| /* |
| * QEMU Malta board support |
| * |
| * Copyright (c) 2006 Aurelien Jarno |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/units.h" |
| #include "qemu-common.h" |
| #include "cpu.h" |
| #include "hw/southbridge/piix.h" |
| #include "hw/isa/superio.h" |
| #include "hw/char/serial.h" |
| #include "net/net.h" |
| #include "hw/boards.h" |
| #include "hw/i2c/smbus_eeprom.h" |
| #include "hw/block/flash.h" |
| #include "hw/mips/mips.h" |
| #include "hw/mips/cpudevs.h" |
| #include "hw/pci/pci.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/arch_init.h" |
| #include "qemu/log.h" |
| #include "hw/mips/bios.h" |
| #include "hw/ide.h" |
| #include "hw/irq.h" |
| #include "hw/loader.h" |
| #include "elf.h" |
| #include "exec/address-spaces.h" |
| #include "hw/sysbus.h" /* SysBusDevice */ |
| #include "qemu/host-utils.h" |
| #include "sysemu/qtest.h" |
| #include "sysemu/reset.h" |
| #include "sysemu/runstate.h" |
| #include "qapi/error.h" |
| #include "qemu/error-report.h" |
| #include "hw/empty_slot.h" |
| #include "sysemu/kvm.h" |
| #include "hw/semihosting/semihost.h" |
| #include "hw/mips/cps.h" |
| |
| #define ENVP_ADDR 0x80002000l |
| #define ENVP_NB_ENTRIES 16 |
| #define ENVP_ENTRY_SIZE 256 |
| |
| /* Hardware addresses */ |
| #define FLASH_ADDRESS 0x1e000000ULL |
| #define FPGA_ADDRESS 0x1f000000ULL |
| #define RESET_ADDRESS 0x1fc00000ULL |
| |
| #define FLASH_SIZE 0x400000 |
| |
| #define MAX_IDE_BUS 2 |
| |
| typedef struct { |
| MemoryRegion iomem; |
| MemoryRegion iomem_lo; /* 0 - 0x900 */ |
| MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */ |
| uint32_t leds; |
| uint32_t brk; |
| uint32_t gpout; |
| uint32_t i2cin; |
| uint32_t i2coe; |
| uint32_t i2cout; |
| uint32_t i2csel; |
| CharBackend display; |
| char display_text[9]; |
| SerialMM *uart; |
| bool display_inited; |
| } MaltaFPGAState; |
| |
| #define TYPE_MIPS_MALTA "mips-malta" |
| #define MIPS_MALTA(obj) OBJECT_CHECK(MaltaState, (obj), TYPE_MIPS_MALTA) |
| |
| typedef struct { |
| SysBusDevice parent_obj; |
| |
| MIPSCPSState cps; |
| qemu_irq i8259[ISA_NUM_IRQS]; |
| } MaltaState; |
| |
| static struct _loaderparams { |
| int ram_size, ram_low_size; |
| const char *kernel_filename; |
| const char *kernel_cmdline; |
| const char *initrd_filename; |
| } loaderparams; |
| |
| /* Malta FPGA */ |
| static void malta_fpga_update_display(void *opaque) |
| { |
| char leds_text[9]; |
| int i; |
| MaltaFPGAState *s = opaque; |
| |
| for (i = 7 ; i >= 0 ; i--) { |
| if (s->leds & (1 << i)) { |
| leds_text[i] = '#'; |
| } else { |
| leds_text[i] = ' '; |
| } |
| } |
| leds_text[8] = '\0'; |
| |
| qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", |
| leds_text); |
| qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", |
| s->display_text); |
| } |
| |
| /* |
| * EEPROM 24C01 / 24C02 emulation. |
| * |
| * Emulation for serial EEPROMs: |
| * 24C01 - 1024 bit (128 x 8) |
| * 24C02 - 2048 bit (256 x 8) |
| * |
| * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02. |
| */ |
| |
| #if defined(DEBUG) |
| # define logout(fmt, ...) \ |
| fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__) |
| #else |
| # define logout(fmt, ...) ((void)0) |
