| /* |
| * Emulation of Linux signals |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <stdarg.h> |
| #include <unistd.h> |
| #include <signal.h> |
| #include <errno.h> |
| #include <sys/ucontext.h> |
| |
| #ifdef __ia64__ |
| #undef uc_mcontext |
| #undef uc_sigmask |
| #undef uc_stack |
| #undef uc_link |
| #endif |
| |
| #include "qemu.h" |
| |
| //#define DEBUG_SIGNAL |
| |
| #define MAX_SIGQUEUE_SIZE 1024 |
| |
| struct sigqueue { |
| struct sigqueue *next; |
| target_siginfo_t info; |
| }; |
| |
| struct emulated_sigaction { |
| struct target_sigaction sa; |
| int pending; /* true if signal is pending */ |
| struct sigqueue *first; |
| struct sigqueue info; /* in order to always have memory for the |
| first signal, we put it here */ |
| }; |
| |
| static struct emulated_sigaction sigact_table[TARGET_NSIG]; |
| static struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ |
| static struct sigqueue *first_free; /* first free siginfo queue entry */ |
| static int signal_pending; /* non zero if a signal may be pending */ |
| |
| static void host_signal_handler(int host_signum, siginfo_t *info, |
| void *puc); |
| |
| static uint8_t host_to_target_signal_table[65] = { |
| [SIGHUP] = TARGET_SIGHUP, |
| [SIGINT] = TARGET_SIGINT, |
| [SIGQUIT] = TARGET_SIGQUIT, |
| [SIGILL] = TARGET_SIGILL, |
| [SIGTRAP] = TARGET_SIGTRAP, |
| [SIGABRT] = TARGET_SIGABRT, |
| /* [SIGIOT] = TARGET_SIGIOT,*/ |
| [SIGBUS] = TARGET_SIGBUS, |
| [SIGFPE] = TARGET_SIGFPE, |
| [SIGKILL] = TARGET_SIGKILL, |
| [SIGUSR1] = TARGET_SIGUSR1, |
| [SIGSEGV] = TARGET_SIGSEGV, |
| [SIGUSR2] = TARGET_SIGUSR2, |
| [SIGPIPE] = TARGET_SIGPIPE, |
| [SIGALRM] = TARGET_SIGALRM, |
| [SIGTERM] = TARGET_SIGTERM, |
| #ifdef SIGSTKFLT |
| [SIGSTKFLT] = TARGET_SIGSTKFLT, |
| #endif |
| [SIGCHLD] = TARGET_SIGCHLD, |
| [SIGCONT] = TARGET_SIGCONT, |
| [SIGSTOP] = TARGET_SIGSTOP, |
| [SIGTSTP] = TARGET_SIGTSTP, |
| [SIGTTIN] = TARGET_SIGTTIN, |
| [SIGTTOU] = TARGET_SIGTTOU, |
| [SIGURG] = TARGET_SIGURG, |
| [SIGXCPU] = TARGET_SIGXCPU, |
| [SIGXFSZ] = TARGET_SIGXFSZ, |
| [SIGVTALRM] = TARGET_SIGVTALRM, |
| [SIGPROF] = TARGET_SIGPROF, |
| [SIGWINCH] = TARGET_SIGWINCH, |
| [SIGIO] = TARGET_SIGIO, |
| [SIGPWR] = TARGET_SIGPWR, |
| [SIGSYS] = TARGET_SIGSYS, |
| /* next signals stay the same */ |
| }; |
| static uint8_t target_to_host_signal_table[65]; |
| |
| static inline int host_to_target_signal(int sig) |
| { |
| return host_to_target_signal_table[sig]; |
| } |
| |
| static inline int target_to_host_signal(int sig) |
| { |
| return target_to_host_signal_table[sig]; |
| } |
| |
| void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) |
| { |
| int i; |
| unsigned long sigmask; |
| uint32_t target_sigmask; |
| |
| sigmask = ((unsigned long *)s)[0]; |
| target_sigmask = 0; |
| for(i = 0; i < 32; i++) { |
| if (sigmask & (1 << i)) |
| target_sigmask |= 1 << (host_to_target_signal(i + 1) - 1); |
| } |
| #if TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 32 |
| d->sig[0] = tswapl(target_sigmask); |
| for(i = 1;i < TARGET_NSIG_WORDS; i++) { |
| d->sig[i] = tswapl(((unsigned long *)s)[i]); |
| } |
| #elif TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2 |
| d->sig[0] = tswapl(target_sigmask); |
| d->sig[1] = tswapl(sigmask >> 32); |
| #else |
| #error host_to_target_sigset |
| #endif |
| } |
| |
| void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) |
| { |
| int i; |
| unsigned long sigmask; |
| target_ulong target_sigmask; |
| |
| target_sigmask = tswapl(s->sig[0]); |
| sigmask = 0; |
| for(i = 0; i < 32; i++) { |
| if (target_sigmask & (1 << i)) |
| sigmask |= 1 << (target_to_host_signal(i + 1) - 1); |
| } |
| #if TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 32 |
| ((unsigned long *)d)[0] = sigmask; |
| for(i = 1;i < TARGET_NSIG_WORDS; i++) { |
| ((unsigned long *)d)[i] = tswapl(s->sig[i]); |
| } |
| #elif TARGET_LONG_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2 |
| ((unsigned long *)d)[0] = sigmask | ((unsigned long)tswapl(s->sig[1]) << 32); |
| #else |
| #error target_to_host_sigset |
| #endif /* TARGET_LONG_BITS */ |
| } |
| |
| void host_to_target_old_sigset(target_ulong *old_sigset, |
| const sigset_t *sigset) |
| { |
| target_sigset_t d; |
| host_to_target_sigset(&d, sigset); |
| *old_sigset = d.sig[0]; |
| } |
| |
| void target_to_host_old_sigset(sigset_t *sigset, |
| const target_ulong *old_sigset) |
| { |
| target_sigset_t d; |
| int i; |
| |
| d.sig[0] = *old_sigset; |
| for(i = 1;i < TARGET_NSIG_WORDS; i++) |
| d.sig[i] = 0; |
| target_to_host_sigset(sigset, &d); |
| } |
| |
| /* siginfo conversion */ |
| |
| static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, |
| const siginfo_t *info) |
| { |
| int sig; |
| sig = host_to_target_signal(info->si_signo); |
| tinfo->si_signo = sig; |
