| /* Native implementation of soft float functions */ |
| #include <math.h> |
| |
| #if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \ |
| || defined(CONFIG_SOLARIS) |
| #include <ieeefp.h> |
| #define fabsf(f) ((float)fabs(f)) |
| #else |
| #include <fenv.h> |
| #endif |
| |
| #if defined(__OpenBSD__) || defined(__NetBSD__) |
| #include <sys/param.h> |
| #endif |
| |
| /* |
| * Define some C99-7.12.3 classification macros and |
| * some C99-.12.4 for Solaris systems OS less than 10, |
| * or Solaris 10 systems running GCC 3.x or less. |
| * Solaris 10 with GCC4 does not need these macros as they |
| * are defined in <iso/math_c99.h> with a compiler directive |
| */ |
| #if defined(CONFIG_SOLARIS) && \ |
| ((CONFIG_SOLARIS_VERSION <= 9 ) || \ |
| ((CONFIG_SOLARIS_VERSION == 10) && (__GNUC__ < 4))) \ |
| || (defined(__OpenBSD__) && (OpenBSD < 200811)) |
| /* |
| * C99 7.12.3 classification macros |
| * and |
| * C99 7.12.14 comparison macros |
| * |
| * ... do not work on Solaris 10 using GNU CC 3.4.x. |
| * Try to workaround the missing / broken C99 math macros. |
| */ |
| #if defined(__OpenBSD__) |
| #define unordered(x, y) (isnan(x) || isnan(y)) |
| #endif |
| |
| #ifdef __NetBSD__ |
| #ifndef isgreater |
| #define isgreater(x, y) __builtin_isgreater(x, y) |
| #endif |
| #ifndef isgreaterequal |
| #define isgreaterequal(x, y) __builtin_isgreaterequal(x, y) |
| #endif |
| #ifndef isless |
| #define isless(x, y) __builtin_isless(x, y) |
| #endif |
| #ifndef islessequal |
| #define islessequal(x, y) __builtin_islessequal(x, y) |
| #endif |
| #ifndef isunordered |
| #define isunordered(x, y) __builtin_isunordered(x, y) |
| #endif |
| #endif |
| |
| |
| #define isnormal(x) (fpclass(x) >= FP_NZERO) |
| #define isgreater(x, y) ((!unordered(x, y)) && ((x) > (y))) |
| #define isgreaterequal(x, y) ((!unordered(x, y)) && ((x) >= (y))) |
| #define isless(x, y) ((!unordered(x, y)) && ((x) < (y))) |
| #define islessequal(x, y) ((!unordered(x, y)) && ((x) <= (y))) |
| #define isunordered(x,y) unordered(x, y) |
| #endif |
| |
| #if defined(__sun__) && !defined(CONFIG_NEEDS_LIBSUNMATH) |
| |
| #ifndef isnan |
| # define isnan(x) \ |
| (sizeof (x) == sizeof (long double) ? isnan_ld (x) \ |
| : sizeof (x) == sizeof (double) ? isnan_d (x) \ |
| : isnan_f (x)) |
| static inline int isnan_f (float x) { return x != x; } |
| static inline int isnan_d (double x) { return x != x; } |
| static inline int isnan_ld (long double x) { return x != x; } |
| #endif |
| |
| #ifndef isinf |
| # define isinf(x) \ |
| (sizeof (x) == sizeof (long double) ? isinf_ld (x) \ |
| : sizeof (x) == sizeof (double) ? isinf_d (x) \ |
| : isinf_f (x)) |
| static inline int isinf_f (float x) { return isnan (x - x); } |
| static inline int isinf_d (double x) { return isnan (x - x); } |
| static inline int isinf_ld (long double x) { return isnan (x - x); } |
| #endif |
| #endif |
| |
| typedef float float32; |
| typedef double float64; |
| #ifdef FLOATX80 |
| typedef long double floatx80; |
| #endif |
| |
| typedef union { |
| float32 f; |
| uint32_t i; |
| } float32u; |
| typedef union { |
| float64 f; |
| uint64_t i; |
| } float64u; |
| #ifdef FLOATX80 |
| typedef union { |
| floatx80 f; |
| struct { |
| uint64_t low; |
| uint16_t high; |
| } i; |
| } floatx80u; |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE floating-point rounding mode. |
| *----------------------------------------------------------------------------*/ |
| #if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) \ |
| || defined(CONFIG_SOLARIS) |
| #if defined(__OpenBSD__) |
| #define FE_RM FP_RM |
| #define FE_RP FP_RP |
| #define FE_RZ FP_RZ |
| #endif |
| enum { |
| float_round_nearest_even = FP_RN, |
| float_round_down = FP_RM, |
| float_round_up = FP_RP, |
| float_round_to_zero = FP_RZ |
| }; |
| #elif defined(__arm__) |
| enum { |
| float_round_nearest_even = 0, |
| float_round_down = 1, |
| float_round_up = 2, |
| float_round_to_zero = 3 |
| }; |
| #else |
| enum { |
| float_round_nearest_even = FE_TONEAREST, |
| float_round_down = FE_DOWNWARD, |
| float_round_up = FE_UPWARD, |
| float_round_to_zero = FE_TOWARDZERO |
| }; |
| #endif |
| |
| typedef struct float_status { |
| int float_rounding_mode; |
| #ifdef FLOATX80 |
| int floatx80_rounding_precision; |
| #endif |
| } float_status; |
| |
| void set_float_rounding_mode(int val STATUS_PARAM); |
| #ifdef FLOATX80 |
| void set_floatx80_rounding_precision(int val STATUS_PARAM); |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE integer-to-floating-point conversion routines. |
| *----------------------------------------------------------------------------*/ |
| float32 int32_to_float32( int STATUS_PARAM); |