| #endif |
| |
| struct _eeprom24c0x_t { |
| uint8_t tick; |
| uint8_t address; |
| uint8_t command; |
| uint8_t ack; |
| uint8_t scl; |
| uint8_t sda; |
| uint8_t data; |
| /* uint16_t size; */ |
| uint8_t contents[256]; |
| }; |
| |
| typedef struct _eeprom24c0x_t eeprom24c0x_t; |
| |
| static eeprom24c0x_t spd_eeprom = { |
| .contents = { |
| /* 00000000: */ |
| 0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00, |
| /* 00000008: */ |
| 0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01, |
| /* 00000010: */ |
| 0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00, |
| /* 00000018: */ |
| 0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF, |
| /* 00000020: */ |
| 0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00, |
| /* 00000028: */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| /* 00000030: */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| /* 00000038: */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0, |
| /* 00000040: */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| /* 00000048: */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| /* 00000050: */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| /* 00000058: */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| /* 00000060: */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| /* 00000068: */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| /* 00000070: */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| /* 00000078: */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4, |
| }, |
| }; |
| |
| static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size) |
| { |
| enum { SDR = 0x4, DDR2 = 0x8 } type; |
| uint8_t *spd = spd_eeprom.contents; |
| uint8_t nbanks = 0; |
| uint16_t density = 0; |
| int i; |
| |
| /* work in terms of MB */ |
| ram_size /= MiB; |
| |
| while ((ram_size >= 4) && (nbanks <= 2)) { |
| int sz_log2 = MIN(31 - clz32(ram_size), 14); |
| nbanks++; |
| density |= 1 << (sz_log2 - 2); |
| ram_size -= 1 << sz_log2; |
| } |
| |
| /* split to 2 banks if possible */ |
| if ((nbanks == 1) && (density > 1)) { |
| nbanks++; |
| density >>= 1; |
| } |
| |
| if (density & 0xff00) { |
| density = (density & 0xe0) | ((density >> 8) & 0x1f); |
| type = DDR2; |
| } else if (!(density & 0x1f)) { |
| type = DDR2; |
| } else { |
| type = SDR; |
| } |
| |
| if (ram_size) { |
| warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB" |
| " of SDRAM", ram_size); |
| } |
| |
| /* fill in SPD memory information */ |
| spd[2] = type; |
| spd[5] = nbanks; |
| spd[31] = density; |
| |
| /* checksum */ |
| spd[63] = 0; |
| for (i = 0; i < 63; i++) { |
| spd[63] += spd[i]; |
| } |
| |
| /* copy for SMBUS */ |
| memcpy(eeprom, spd, sizeof(spd_eeprom.contents)); |
| } |
| |
| static void generate_eeprom_serial(uint8_t *eeprom) |
| { |
| int i, pos = 0; |
| uint8_t mac[6] = { 0x00 }; |
| uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 }; |
| |
| /* version */ |
| eeprom[pos++] = 0x01; |
| |
| /* count */ |
| eeprom[pos++] = 0x02; |
| |
| /* MAC address */ |
| eeprom[pos++] = 0x01; /* MAC */ |
| eeprom[pos++] = 0x06; /* length */ |
| memcpy(&eeprom[pos], mac, sizeof(mac)); |