| tinfo->si_errno = 0; |
| tinfo->si_code = 0; |
| if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV || |
| sig == SIGBUS || sig == SIGTRAP) { |
| /* should never come here, but who knows. The information for |
| the target is irrelevant */ |
| tinfo->_sifields._sigfault._addr = 0; |
| } else if (sig >= TARGET_SIGRTMIN) { |
| tinfo->_sifields._rt._pid = info->si_pid; |
| tinfo->_sifields._rt._uid = info->si_uid; |
| /* XXX: potential problem if 64 bit */ |
| tinfo->_sifields._rt._sigval.sival_ptr = |
| (target_ulong)info->si_value.sival_ptr; |
| } |
| } |
| |
| static void tswap_siginfo(target_siginfo_t *tinfo, |
| const target_siginfo_t *info) |
| { |
| int sig; |
| sig = info->si_signo; |
| tinfo->si_signo = tswap32(sig); |
| tinfo->si_errno = tswap32(info->si_errno); |
| tinfo->si_code = tswap32(info->si_code); |
| if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV || |
| sig == SIGBUS || sig == SIGTRAP) { |
| tinfo->_sifields._sigfault._addr = |
| tswapl(info->_sifields._sigfault._addr); |
| } else if (sig >= TARGET_SIGRTMIN) { |
| tinfo->_sifields._rt._pid = tswap32(info->_sifields._rt._pid); |
| tinfo->_sifields._rt._uid = tswap32(info->_sifields._rt._uid); |
| tinfo->_sifields._rt._sigval.sival_ptr = |
| tswapl(info->_sifields._rt._sigval.sival_ptr); |
| } |
| } |
| |
| |
| void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) |
| { |
| host_to_target_siginfo_noswap(tinfo, info); |
| tswap_siginfo(tinfo, tinfo); |
| } |
| |
| /* XXX: we support only POSIX RT signals are used. */ |
| /* XXX: find a solution for 64 bit (additionnal malloced data is needed) */ |
| void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) |
| { |
| info->si_signo = tswap32(tinfo->si_signo); |
| info->si_errno = tswap32(tinfo->si_errno); |
| info->si_code = tswap32(tinfo->si_code); |
| info->si_pid = tswap32(tinfo->_sifields._rt._pid); |
| info->si_uid = tswap32(tinfo->_sifields._rt._uid); |
| info->si_value.sival_ptr = |
| (void *)tswapl(tinfo->_sifields._rt._sigval.sival_ptr); |
| } |
| |
| void signal_init(void) |
| { |
| struct sigaction act; |
| int i, j; |
| |
| /* generate signal conversion tables */ |
| for(i = 1; i <= 64; i++) { |
| if (host_to_target_signal_table[i] == 0) |
| host_to_target_signal_table[i] = i; |
| } |
| for(i = 1; i <= 64; i++) { |
| j = host_to_target_signal_table[i]; |
| target_to_host_signal_table[j] = i; |
| } |
| |
| /* set all host signal handlers. ALL signals are blocked during |
| the handlers to serialize them. */ |
| sigfillset(&act.sa_mask); |
| act.sa_flags = SA_SIGINFO; |
| act.sa_sigaction = host_signal_handler; |
| for(i = 1; i < NSIG; i++) { |
| sigaction(i, &act, NULL); |
| } |
| |
| memset(sigact_table, 0, sizeof(sigact_table)); |
| |
| first_free = &sigqueue_table[0]; |
| for(i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) |
| sigqueue_table[i].next = &sigqueue_table[i + 1]; |
| sigqueue_table[MAX_SIGQUEUE_SIZE - 1].next = NULL; |
| } |
| |
| /* signal queue handling */ |
| |
| static inline struct sigqueue *alloc_sigqueue(void) |
| { |
| struct sigqueue *q = first_free; |
| if (!q) |
| return NULL; |
| first_free = q->next; |
| return q; |
| } |
| |
| static inline void free_sigqueue(struct sigqueue *q) |
| { |
| q->next = first_free; |
| first_free = q; |
| } |
| |
| /* abort execution with signal */ |
| void __attribute((noreturn)) force_sig(int sig) |
| { |
| int host_sig; |
| host_sig = target_to_host_signal(sig); |
| fprintf(stderr, "qemu: uncaught target signal %d (%s) - exiting\n", |
| sig, strsignal(host_sig)); |
| #if 1 |
| _exit(-host_sig); |
| #else |
| { |
| struct sigaction act; |
| sigemptyset(&act.sa_mask); |
| act.sa_flags = SA_SIGINFO; |
| act.sa_sigaction = SIG_DFL; |
| sigaction(SIGABRT, &act, NULL); |
| abort(); |
| } |
| #endif |
| } |
| |
| /* queue a signal so that it will be send to the virtual CPU as soon |
| as possible */ |
| int queue_signal(int sig, target_siginfo_t *info) |
| { |
| struct emulated_sigaction *k; |
| struct sigqueue *q, **pq; |
| target_ulong handler; |
| |
| #if defined(DEBUG_SIGNAL) |
| fprintf(stderr, "queue_signal: sig=%d\n", |
| sig); |
| #endif |
| k = &sigact_table[sig - 1]; |
| handler = k->sa._sa_handler; |
| if (handler == TARGET_SIG_DFL) { |
| /* default handler : ignore some signal. The other are fatal */ |
| if (sig != TARGET_SIGCHLD && |
| sig != TARGET_SIGURG && |
| sig != TARGET_SIGWINCH) { |
| force_sig(sig); |
| } else { |
| return 0; /* indicate ignored */ |
| } |
| } else if (handler == TARGET_SIG_IGN) { |
| /* ignore signal */ |
| return 0; |
| } else if (handler == TARGET_SIG_ERR) { |
| force_sig(sig); |
| } else { |
| pq = &k->first; |
| if (sig < TARGET_SIGRTMIN) { |
| /* if non real time signal, we queue exactly one signal */ |
| if (!k->pending) |
| q = &k->info; |
| else |
| return 0; |
