_PROP_UINT64("eui64", NvmeNamespace, params.eui64, 0), |
| DEFINE_PROP_UINT16("ms", NvmeNamespace, params.ms, 0), |
| DEFINE_PROP_UINT8("mset", NvmeNamespace, params.mset, 0), |
| DEFINE_PROP_UINT8("pi", NvmeNamespace, params.pi, 0), |
| DEFINE_PROP_UINT8("pil", NvmeNamespace, params.pil, 0), |
| DEFINE_PROP_UINT8("pif", NvmeNamespace, params.pif, 0), |
| DEFINE_PROP_UINT16("mssrl", NvmeNamespace, params.mssrl, 128), |
| DEFINE_PROP_UINT32("mcl", NvmeNamespace, params.mcl, 128), |
| DEFINE_PROP_UINT8("msrc", NvmeNamespace, params.msrc, 127), |
| DEFINE_PROP_BOOL("zoned", NvmeNamespace, params.zoned, false), |
| DEFINE_PROP_SIZE("zoned.zone_size", NvmeNamespace, params.zone_size_bs, |
| NVME_DEFAULT_ZONE_SIZE), |
| DEFINE_PROP_SIZE("zoned.zone_capacity", NvmeNamespace, params.zone_cap_bs, |
| 0), |
| DEFINE_PROP_BOOL("zoned.cross_read", NvmeNamespace, |
| params.cross_zone_read, false), |
| DEFINE_PROP_UINT32("zoned.max_active", NvmeNamespace, |
| params.max_active_zones, 0), |
| DEFINE_PROP_UINT32("zoned.max_open", NvmeNamespace, |
| params.max_open_zones, 0), |
| DEFINE_PROP_UINT32("zoned.descr_ext_size", NvmeNamespace, |
| params.zd_extension_size, 0), |
| DEFINE_PROP_UINT32("zoned.numzrwa", NvmeNamespace, params.numzrwa, 0), |
| DEFINE_PROP_SIZE("zoned.zrwas", NvmeNamespace, params.zrwas, 0), |
| DEFINE_PROP_SIZE("zoned.zrwafg", NvmeNamespace, params.zrwafg, -1), |
| DEFINE_PROP_BOOL("eui64-default", NvmeNamespace, params.eui64_default, |
| false), |
| DEFINE_PROP_STRING("fdp.ruhs", NvmeNamespace, params.fdp.ruhs), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void nvme_ns_class_init(ObjectClass *oc, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(oc); |
| |
| set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); |
| |
| dc->bus_type = TYPE_NVME_BUS; |
| dc->realize = nvme_ns_realize; |
| dc->unrealize = nvme_ns_unrealize; |
| device_class_set_props(dc, nvme_ns_props); |
| dc->desc = "Virtual NVMe namespace"; |
| } |
| |
| static void nvme_ns_instance_init(Object *obj) |
| { |
| NvmeNamespace *ns = NVME_NS(obj); |
| char *bootindex = g_strdup_printf("/namespace@%d,0", ns->params.nsid); |
| |
| device_add_bootindex_property(obj, &ns->bootindex, "bootindex", |
| bootindex, DEVICE(obj)); |
| |
| g_free(bootindex); |
| } |
| |
| static const TypeInfo nvme_ns_info = { |
| .name = TYPE_NVME_NS, |
| .parent = TYPE_DEVICE, |
| .class_init = nvme_ns_class_init, |
| .instance_size = sizeof(NvmeNamespace), |
| .instance_init = nvme_ns_instance_init, |
| }; |
| |
| static void nvme_ns_register_types(void) |
| { |
| type_register_static(&nvme_ns_info); |
| } |
| |
| type_init(nvme_ns_register_types) |