| pos += sizeof(mac); |
| |
| /* serial number */ |
| eeprom[pos++] = 0x02; /* serial */ |
| eeprom[pos++] = 0x05; /* length */ |
| memcpy(&eeprom[pos], sn, sizeof(sn)); |
| pos += sizeof(sn); |
| |
| /* checksum */ |
| eeprom[pos] = 0; |
| for (i = 0; i < pos; i++) { |
| eeprom[pos] += eeprom[i]; |
| } |
| } |
| |
| static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom) |
| { |
| logout("%u: scl = %u, sda = %u, data = 0x%02x\n", |
| eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data); |
| return eeprom->sda; |
| } |
| |
| static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda) |
| { |
| if (eeprom->scl && scl && (eeprom->sda != sda)) { |
| logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n", |
| eeprom->tick, eeprom->scl, scl, eeprom->sda, sda, |
| sda ? "stop" : "start"); |
| if (!sda) { |
| eeprom->tick = 1; |
| eeprom->command = 0; |
| } |
| } else if (eeprom->tick == 0 && !eeprom->ack) { |
| /* Waiting for start. */ |
| logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n", |
| eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); |
| } else if (!eeprom->scl && scl) { |
| logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n", |
| eeprom->tick, eeprom->scl, scl, eeprom->sda, sda); |
| if (eeprom->ack) { |
| logout("\ti2c ack bit = 0\n"); |
| sda = 0; |
| eeprom->ack = 0; |
| } else if (eeprom->sda == sda) { |
| uint8_t bit = (sda != 0); |
| logout("\ti2c bit = %d\n", bit); |
| if (eeprom->tick < 9) { |
| eeprom->command <<= 1; |
| eeprom->command += bit; |
| eeprom->tick++; |
| if (eeprom->tick == 9) { |
| logout("\tcommand 0x%04x, %s\n", eeprom->command, |
| bit ? "read" : "write"); |
| eeprom->ack = 1; |
| } |
| } else if (eeprom->tick < 17) { |
| if (eeprom->command & 1) { |
| sda = ((eeprom->data & 0x80) != 0); |
| } |
| eeprom->address <<= 1; |
| eeprom->address += bit; |
| eeprom->tick++; |
| eeprom->data <<= 1; |
| if (eeprom->tick == 17) { |
| eeprom->data = eeprom->contents[eeprom->address]; |
| logout("\taddress 0x%04x, data 0x%02x\n", |
| eeprom->address, eeprom->data); |
| eeprom->ack = 1; |
| eeprom->tick = 0; |
| } |
| } else if (eeprom->tick >= 17) { |
| sda = 0; |
| } |
| } else { |
| logout("\tsda changed with raising scl\n"); |
| } |
| } else { |
| logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl, |
| scl, eeprom->sda, sda); |
| } |
| eeprom->scl = scl; |
| eeprom->sda = sda; |
| } |
| |
| static uint64_t malta_fpga_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| MaltaFPGAState *s = opaque; |
| uint32_t val = 0; |
| uint32_t saddr; |
| |
| saddr = (addr & 0xfffff); |
| |
| switch (saddr) { |
| |
| /* SWITCH Register */ |
| case 0x00200: |
| val = 0x00000000; |
| break; |
| |
| /* STATUS Register */ |
| case 0x00208: |
| #ifdef TARGET_WORDS_BIGENDIAN |
| val = 0x00000012; |
| #else |
| val = 0x00000010; |
| #endif |
| break; |
| |
| /* JMPRS Register */ |
| case 0x00210: |
| val = 0x00; |
| break; |
| |
| /* LEDBAR Register */ |
| case 0x00408: |
| val = s->leds; |
| break; |
| |
| /* BRKRES Register */ |
| case 0x00508: |
| val = s->brk; |
| break; |
| |
| /* UART Registers are handled directly by the serial device */ |