| } else { |
| if (!k->pending) { |
| /* first signal */ |
| q = &k->info; |
| } else { |
| q = alloc_sigqueue(); |
| if (!q) |
| return -EAGAIN; |
| while (*pq != NULL) |
| pq = &(*pq)->next; |
| } |
| } |
| *pq = q; |
| q->info = *info; |
| q->next = NULL; |
| k->pending = 1; |
| /* signal that a new signal is pending */ |
| signal_pending = 1; |
| return 1; /* indicates that the signal was queued */ |
| } |
| } |
| |
| static void host_signal_handler(int host_signum, siginfo_t *info, |
| void *puc) |
| { |
| int sig; |
| target_siginfo_t tinfo; |
| |
| /* the CPU emulator uses some host signals to detect exceptions, |
| we we forward to it some signals */ |
| if (host_signum == SIGSEGV || host_signum == SIGBUS |
| #if defined(TARGET_I386) && defined(USE_CODE_COPY) |
| || host_signum == SIGFPE |
| #endif |
| ) { |
| if (cpu_signal_handler(host_signum, info, puc)) |
| return; |
| } |
| |
| /* get target signal number */ |
| sig = host_to_target_signal(host_signum); |
| if (sig < 1 || sig > TARGET_NSIG) |
| return; |
| #if defined(DEBUG_SIGNAL) |
| fprintf(stderr, "qemu: got signal %d\n", sig); |
| #endif |
| host_to_target_siginfo_noswap(&tinfo, info); |
| if (queue_signal(sig, &tinfo) == 1) { |
| /* interrupt the virtual CPU as soon as possible */ |
| cpu_interrupt(global_env, CPU_INTERRUPT_EXIT); |
| } |
| } |
| |
| int do_sigaction(int sig, const struct target_sigaction *act, |
| struct target_sigaction *oact) |
| { |
| struct emulated_sigaction *k; |
| struct sigaction act1; |
| int host_sig; |
| |
| if (sig < 1 || sig > TARGET_NSIG) |
| return -EINVAL; |
| k = &sigact_table[sig - 1]; |
| #if defined(DEBUG_SIGNAL) |
| fprintf(stderr, "sigaction sig=%d act=0x%08x, oact=0x%08x\n", |
| sig, (int)act, (int)oact); |
| #endif |
| if (oact) { |
| oact->_sa_handler = tswapl(k->sa._sa_handler); |
| oact->sa_flags = tswapl(k->sa.sa_flags); |
| oact->sa_restorer = tswapl(k->sa.sa_restorer); |
| oact->sa_mask = k->sa.sa_mask; |
| } |
| if (act) { |
| k->sa._sa_handler = tswapl(act->_sa_handler); |
| k->sa.sa_flags = tswapl(act->sa_flags); |
| k->sa.sa_restorer = tswapl(act->sa_restorer); |
| k->sa.sa_mask = act->sa_mask; |
| |
| /* we update the host linux signal state */ |
| host_sig = target_to_host_signal(sig); |
| if (host_sig != SIGSEGV && host_sig != SIGBUS) { |
| sigfillset(&act1.sa_mask); |
| act1.sa_flags = SA_SIGINFO; |
| if (k->sa.sa_flags & TARGET_SA_RESTART) |
| act1.sa_flags |= SA_RESTART; |
| /* NOTE: it is important to update the host kernel signal |
| ignore state to avoid getting unexpected interrupted |
| syscalls */ |
| if (k->sa._sa_handler == TARGET_SIG_IGN) { |
| act1.sa_sigaction = (void *)SIG_IGN; |
| } else if (k->sa._sa_handler == TARGET_SIG_DFL) { |
| act1.sa_sigaction = (void *)SIG_DFL; |
| } else { |
| act1.sa_sigaction = host_signal_handler; |
| } |
| sigaction(host_sig, &act1, NULL); |
| } |
| } |
| return 0; |
| } |
| |
| #ifndef offsetof |
| #define offsetof(type, field) ((size_t) &((type *)0)->field) |
| #endif |
| |
| static inline int copy_siginfo_to_user(target_siginfo_t *tinfo, |
| const target_siginfo_t *info) |
| { |
| tswap_siginfo(tinfo, info); |
| return 0; |
| } |
| |
| #ifdef TARGET_I386 |
| |
| /* from the Linux kernel */ |
| |
| struct target_fpreg { |
| uint16_t significand[4]; |
| uint16_t exponent; |
| }; |
| |
| struct target_fpxreg { |
| uint16_t significand[4]; |
| uint16_t exponent; |
| uint16_t padding[3]; |
| }; |
| |
| struct target_xmmreg { |
| target_ulong element[4]; |
| }; |
| |
| struct target_fpstate { |
| /* Regular FPU environment */ |
| target_ulong cw; |
| target_ulong sw; |
| target_ulong tag; |
| target_ulong ipoff; |
| target_ulong cssel; |
| target_ulong dataoff; |
| target_ulong datasel; |
| struct target_fpreg _st[8]; |
| uint16_t status; |
| uint16_t magic; /* 0xffff = regular FPU data only */ |
| |
| /* FXSR FPU environment */ |
| target_ulong _fxsr_env[6]; /* FXSR FPU env is ignored */ |
| target_ulong mxcsr; |
| target_ulong reserved; |
| struct target_fpxreg _fxsr_st[8]; /* FXSR FPU reg data is ignored */ |
| struct target_xmmreg _xmm[8]; |
| target_ulong padding[56]; |
| }; |
| |
| #define X86_FXSR_MAGIC 0x0000 |
| |
| struct target_sigcontext { |
| uint16_t gs, __gsh; |
| uint16_t fs, __fsh; |
| uint16_t es, __esh; |
| uint16_t ds, __dsh; |
| target_ulong edi; |
| target_ulong esi; |
| target_ulong ebp; |
| target_ulong esp; |
| target_ulong ebx; |
| target_ulong edx; |
| target_ulong ecx; |
| target_ulong eax; |
| target_ulong trapno; |
| target_ulong err; |
| target_ulong eip; |
| uint16_t cs, __csh; |
| target_ulong eflags; |
| target_ulong esp_at_signal; |
| uint16_t ss, __ssh; |
| target_ulong fpstate; /* pointer */ |
| target_ulong oldmask; |
| target_ulong cr2; |
| }; |
| |
| typedef struct target_sigaltstack { |