| float32 uint32_to_float32( unsigned int STATUS_PARAM); |
| float64 int32_to_float64( int STATUS_PARAM); |
| float64 uint32_to_float64( unsigned int STATUS_PARAM); |
| #ifdef FLOATX80 |
| floatx80 int32_to_floatx80( int STATUS_PARAM); |
| #endif |
| #ifdef FLOAT128 |
| float128 int32_to_float128( int STATUS_PARAM); |
| #endif |
| float32 int64_to_float32( int64_t STATUS_PARAM); |
| float32 uint64_to_float32( uint64_t STATUS_PARAM); |
| float64 int64_to_float64( int64_t STATUS_PARAM); |
| float64 uint64_to_float64( uint64_t v STATUS_PARAM); |
| #ifdef FLOATX80 |
| floatx80 int64_to_floatx80( int64_t STATUS_PARAM); |
| #endif |
| #ifdef FLOAT128 |
| float128 int64_to_float128( int64_t STATUS_PARAM); |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE single-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| int float32_to_int32( float32 STATUS_PARAM); |
| int float32_to_int32_round_to_zero( float32 STATUS_PARAM); |
| unsigned int float32_to_uint32( float32 a STATUS_PARAM); |
| unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM); |
| int64_t float32_to_int64( float32 STATUS_PARAM); |
| int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM); |
| float64 float32_to_float64( float32 STATUS_PARAM); |
| #ifdef FLOATX80 |
| floatx80 float32_to_floatx80( float32 STATUS_PARAM); |
| #endif |
| #ifdef FLOAT128 |
| float128 float32_to_float128( float32 STATUS_PARAM); |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE single-precision operations. |
| *----------------------------------------------------------------------------*/ |
| float32 float32_round_to_int( float32 STATUS_PARAM); |
| INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM) |
| { |
| return a + b; |
| } |
| INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM) |
| { |
| return a - b; |
| } |
| INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM) |
| { |
| return a * b; |
| } |
| INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM) |
| { |
| return a / b; |
| } |
| float32 float32_rem( float32, float32 STATUS_PARAM); |
| float32 float32_sqrt( float32 STATUS_PARAM); |
| INLINE int float32_eq( float32 a, float32 b STATUS_PARAM) |
| { |
| return a == b; |
| } |
| INLINE int float32_le( float32 a, float32 b STATUS_PARAM) |
| { |
| return a <= b; |
| } |
| INLINE int float32_lt( float32 a, float32 b STATUS_PARAM) |
| { |
| return a < b; |
| } |
| INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM) |
| { |
| return a <= b && a >= b; |
| } |
| INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM) |
| { |
| return islessequal(a, b); |
| } |
| INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM) |
| { |
| return isless(a, b); |
| } |
| INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM) |
| { |
| return isunordered(a, b); |
| |
| } |
| int float32_compare( float32, float32 STATUS_PARAM ); |
| int float32_compare_quiet( float32, float32 STATUS_PARAM ); |
| int float32_is_signaling_nan( float32 ); |
| int float32_is_nan( float32 ); |
| |
| INLINE float32 float32_abs(float32 a) |
| { |
| return fabsf(a); |
| } |
| |
| INLINE float32 float32_chs(float32 a) |
| { |
| return -a; |
| } |
| |
| INLINE float32 float32_is_infinity(float32 a) |
| { |
| return fpclassify(a) == FP_INFINITE; |
| } |
| |
| INLINE float32 float32_is_neg(float32 a) |
| { |
| float32u u; |
| u.f = a; |
| return u.i >> 31; |
| } |
| |
| INLINE float32 float32_is_zero(float32 a) |
| { |
| return fpclassify(a) == FP_ZERO; |
| } |
| |
| INLINE float32 float32_scalbn(float32 a, int n) |
| { |
| return scalbnf(a, n); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE double-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| int float64_to_int32( float64 STATUS_PARAM ); |
| int float64_to_int32_round_to_zero( float64 STATUS_PARAM ); |
| unsigned int float64_to_uint32( float64 STATUS_PARAM ); |
| unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM ); |
| int64_t float64_to_int64( float64 STATUS_PARAM ); |
| int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM ); |
| uint64_t float64_to_uint64( float64 STATUS_PARAM ); |
| uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM ); |
| float32 float64_to_float32( float64 STATUS_PARAM ); |
| #ifdef FLOATX80 |
| floatx80 float64_to_floatx80( float64 STATUS_PARAM ); |
| #endif |
| #ifdef FLOAT128 |
| float128 float64_to_float128( float64 STATUS_PARAM ); |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE double-precision operations. |
| *----------------------------------------------------------------------------*/ |
| float64 float64_round_to_int( float64 STATUS_PARAM ); |
| float64 float64_trunc_to_int( float64 STATUS_PARAM ); |
| INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM) |