| |
| /* GPOUT Register */ |
| case 0x00a00: |
| val = s->gpout; |
| break; |
| |
| /* XXX: implement a real I2C controller */ |
| |
| /* GPINP Register */ |
| case 0x00a08: |
| /* IN = OUT until a real I2C control is implemented */ |
| if (s->i2csel) { |
| val = s->i2cout; |
| } else { |
| val = 0x00; |
| } |
| break; |
| |
| /* I2CINP Register */ |
| case 0x00b00: |
| val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom)); |
| break; |
| |
| /* I2COE Register */ |
| case 0x00b08: |
| val = s->i2coe; |
| break; |
| |
| /* I2COUT Register */ |
| case 0x00b10: |
| val = s->i2cout; |
| break; |
| |
| /* I2CSEL Register */ |
| case 0x00b18: |
| val = s->i2csel; |
| break; |
| |
| default: |
| #if 0 |
| printf("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n", |
| addr); |
| #endif |
| break; |
| } |
| return val; |
| } |
| |
| static void malta_fpga_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| MaltaFPGAState *s = opaque; |
| uint32_t saddr; |
| |
| saddr = (addr & 0xfffff); |
| |
| switch (saddr) { |
| |
| /* SWITCH Register */ |
| case 0x00200: |
| break; |
| |
| /* JMPRS Register */ |
| case 0x00210: |
| break; |
| |
| /* LEDBAR Register */ |
| case 0x00408: |
| s->leds = val & 0xff; |
| malta_fpga_update_display(s); |
| break; |
| |
| /* ASCIIWORD Register */ |
| case 0x00410: |
| snprintf(s->display_text, 9, "%08X", (uint32_t)val); |
| malta_fpga_update_display(s); |
| break; |
| |
| /* ASCIIPOS0 to ASCIIPOS7 Registers */ |
| case 0x00418: |
| case 0x00420: |
| case 0x00428: |
| case 0x00430: |
| case 0x00438: |
| case 0x00440: |
| case 0x00448: |
| case 0x00450: |
| s->display_text[(saddr - 0x00418) >> 3] = (char) val; |
| malta_fpga_update_display(s); |
| break; |
| |
| /* SOFTRES Register */ |
| case 0x00500: |
| if (val == 0x42) { |
| qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
| } |
| break; |
| |
| /* BRKRES Register */ |
| case 0x00508: |
| s->brk = val & 0xff; |
| break; |
| |
| /* UART Registers are handled directly by the serial device */ |
| |
| /* GPOUT Register */ |
| case 0x00a00: |
| s->gpout = val & 0xff; |
| break; |
| |
| /* I2COE Register */ |
| case 0x00b08: |
| s->i2coe = val & 0x03; |
| break; |
| |
| /* I2COUT Register */ |
| case 0x00b10: |
| eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01); |
| s->i2cout = val; |
| break; |
| |
| /* I2CSEL Register */ |
| case 0x00b18: |
| s->i2csel = val & 0x01; |
| break; |
| |
| default: |
| #if 0 |
| printf("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n", |
| addr); |
| #endif |
| break; |
| } |
| } |
| |
| static const MemoryRegionOps malta_fpga_ops = { |
| .read = malta_fpga_read, |
| .write = malta_fpga_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static void malta_fpga_reset(void *opaque) |
| { |
| MaltaFPGAState *s = opaque; |
| |
| s->leds = 0x00; |
| s->brk = 0x0a; |
| s->gpout = 0x00; |
| s->i2cin = 0x3; |
| s->i2coe = 0x0; |
| s->i2cout = 0x3; |
| s->i2csel = 0x1; |
| |
| s->display_text[8] = '\0'; |
| snprintf(s->display_text, 9, " "); |
| } |
| |
| static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event) |
| { |
| MaltaFPGAState *s = opaque; |
| |