| target_ulong ss_sp; |
| int ss_flags; |
| target_ulong ss_size; |
| } target_stack_t; |
| |
| struct target_ucontext { |
| target_ulong uc_flags; |
| target_ulong uc_link; |
| target_stack_t uc_stack; |
| struct target_sigcontext uc_mcontext; |
| target_sigset_t uc_sigmask; /* mask last for extensibility */ |
| }; |
| |
| struct sigframe |
| { |
| target_ulong pretcode; |
| int sig; |
| struct target_sigcontext sc; |
| struct target_fpstate fpstate; |
| target_ulong extramask[TARGET_NSIG_WORDS-1]; |
| char retcode[8]; |
| }; |
| |
| struct rt_sigframe |
| { |
| target_ulong pretcode; |
| int sig; |
| target_ulong pinfo; |
| target_ulong puc; |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| struct target_fpstate fpstate; |
| char retcode[8]; |
| }; |
| |
| /* |
| * Set up a signal frame. |
| */ |
| |
| /* XXX: save x87 state */ |
| static int |
| setup_sigcontext(struct target_sigcontext *sc, struct target_fpstate *fpstate, |
| CPUX86State *env, unsigned long mask) |
| { |
| int err = 0; |
| |
| err |= __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs); |
| err |= __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs); |
| err |= __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es); |
| err |= __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds); |
| err |= __put_user(env->regs[R_EDI], &sc->edi); |
| err |= __put_user(env->regs[R_ESI], &sc->esi); |
| err |= __put_user(env->regs[R_EBP], &sc->ebp); |
| err |= __put_user(env->regs[R_ESP], &sc->esp); |
| err |= __put_user(env->regs[R_EBX], &sc->ebx); |
| err |= __put_user(env->regs[R_EDX], &sc->edx); |
| err |= __put_user(env->regs[R_ECX], &sc->ecx); |
| err |= __put_user(env->regs[R_EAX], &sc->eax); |
| err |= __put_user(env->exception_index, &sc->trapno); |
| err |= __put_user(env->error_code, &sc->err); |
| err |= __put_user(env->eip, &sc->eip); |
| err |= __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs); |
| err |= __put_user(env->eflags, &sc->eflags); |
| err |= __put_user(env->regs[R_ESP], &sc->esp_at_signal); |
| err |= __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss); |
| |
| cpu_x86_fsave(env, (void *)fpstate, 1); |
| fpstate->status = fpstate->sw; |
| err |= __put_user(0xffff, &fpstate->magic); |
| err |= __put_user(fpstate, &sc->fpstate); |
| |
| /* non-iBCS2 extensions.. */ |
| err |= __put_user(mask, &sc->oldmask); |
| err |= __put_user(env->cr[2], &sc->cr2); |
| return err; |
| } |
| |
| /* |
| * Determine which stack to use.. |
| */ |
| |
| static inline void * |
| get_sigframe(struct emulated_sigaction *ka, CPUX86State *env, size_t frame_size) |
| { |
| unsigned long esp; |
| |
| /* Default to using normal stack */ |
| esp = env->regs[R_ESP]; |
| #if 0 |
| /* This is the X/Open sanctioned signal stack switching. */ |
| if (ka->sa.sa_flags & SA_ONSTACK) { |
| if (sas_ss_flags(esp) == 0) |
| esp = current->sas_ss_sp + current->sas_ss_size; |
| } |
| |
| /* This is the legacy signal stack switching. */ |
| else |
| #endif |
| if ((env->segs[R_SS].selector & 0xffff) != __USER_DS && |
| !(ka->sa.sa_flags & TARGET_SA_RESTORER) && |
| ka->sa.sa_restorer) { |
| esp = (unsigned long) ka->sa.sa_restorer; |
| } |
| return (void *)((esp - frame_size) & -8ul); |
| } |
| |
| static void setup_frame(int sig, struct emulated_sigaction *ka, |
| target_sigset_t *set, CPUX86State *env) |
| { |
| struct sigframe *frame; |
| int err = 0; |
| |
| frame = get_sigframe(ka, env, sizeof(*frame)); |
| |
| if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame))) |
| goto give_sigsegv; |
| err |= __put_user((/*current->exec_domain |
| && current->exec_domain->signal_invmap |
| && sig < 32 |
| ? current->exec_domain->signal_invmap[sig] |
| : */ sig), |
| &frame->sig); |
| if (err) |
| goto give_sigsegv; |
| |
| setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0]); |
| if (err) |
| goto give_sigsegv; |
| |
| if (TARGET_NSIG_WORDS > 1) { |
| err |= __copy_to_user(frame->extramask, &set->sig[1], |
| sizeof(frame->extramask)); |
| } |
| if (err) |
| goto give_sigsegv; |
| |
| /* Set up to return from userspace. If provided, use a stub |
| already in userspace. */ |
| if (ka->sa.sa_flags & TARGET_SA_RESTORER) { |
| err |= __put_user(ka->sa.sa_restorer, &frame->pretcode); |
| } else { |
| err |= __put_user(frame->retcode, &frame->pretcode); |
| /* This is popl %eax ; movl $,%eax ; int $0x80 */ |
| err |= __put_user(0xb858, (short *)(frame->retcode+0)); |
| err |= __put_user(TARGET_NR_sigreturn, (int *)(frame->retcode+2)); |
| err |= __put_user(0x80cd, (short *)(frame->retcode+6)); |
| } |
| |
| if (err) |
| goto give_sigsegv; |
| |
| /* Set up registers for signal handler */ |
| env->regs[R_ESP] = (unsigned long) frame; |
| env->eip = (unsigned long) ka->sa._sa_handler; |
| |
| cpu_x86_load_seg(env, R_DS, __USER_DS); |