| { |
| return a + b; |
| } |
| INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM) |
| { |
| return a - b; |
| } |
| INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM) |
| { |
| return a * b; |
| } |
| INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM) |
| { |
| return a / b; |
| } |
| float64 float64_rem( float64, float64 STATUS_PARAM ); |
| float64 float64_sqrt( float64 STATUS_PARAM ); |
| INLINE int float64_eq( float64 a, float64 b STATUS_PARAM) |
| { |
| return a == b; |
| } |
| INLINE int float64_le( float64 a, float64 b STATUS_PARAM) |
| { |
| return a <= b; |
| } |
| INLINE int float64_lt( float64 a, float64 b STATUS_PARAM) |
| { |
| return a < b; |
| } |
| INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM) |
| { |
| return a <= b && a >= b; |
| } |
| INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM) |
| { |
| return islessequal(a, b); |
| } |
| INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM) |
| { |
| return isless(a, b); |
| |
| } |
| INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM) |
| { |
| return isunordered(a, b); |
| |
| } |
| int float64_compare( float64, float64 STATUS_PARAM ); |
| int float64_compare_quiet( float64, float64 STATUS_PARAM ); |
| int float64_is_signaling_nan( float64 ); |
| int float64_is_nan( float64 ); |
| |
| INLINE float64 float64_abs(float64 a) |
| { |
| return fabs(a); |
| } |
| |
| INLINE float64 float64_chs(float64 a) |
| { |
| return -a; |
| } |
| |
| INLINE float64 float64_is_infinity(float64 a) |
| { |
| return fpclassify(a) == FP_INFINITE; |
| } |
| |
| INLINE float64 float64_is_neg(float64 a) |
| { |
| float64u u; |
| u.f = a; |
| return u.i >> 63; |
| } |
| |
| INLINE float64 float64_is_zero(float64 a) |
| { |
| return fpclassify(a) == FP_ZERO; |
| } |
| |
| INLINE float64 float64_scalbn(float64 a, int n) |
| { |
| return scalbn(a, n); |
| } |
| |
| #ifdef FLOATX80 |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE extended double-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| int floatx80_to_int32( floatx80 STATUS_PARAM ); |
| int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); |
| int64_t floatx80_to_int64( floatx80 STATUS_PARAM); |
| int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM); |
| float32 floatx80_to_float32( floatx80 STATUS_PARAM ); |
| float64 floatx80_to_float64( floatx80 STATUS_PARAM ); |
| #ifdef FLOAT128 |
| float128 floatx80_to_float128( floatx80 STATUS_PARAM ); |
| #endif |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE extended double-precision operations. |
| *----------------------------------------------------------------------------*/ |
| floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM ); |
| INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM) |
| { |
| return a + b; |
| } |
| INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM) |
| { |
| return a - b; |
| } |
| INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM) |
| { |
| return a * b; |
| } |
| INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM) |
| { |
| return a / b; |
| } |
| floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM ); |
| floatx80 floatx80_sqrt( floatx80 STATUS_PARAM ); |
| INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM) |
| { |
| return a == b; |
| } |
| INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM) |
| { |
| return a <= b; |
| } |
| INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM) |
| { |
| return a < b; |
| } |
| INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM) |
| { |
| return a <= b && a >= b; |
| } |
| INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM) |
| { |
| return islessequal(a, b); |
| } |
| INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM) |
| { |
| return isless(a, b); |
| |
| } |
| INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM) |
| { |
| return isunordered(a, b); |
| |
| } |
| int floatx80_compare( floatx80, floatx80 STATUS_PARAM ); |
| int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM ); |
| int floatx80_is_signaling_nan( floatx80 ); |
| int floatx80_is_nan( floatx80 ); |
| |
| INLINE floatx80 floatx80_abs(floatx80 a) |
| { |
| return fabsl(a); |
| } |
| |
| INLINE floatx80 floatx80_chs(floatx80 a) |
| { |
| return -a; |
| } |
| |
| INLINE floatx80 floatx80_is_infinity(floatx80 a) |
| { |
| return fpclassify(a) == FP_INFINITE; |
| } |
| |
| INLINE floatx80 floatx80_is_neg(floatx80 a) |
| { |
| floatx80u u; |
| u.f = a; |
| return u.i.high >> 15; |
| } |
| |
| INLINE floatx80 floatx80_is_zero(floatx80 a) |
| { |
| return fpclassify(a) == FP_ZERO; |
| } |
| |
| INLINE floatx80 floatx80_scalbn(floatx80 a, int n) |
| { |
| return scalbnl(a, n); |
| } |
| |
| #endif |