| if (event == CHR_EVENT_OPENED && !s->display_inited) { |
| qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n"); |
| qemu_chr_fe_printf(&s->display, "+--------+\r\n"); |
| qemu_chr_fe_printf(&s->display, "+ +\r\n"); |
| qemu_chr_fe_printf(&s->display, "+--------+\r\n"); |
| qemu_chr_fe_printf(&s->display, "\n"); |
| qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n"); |
| qemu_chr_fe_printf(&s->display, "+--------+\r\n"); |
| qemu_chr_fe_printf(&s->display, "+ +\r\n"); |
| qemu_chr_fe_printf(&s->display, "+--------+\r\n"); |
| s->display_inited = true; |
| } |
| } |
| |
| static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space, |
| hwaddr base, qemu_irq uart_irq, Chardev *uart_chr) |
| { |
| MaltaFPGAState *s; |
| Chardev *chr; |
| |
| s = g_new0(MaltaFPGAState, 1); |
| |
| memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s, |
| "malta-fpga", 0x100000); |
| memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga", |
| &s->iomem, 0, 0x900); |
| memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga", |
| &s->iomem, 0xa00, 0x10000 - 0xa00); |
| |
| memory_region_add_subregion(address_space, base, &s->iomem_lo); |
| memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi); |
| |
| chr = qemu_chr_new("fpga", "vc:320x200", NULL); |
| qemu_chr_fe_init(&s->display, chr, NULL); |
| qemu_chr_fe_set_handlers(&s->display, NULL, NULL, |
| malta_fgpa_display_event, NULL, s, NULL, true); |
| |
| s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq, |
| 230400, uart_chr, DEVICE_NATIVE_ENDIAN); |
| |
| malta_fpga_reset(s); |
| qemu_register_reset(malta_fpga_reset, s); |
| |
| return s; |
| } |
| |
| /* Network support */ |
| static void network_init(PCIBus *pci_bus) |
| { |
| int i; |
| |
| for (i = 0; i < nb_nics; i++) { |
| NICInfo *nd = &nd_table[i]; |
| const char *default_devaddr = NULL; |
| |
| if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0)) |
| /* The malta board has a PCNet card using PCI SLOT 11 */ |
| default_devaddr = "0b"; |
| |
| pci_nic_init_nofail(nd, pci_bus, "pcnet", default_devaddr); |
| } |
| } |
| |
| static void write_bootloader_nanomips(uint8_t *base, int64_t run_addr, |
| int64_t kernel_entry) |
| { |
| uint16_t *p; |
| |
| /* Small bootloader */ |
| p = (uint16_t *)base; |
| |
| #define NM_HI1(VAL) (((VAL) >> 16) & 0x1f) |
| #define NM_HI2(VAL) \ |
| (((VAL) & 0xf000) | (((VAL) >> 19) & 0xffc) | (((VAL) >> 31) & 0x1)) |
| #define NM_LO(VAL) ((VAL) & 0xfff) |
| |
| stw_p(p++, 0x2800); stw_p(p++, 0x001c); |
| /* bc to_here */ |
| stw_p(p++, 0x8000); stw_p(p++, 0xc000); |
| /* nop */ |
| stw_p(p++, 0x8000); stw_p(p++, 0xc000); |
| /* nop */ |
| stw_p(p++, 0x8000); stw_p(p++, 0xc000); |
| /* nop */ |
| stw_p(p++, 0x8000); stw_p(p++, 0xc000); |
| /* nop */ |
| stw_p(p++, 0x8000); stw_p(p++, 0xc000); |
| /* nop */ |
| stw_p(p++, 0x8000); stw_p(p++, 0xc000); |
| /* nop */ |
| stw_p(p++, 0x8000); stw_p(p++, 0xc000); |
| /* nop */ |
| |
| /* to_here: */ |
| if (semihosting_get_argc()) { |
| /* Preserve a0 content as arguments have been passed */ |
| stw_p(p++, 0x8000); stw_p(p++, 0xc000); |
| /* nop */ |
| } else { |
| stw_p(p++, 0x0080); stw_p(p++, 0x0002); |
| /* li a0,2 */ |
| } |
| |