| cpu_x86_load_seg(env, R_ES, __USER_DS); |
| cpu_x86_load_seg(env, R_SS, __USER_DS); |
| cpu_x86_load_seg(env, R_CS, __USER_CS); |
| env->eflags &= ~TF_MASK; |
| |
| return; |
| |
| give_sigsegv: |
| if (sig == TARGET_SIGSEGV) |
| ka->sa._sa_handler = TARGET_SIG_DFL; |
| force_sig(TARGET_SIGSEGV /* , current */); |
| } |
| |
| static void setup_rt_frame(int sig, struct emulated_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUX86State *env) |
| { |
| struct rt_sigframe *frame; |
| int err = 0; |
| |
| frame = get_sigframe(ka, env, sizeof(*frame)); |
| |
| if (!access_ok(VERIFY_WRITE, frame, sizeof(*frame))) |
| goto give_sigsegv; |
| |
| err |= __put_user((/*current->exec_domain |
| && current->exec_domain->signal_invmap |
| && sig < 32 |
| ? current->exec_domain->signal_invmap[sig] |
| : */sig), |
| &frame->sig); |
| err |= __put_user((target_ulong)&frame->info, &frame->pinfo); |
| err |= __put_user((target_ulong)&frame->uc, &frame->puc); |
| err |= copy_siginfo_to_user(&frame->info, info); |
| if (err) |
| goto give_sigsegv; |
| |
| /* Create the ucontext. */ |
| err |= __put_user(0, &frame->uc.uc_flags); |
| err |= __put_user(0, &frame->uc.uc_link); |
| err |= __put_user(/*current->sas_ss_sp*/ 0, &frame->uc.uc_stack.ss_sp); |
| err |= __put_user(/* sas_ss_flags(regs->esp) */ 0, |
| &frame->uc.uc_stack.ss_flags); |
| err |= __put_user(/* current->sas_ss_size */ 0, &frame->uc.uc_stack.ss_size); |
| err |= setup_sigcontext(&frame->uc.uc_mcontext, &frame->fpstate, |
| env, set->sig[0]); |
| err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set)); |
| if (err) |
| goto give_sigsegv; |
| |
| /* Set up to return from userspace. If provided, use a stub |
| already in userspace. */ |
| if (ka->sa.sa_flags & TARGET_SA_RESTORER) { |
| err |= __put_user(ka->sa.sa_restorer, &frame->pretcode); |
| } else { |
| err |= __put_user(frame->retcode, &frame->pretcode); |
| /* This is movl $,%eax ; int $0x80 */ |
| err |= __put_user(0xb8, (char *)(frame->retcode+0)); |
| err |= __put_user(TARGET_NR_rt_sigreturn, (int *)(frame->retcode+1)); |
| err |= __put_user(0x80cd, (short *)(frame->retcode+5)); |
| } |
| |
| if (err) |
| goto give_sigsegv; |
| |
| /* Set up registers for signal handler */ |
| env->regs[R_ESP] = (unsigned long) frame; |
| env->eip = (unsigned long) ka->sa._sa_handler; |
| |
| cpu_x86_load_seg(env, R_DS, __USER_DS); |
| cpu_x86_load_seg(env, R_ES, __USER_DS); |
| cpu_x86_load_seg(env, R_SS, __USER_DS); |
| cpu_x86_load_seg(env, R_CS, __USER_CS); |
| env->eflags &= ~TF_MASK; |
| |
| return; |
| |
| give_sigsegv: |
| if (sig == TARGET_SIGSEGV) |
| ka->sa._sa_handler = TARGET_SIG_DFL; |
| force_sig(TARGET_SIGSEGV /* , current */); |
| } |
| |
| static int |
| restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc, int *peax) |
| { |
| unsigned int err = 0; |
| |
| cpu_x86_load_seg(env, R_GS, lduw(&sc->gs)); |
| cpu_x86_load_seg(env, R_FS, lduw(&sc->fs)); |
| cpu_x86_load_seg(env, R_ES, lduw(&sc->es)); |
| cpu_x86_load_seg(env, R_DS, lduw(&sc->ds)); |
| |
| env->regs[R_EDI] = ldl(&sc->edi); |
| env->regs[R_ESI] = ldl(&sc->esi); |
| env->regs[R_EBP] = ldl(&sc->ebp); |
| env->regs[R_ESP] = ldl(&sc->esp); |
| env->regs[R_EBX] = ldl(&sc->ebx); |
| env->regs[R_EDX] = ldl(&sc->edx); |
| env->regs[R_ECX] = ldl(&sc->ecx); |
| env->eip = ldl(&sc->eip); |
| |
| cpu_x86_load_seg(env, R_CS, lduw(&sc->cs) | 3); |
| cpu_x86_load_seg(env, R_SS, lduw(&sc->ss) | 3); |
| |
| { |
| unsigned int tmpflags; |
| tmpflags = ldl(&sc->eflags); |
| env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5); |
| // regs->orig_eax = -1; /* disable syscall checks */ |
| } |
| |
| { |
| struct _fpstate * buf; |
| buf = (void *)ldl(&sc->fpstate); |
| if (buf) { |
| #if 0 |
| if (verify_area(VERIFY_READ, buf, sizeof(*buf))) |
| goto badframe; |
| #endif |
| cpu_x86_frstor(env, (void *)buf, 1); |
| } |
| } |
| |
| *peax = ldl(&sc->eax); |
| return err; |
| #if 0 |
| badframe: |
| return 1; |
| #endif |
| } |
| |
| long do_sigreturn(CPUX86State *env) |
| { |
| struct sigframe *frame = (struct sigframe *)(env->regs[R_ESP] - 8); |
| target_sigset_t target_set; |
| sigset_t set; |
| int eax, i; |
| |
| #if defined(DEBUG_SIGNAL) |
| fprintf(stderr, "do_sigreturn\n"); |
| #endif |
| /* set blocked signals */ |
| target_set.sig[0] = frame->sc.oldmask; |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) |
| target_set.sig[i] = frame->extramask[i - 1]; |
| |
| target_to_host_sigset(&set, &target_set); |
| sigprocmask(SIG_SETMASK, &set, NULL); |
| |
| /* restore registers */ |
| if (restore_sigcontext(env, &frame->sc, &eax)) |
| goto badframe; |
| return eax; |
| |
| badframe: |
| force_sig(TARGET_SIGSEGV); |
| return 0; |
| } |
| |
| long do_rt_sigreturn(CPUX86State *env) |
| { |
| struct rt_sigframe *frame = (struct rt_sigframe *)(env->regs[R_ESP] - 4); |