| stw_p(p++, 0xe3a0 | NM_HI1(ENVP_ADDR - 64)); |
| |
| stw_p(p++, NM_HI2(ENVP_ADDR - 64)); |
| /* lui sp,%hi(ENVP_ADDR - 64) */ |
| |
| stw_p(p++, 0x83bd); stw_p(p++, NM_LO(ENVP_ADDR - 64)); |
| /* ori sp,sp,%lo(ENVP_ADDR - 64) */ |
| |
| stw_p(p++, 0xe0a0 | NM_HI1(ENVP_ADDR)); |
| |
| stw_p(p++, NM_HI2(ENVP_ADDR)); |
| /* lui a1,%hi(ENVP_ADDR) */ |
| |
| stw_p(p++, 0x80a5); stw_p(p++, NM_LO(ENVP_ADDR)); |
| /* ori a1,a1,%lo(ENVP_ADDR) */ |
| |
| stw_p(p++, 0xe0c0 | NM_HI1(ENVP_ADDR + 8)); |
| |
| stw_p(p++, NM_HI2(ENVP_ADDR + 8)); |
| /* lui a2,%hi(ENVP_ADDR + 8) */ |
| |
| stw_p(p++, 0x80c6); stw_p(p++, NM_LO(ENVP_ADDR + 8)); |
| /* ori a2,a2,%lo(ENVP_ADDR + 8) */ |
| |
| stw_p(p++, 0xe0e0 | NM_HI1(loaderparams.ram_low_size)); |
| |
| stw_p(p++, NM_HI2(loaderparams.ram_low_size)); |
| /* lui a3,%hi(loaderparams.ram_low_size) */ |
| |
| stw_p(p++, 0x80e7); stw_p(p++, NM_LO(loaderparams.ram_low_size)); |
| /* ori a3,a3,%lo(loaderparams.ram_low_size) */ |
| |
| /* |
| * Load BAR registers as done by YAMON: |
| * |
| * - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff |
| * - set up PCI0 MEM0 at 0x10000000, size 0x8000000 |
| * - set up PCI0 MEM1 at 0x18200000, size 0xbe00000 |
| * |
| */ |
| stw_p(p++, 0xe040); stw_p(p++, 0x0681); |
| /* lui t1, %hi(0xb4000000) */ |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| |
| stw_p(p++, 0xe020); stw_p(p++, 0x0be1); |
| /* lui t0, %hi(0xdf000000) */ |
| |
| /* 0x68 corresponds to GT_ISD (from hw/mips/gt64xxx_pci.c) */ |
| stw_p(p++, 0x8422); stw_p(p++, 0x9068); |
| /* sw t0, 0x68(t1) */ |
| |
| stw_p(p++, 0xe040); stw_p(p++, 0x077d); |
| /* lui t1, %hi(0xbbe00000) */ |
| |
| stw_p(p++, 0xe020); stw_p(p++, 0x0801); |
| /* lui t0, %hi(0xc0000000) */ |
| |
| /* 0x48 corresponds to GT_PCI0IOLD */ |
| stw_p(p++, 0x8422); stw_p(p++, 0x9048); |
| /* sw t0, 0x48(t1) */ |
| |
| stw_p(p++, 0xe020); stw_p(p++, 0x0800); |
| /* lui t0, %hi(0x40000000) */ |
| |
| /* 0x50 corresponds to GT_PCI0IOHD */ |
| stw_p(p++, 0x8422); stw_p(p++, 0x9050); |
| /* sw t0, 0x50(t1) */ |
| |
| stw_p(p++, 0xe020); stw_p(p++, 0x0001); |
| /* lui t0, %hi(0x80000000) */ |
| |
| /* 0x58 corresponds to GT_PCI0M0LD */ |
| stw_p(p++, 0x8422); stw_p(p++, 0x9058); |
| /* sw t0, 0x58(t1) */ |
| |
| stw_p(p++, 0xe020); stw_p(p++, 0x07e0); |
| /* lui t0, %hi(0x3f000000) */ |
| |
| /* 0x60 corresponds to GT_PCI0M0HD */ |
| stw_p(p++, 0x8422); stw_p(p++, 0x9060); |
| /* sw t0, 0x60(t1) */ |
| |
| stw_p(p++, 0xe020); stw_p(p++, 0x0821); |
| /* lui t0, %hi(0xc1000000) */ |
| |
| /* 0x80 corresponds to GT_PCI0M1LD */ |
| stw_p(p++, 0x8422); stw_p(p++, 0x9080); |
| /* sw t0, 0x80(t1) */ |
| |
| stw_p(p++, 0xe020); stw_p(p++, 0x0bc0); |
| /* lui t0, %hi(0x5e000000) */ |
| |
| #else |
| |
| stw_p(p++, 0x0020); stw_p(p++, 0x00df); |
| /* addiu[32] t0, $0, 0xdf */ |
| |
| /* 0x68 corresponds to GT_ISD */ |
| stw_p(p++, 0x8422); stw_p(p++, 0x9068); |
| /* sw t0, 0x68(t1) */ |
| |
| /* Use kseg2 remapped address 0x1be00000 */ |
| stw_p(p++, 0xe040); stw_p(p++, 0x077d); |
| /* lui t1, %hi(0xbbe00000) */ |
| |
| stw_p(p++, 0x0020); stw_p(p++, 0x00c0); |
| /* addiu[32] t0, $0, 0xc0 */ |
| |
| /* 0x48 corresponds to GT_PCI0IOLD */ |