| target_sigset_t target_set; |
| sigset_t set; |
| // stack_t st; |
| int eax; |
| |
| #if 0 |
| if (verify_area(VERIFY_READ, frame, sizeof(*frame))) |
| goto badframe; |
| #endif |
| memcpy(&target_set, &frame->uc.uc_sigmask, sizeof(target_sigset_t)); |
| |
| target_to_host_sigset(&set, &target_set); |
| sigprocmask(SIG_SETMASK, &set, NULL); |
| |
| if (restore_sigcontext(env, &frame->uc.uc_mcontext, &eax)) |
| goto badframe; |
| |
| #if 0 |
| if (__copy_from_user(&st, &frame->uc.uc_stack, sizeof(st))) |
| goto badframe; |
| /* It is more difficult to avoid calling this function than to |
| call it and ignore errors. */ |
| do_sigaltstack(&st, NULL, regs->esp); |
| #endif |
| return eax; |
| |
| badframe: |
| force_sig(TARGET_SIGSEGV); |
| return 0; |
| } |
| |
| #elif defined(TARGET_ARM) |
| |
| struct target_sigcontext { |
| target_ulong trap_no; |
| target_ulong error_code; |
| target_ulong oldmask; |
| target_ulong arm_r0; |
| target_ulong arm_r1; |
| target_ulong arm_r2; |
| target_ulong arm_r3; |
| target_ulong arm_r4; |
| target_ulong arm_r5; |
| target_ulong arm_r6; |
| target_ulong arm_r7; |
| target_ulong arm_r8; |
| target_ulong arm_r9; |
| target_ulong arm_r10; |
| target_ulong arm_fp; |
| target_ulong arm_ip; |
| target_ulong arm_sp; |
| target_ulong arm_lr; |
| target_ulong arm_pc; |
| target_ulong arm_cpsr; |
| target_ulong fault_address; |
| }; |
| |
| typedef struct target_sigaltstack { |
| target_ulong ss_sp; |
| int ss_flags; |
| target_ulong ss_size; |
| } target_stack_t; |
| |
| struct target_ucontext { |
| target_ulong uc_flags; |
| target_ulong uc_link; |
| target_stack_t uc_stack; |
| struct target_sigcontext uc_mcontext; |
| target_sigset_t uc_sigmask; /* mask last for extensibility */ |
| }; |
| |
| struct sigframe |
| { |
| struct target_sigcontext sc; |
| target_ulong extramask[TARGET_NSIG_WORDS-1]; |
| target_ulong retcode; |
| }; |
| |
| struct rt_sigframe |
| { |
| struct target_siginfo *pinfo; |
| void *puc; |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| target_ulong retcode; |
| }; |
| |
| #define TARGET_CONFIG_CPU_32 1 |
| |
| /* |
| * For ARM syscalls, we encode the syscall number into the instruction. |
| */ |
| #define SWI_SYS_SIGRETURN (0xef000000|(TARGET_NR_sigreturn + ARM_SYSCALL_BASE)) |
| #define SWI_SYS_RT_SIGRETURN (0xef000000|(TARGET_NR_rt_sigreturn + ARM_SYSCALL_BASE)) |
| |
| /* |
| * For Thumb syscalls, we pass the syscall number via r7. We therefore |
| * need two 16-bit instructions. |
| */ |
| #define SWI_THUMB_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_sigreturn)) |
| #define SWI_THUMB_RT_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_rt_sigreturn)) |
| |
| static const target_ulong retcodes[4] = { |
| SWI_SYS_SIGRETURN, SWI_THUMB_SIGRETURN, |
| SWI_SYS_RT_SIGRETURN, SWI_THUMB_RT_SIGRETURN |
| }; |
| |
| |
| #define __put_user_error(x,p,e) __put_user(x, p) |
| #define __get_user_error(x,p,e) __get_user(x, p) |
| |
| static inline int valid_user_regs(CPUState *regs) |
| { |
| return 1; |
| } |
| |
| static int |
| setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ |
| CPUState *env, unsigned long mask) |
| { |
| int err = 0; |
| |
| __put_user_error(env->regs[0], &sc->arm_r0, err); |
| __put_user_error(env->regs[1], &sc->arm_r1, err); |
| __put_user_error(env->regs[2], &sc->arm_r2, err); |
| __put_user_error(env->regs[3], &sc->arm_r3, err); |
| __put_user_error(env->regs[4], &sc->arm_r4, err); |
| __put_user_error(env->regs[5], &sc->arm_r5, err); |
| __put_user_error(env->regs[6], &sc->arm_r6, err); |
| __put_user_error(env->regs[7], &sc->arm_r7, err); |
| __put_user_error(env->regs[8], &sc->arm_r8, err); |
| __put_user_error(env->regs[9], &sc->arm_r9, err); |
| __put_user_error(env->regs[10], &sc->arm_r10, err); |
| __put_user_error(env->regs[11], &sc->arm_fp, err); |
| __put_user_error(env->regs[12], &sc->arm_ip, err); |
| __put_user_error(env->regs[13], &sc->arm_sp, err); |
| __put_user_error(env->regs[14], &sc->arm_lr, err); |
| __put_user_error(env->regs[15], &sc->arm_pc, err); |
| #ifdef TARGET_CONFIG_CPU_32 |
| __put_user_error(env->cpsr, &sc->arm_cpsr, err); |
| #endif |
| |
| __put_user_error(/* current->thread.trap_no */ 0, &sc->trap_no, err); |
| __put_user_error(/* current->thread.error_code */ 0, &sc->error_code, err); |
| __put_user_error(/* current->thread.address */ 0, &sc->fault_address, err); |
| __put_user_error(mask, &sc->oldmask, err); |
| |
| return err; |
| } |
| |
| static inline void * |
| get_sigframe(struct emulated_sigaction *ka, CPUState *regs, int framesize) |
| { |
| unsigned long sp = regs->regs[13]; |
| |
| #if 0 |
| /* |
| * This is the X/Open sanctioned signal stack switching. |
| */ |
| if ((ka->sa.sa_flags & SA_ONSTACK) && !sas_ss_flags(sp)) |
| sp = current->sas_ss_sp + current->sas_ss_size; |
| #endif |
| /* |
| * ATPCS B01 mandates 8-byte alignment |
| */ |
| return (void *)((sp - framesize) & ~7); |
| } |
| |
| static int |
| setup_return(CPUState *env, struct emulated_sigaction *ka, |
| target_ulong *rc, void *frame, int usig) |
| { |
| target_ulong handler = (target_ulong)ka->sa._sa_handler; |
| target_ulong retcode; |
| int thumb = 0; |
| #if defined(TARGET_CONFIG_CPU_32) |
| target_ulong cpsr = env->cpsr; |
| |
| #if 0 |
| /* |
| * Maybe we need to deliver a 32-bit signal to a 26-bit task. |
| */ |
| if (ka->sa.sa_flags & SA_THIRTYTWO) |
| cpsr = (cpsr & ~MODE_MASK) | USR_MODE; |
| |
| #ifdef CONFIG_ARM_THUMB |
| if (elf_hwcap & HWCAP_THUMB) { |
| /* |
| * The LSB of the handler determines if we're going to |
| * be using THUMB or ARM mode for this signal handler. |
| */ |
| thumb = handler & 1; |
| |
| if (thumb) |
| cpsr |= T_BIT; |
| else |
| cpsr &= ~T_BIT; |
| } |
| #endif |
| #endif |
| #endif /* TARGET_CONFIG_CPU_32 */ |
| |
| if (ka->sa.sa_flags & TARGET_SA_RESTORER) { |
| retcode = (target_ulong)ka->sa.sa_restorer; |
| } else { |
| unsigned int idx = thumb; |
| |
| if (ka->sa.sa_flags & TARGET_SA_SIGINFO) |
| idx += 2; |
| |
| if (__put_user(retcodes[idx], rc)) |
| return 1; |
| #if 0 |
| flush_icache_range((target_ulong)rc, |
| (target_ulong)(rc + 1)); |
| #endif |
| retcode = ((target_ulong)rc) + thumb; |
| } |
| |
| env->regs[0] = usig; |
| env->regs[13] = (target_ulong)frame; |
| env->regs[14] = retcode; |
| env->regs[15] = handler & (thumb ? ~1 : ~3); |
| |
| #ifdef TARGET_CONFIG_CPU_32 |
| env->cpsr = cpsr; |
| #endif |
| |
| return 0; |
| } |
| |
| static void setup_frame(int usig, struct emulated_sigaction *ka, |
| target_sigset_t *set, CPUState *regs) |
| { |
| struct sigframe *frame = get_sigframe(ka, regs, sizeof(*frame)); |
| int err = 0; |
| |
| err |= setup_sigcontext(&frame->sc, /*&frame->fpstate,*/ regs, set->sig[0]); |
| |
| if (TARGET_NSIG_WORDS > 1) { |
| err |= __copy_to_user(frame->extramask, &set->sig[1], |
| sizeof(frame->extramask)); |
| } |
| |
| if (err == 0) |
| err = setup_return(regs, ka, &frame->retcode, frame, usig); |
| // return err; |
| } |
| |
| static void setup_rt_frame(int usig, struct emulated_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUState *env) |
| { |
| struct rt_sigframe *frame = get_sigframe(ka, env, sizeof(*frame)); |
| int err = 0; |
| |
| if (!access_ok(VERIFY_WRITE, frame, sizeof (*frame))) |
| return /* 1 */; |
| |
| __put_user_error(&frame->info, (target_ulong *)&frame->pinfo, err); |
| __put_user_error(&frame->uc, (target_ulong *)&frame->puc, err); |
| err |= copy_siginfo_to_user(&frame->info, info); |
| |
| /* Clear all the bits of the ucontext we don't use. */ |
| err |= __clear_user(&frame->uc, offsetof(struct ucontext, uc_mcontext)); |
| |
| err |= setup_sigcontext(&frame->uc.uc_mcontext, /*&frame->fpstate,*/ |
| env, set->sig[0]); |
| err |= __copy_to_user(&frame->uc.uc_sigmask, set, sizeof(*set)); |
| |
| if (err == 0) |
| err = setup_return(env, ka, &frame->retcode, frame, usig); |
| |
| if (err == 0) { |
| /* |
| * For realtime signals we must also set the second and third |
| * arguments for the signal handler. |
| * -- Peter Maydell <pmaydell@chiark.greenend.org.uk> 2000-12-06 |
| */ |
| env->regs[1] = (target_ulong)frame->pinfo; |
| env->regs[2] = (target_ulong)frame->puc; |
| } |
| |
| // return err; |
| } |
| |
| static int |
| restore_sigcontext(CPUState *env, struct target_sigcontext *sc) |
| { |
| int err = 0; |
| |
| __get_user_error(env->regs[0], &sc->arm_r0, err); |
| __get_user_error(env->regs[1], &sc->arm_r1, err); |
| __get_user_error(env->regs[2], &sc->arm_r2, err); |
| __get_user_error(env->regs[3], &sc->arm_r3, err); |
| __get_user_error(env->regs[4], &sc->arm_r4, err); |
| __get_user_error(env->regs[5], &sc->arm_r5, err); |
| __get_user_error(env->regs[6], &sc->arm_r6, err); |
| __get_user_error(env->regs[7], &sc->arm_r7, err); |
| __get_user_error(env->regs[8], &sc->arm_r8, err); |
| __get_user_error(env->regs[9], &sc->arm_r9, err); |
| __get_user_error(env->regs[10], &sc->arm_r10, err); |
| __get_user_error(env->regs[11], &sc->arm_fp, err); |
| __get_user_error(env->regs[12], &sc->arm_ip, err); |
| __get_user_error(env->regs[13], &sc->arm_sp, err); |
| __get_user_error(env->regs[14], &sc->arm_lr, err); |
| __get_user_error(env->regs[15], &sc->arm_pc, err); |
| #ifdef TARGET_CONFIG_CPU_32 |
| __get_user_error(env->cpsr, &sc->arm_cpsr, err); |
| #endif |
| |
| err |= !valid_user_regs(env); |
| |
| return err; |
| } |
| |
| long do_sigreturn(CPUState *env) |
| { |
| struct sigframe *frame; |
| target_sigset_t set; |
| sigset_t host_set; |
| |
| /* |
| * Since we stacked the signal on a 64-bit boundary, |
| * then 'sp' should be word aligned here. If it's |
| * not, then the user is trying to mess with us. |
| */ |
| if (env->regs[13] & 7) |
| goto badframe; |
| |
| frame = (struct sigframe *)env->regs[13]; |
| |
| #if 0 |
| if (verify_area(VERIFY_READ, frame, sizeof (*frame))) |
| goto badframe; |
| #endif |
| if (__get_user(set.sig[0], &frame->sc.oldmask) |
| || (TARGET_NSIG_WORDS > 1 |
| && __copy_from_user(&set.sig[1], &frame->extramask, |
| sizeof(frame->extramask)))) |
| goto badframe; |
| |
| target_to_host_sigset(&host_set, &set); |
| sigprocmask(SIG_SETMASK, &host_set, NULL); |
| |
| if (restore_sigcontext(env, &frame->sc)) |
| goto badframe; |
| |
| #if 0 |
| /* Send SIGTRAP if we're single-stepping */ |
| if (ptrace_cancel_bpt(current)) |
| send_sig(SIGTRAP, current, 1); |
| #endif |
| return env->regs[0]; |
| |
| badframe: |
| force_sig(SIGSEGV /* , current */); |
| return 0; |
| } |
| |
| long do_rt_sigreturn(CPUState *env) |
| { |
| struct rt_sigframe *frame; |
| target_sigset_t set; |
| sigset_t host_set; |
| |
| /* |
| * Since we stacked the signal on a 64-bit boundary, |
| * then 'sp' should be word aligned here. If it's |
| * not, then the user is trying to mess with us. |
| */ |
| if (env->regs[13] & 7) |
| goto badframe; |
| |
| frame = (struct rt_sigframe *)env->regs[13]; |
| |
| #if 0 |
| if (verify_area(VERIFY_READ, frame, sizeof (*frame))) |
| goto badframe; |
| #endif |
| if (__copy_from_user(&set, &frame->uc.uc_sigmask, sizeof(set))) |
| goto badframe; |
| |
| target_to_host_sigset(&host_set, &set); |
| sigprocmask(SIG_SETMASK, &host_set, NULL); |
| |
| if (restore_sigcontext(env, &frame->uc.uc_mcontext)) |
| goto badframe; |
| |
| #if 0 |
| /* Send SIGTRAP if we're single-stepping */ |
| if (ptrace_cancel_bpt(current)) |
| send_sig(SIGTRAP, current, 1); |
| #endif |
| return env->regs[0]; |
| |
| badframe: |
| force_sig(SIGSEGV /* , current */); |
| return 0; |
| } |
| |
| #else |
| |
| static void setup_frame(int sig, struct emulated_sigaction *ka, |
| target_sigset_t *set, CPUState *env) |
| { |
| fprintf(stderr, "setup_frame: not implemented\n"); |
| } |
| |
| static void setup_rt_frame(int sig, struct emulated_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUState *env) |
| { |
| fprintf(stderr, "setup_rt_frame: not implemented\n"); |
| } |
| |
| long do_sigreturn(CPUState *env) |
| { |
| fprintf(stderr, "do_sigreturn: not implemented\n"); |
| return -ENOSYS; |
| } |
| |
| long do_rt_sigreturn(CPUState *env) |
| { |
| fprintf(stderr, "do_rt_sigreturn: not implemented\n"); |
| return -ENOSYS; |
| } |
| |
| #endif |
| |
| void process_pending_signals(void *cpu_env) |
| { |
| int sig; |
| target_ulong handler; |
| sigset_t set, old_set; |
| target_sigset_t target_old_set; |
| struct emulated_sigaction *k; |
| struct sigqueue *q; |
| |
| if (!signal_pending) |
| return; |
| |
| k = sigact_table; |
| for(sig = 1; sig <= TARGET_NSIG; sig++) { |
| if (k->pending) |
| goto handle_signal; |
| k++; |
| } |
| /* if no signal is pending, just return */ |
| signal_pending = 0; |
| return; |
| |
| handle_signal: |
| #ifdef DEBUG_SIGNAL |
| fprintf(stderr, "qemu: process signal %d\n", sig); |
| #endif |
| /* dequeue signal */ |
| q = k->first; |
| k->first = q->next; |
| if (!k->first) |
| k->pending = 0; |
| |
| handler = k->sa._sa_handler; |
| if (handler == TARGET_SIG_DFL) { |
| /* default handler : ignore some signal. The other are fatal */ |
| if (sig != TARGET_SIGCHLD && |
| sig != TARGET_SIGURG && |
| sig != TARGET_SIGWINCH) { |
| force_sig(sig); |
| } |
| } else if (handler == TARGET_SIG_IGN) { |
| /* ignore sig */ |
| } else if (handler == TARGET_SIG_ERR) { |
| force_sig(sig); |
| } else { |
| /* compute the blocked signals during the handler execution */ |
| target_to_host_sigset(&set, &k->sa.sa_mask); |
| /* SA_NODEFER indicates that the current signal should not be |
| blocked during the handler */ |
| if (!(k->sa.sa_flags & TARGET_SA_NODEFER)) |
| sigaddset(&set, target_to_host_signal(sig)); |
| |
| /* block signals in the handler using Linux */ |
| sigprocmask(SIG_BLOCK, &set, &old_set); |
| /* save the previous blocked signal state to restore it at the |
| end of the signal execution (see do_sigreturn) */ |
| host_to_target_sigset(&target_old_set, &old_set); |
| |
| /* if the CPU is in VM86 mode, we restore the 32 bit values */ |
| #ifdef TARGET_I386 |
| { |
| CPUX86State *env = cpu_env; |
| if (env->eflags & VM_MASK) |
| save_v86_state(env); |
| } |
| #endif |
| /* prepare the stack frame of the virtual CPU */ |
| if (k->sa.sa_flags & TARGET_SA_SIGINFO) |
| setup_rt_frame(sig, k, &q->info, &target_old_set, cpu_env); |
| else |
| setup_frame(sig, k, &target_old_set, cpu_env); |
| if (k->sa.sa_flags & TARGET_SA_RESETHAND) |
| k->sa._sa_handler = TARGET_SIG_DFL; |
| } |
| if (q != &k->info) |
| free_sigqueue(q); |
| } |
| |
| |