| stw_p(p++, 0x8422); stw_p(p++, 0x9048); |
| /* sw t0, 0x48(t1) */ |
| |
| stw_p(p++, 0x0020); stw_p(p++, 0x0040); |
| /* addiu[32] t0, $0, 0x40 */ |
| |
| /* 0x50 corresponds to GT_PCI0IOHD */ |
| stw_p(p++, 0x8422); stw_p(p++, 0x9050); |
| /* sw t0, 0x50(t1) */ |
| |
| stw_p(p++, 0x0020); stw_p(p++, 0x0080); |
| /* addiu[32] t0, $0, 0x80 */ |
| |
| /* 0x58 corresponds to GT_PCI0M0LD */ |
| stw_p(p++, 0x8422); stw_p(p++, 0x9058); |
| /* sw t0, 0x58(t1) */ |
| |
| stw_p(p++, 0x0020); stw_p(p++, 0x003f); |
| /* addiu[32] t0, $0, 0x3f */ |
| |
| /* 0x60 corresponds to GT_PCI0M0HD */ |
| stw_p(p++, 0x8422); stw_p(p++, 0x9060); |
| /* sw t0, 0x60(t1) */ |
| |
| stw_p(p++, 0x0020); stw_p(p++, 0x00c1); |
| /* addiu[32] t0, $0, 0xc1 */ |
| |
| /* 0x80 corresponds to GT_PCI0M1LD */ |
| stw_p(p++, 0x8422); stw_p(p++, 0x9080); |
| /* sw t0, 0x80(t1) */ |
| |
| stw_p(p++, 0x0020); stw_p(p++, 0x005e); |
| /* addiu[32] t0, $0, 0x5e */ |
| |
| #endif |
| |
| /* 0x88 corresponds to GT_PCI0M1HD */ |
| stw_p(p++, 0x8422); stw_p(p++, 0x9088); |
| /* sw t0, 0x88(t1) */ |
| |
| stw_p(p++, 0xe320 | NM_HI1(kernel_entry)); |
| |
| stw_p(p++, NM_HI2(kernel_entry)); |
| /* lui t9,%hi(kernel_entry) */ |
| |
| stw_p(p++, 0x8339); stw_p(p++, NM_LO(kernel_entry)); |
| /* ori t9,t9,%lo(kernel_entry) */ |
| |
| stw_p(p++, 0x4bf9); stw_p(p++, 0x0000); |
| /* jalrc t8 */ |
| } |
| |
| /* |
| * ROM and pseudo bootloader |
| * |
| * The following code implements a very very simple bootloader. It first |
| * loads the registers a0 to a3 to the values expected by the OS, and |
| * then jump at the kernel address. |
| * |
| * The bootloader should pass the locations of the kernel arguments and |
| * environment variables tables. Those tables contain the 32-bit address |
| * of NULL terminated strings. The environment variables table should be |
| * terminated by a NULL address. |
| * |
| * For a simpler implementation, the number of kernel arguments is fixed |
| * to two (the name of the kernel and the command line), and the two |
| * tables are actually the same one. |
| * |
| * The registers a0 to a3 should contain the following values: |
| * a0 - number of kernel arguments |
| * a1 - 32-bit address of the kernel arguments table |
| * a2 - 32-bit address of the environment variables table |
| * a3 - RAM size in bytes |
| */ |
| static void write_bootloader(uint8_t *base, int64_t run_addr, |
| int64_t kernel_entry) |
| { |
| uint32_t *p; |
| |
| /* Small bootloader */ |
| p = (uint32_t *)base; |
| |
| stl_p(p++, 0x08000000 | /* j 0x1fc00580 */ |
| ((run_addr + 0x580) & 0x0fffffff) >> 2); |
| stl_p(p++, 0x00000000); /* nop */ |
| |
| /* YAMON service vector */ |
| stl_p(base + 0x500, run_addr + 0x0580); /* start: */ |
| stl_p(base + 0x504, run_addr + 0x083c); /* print_count: */ |
| stl_p(base + 0x520, run_addr + 0x0580); /* start: */ |
| stl_p(base + 0x52c, run_addr + 0x0800); /* flush_cache: */ |
| stl_p(base + 0x534, run_addr + 0x0808); /* print: */ |
| stl_p(base + 0x538, run_addr + 0x0800); /* reg_cpu_isr: */ |
| stl_p(base + 0x53c, run_addr + 0x0800); /* unred_cpu_isr: */ |
| stl_p(base + 0x540, run_addr + 0x0800); /* reg_ic_isr: */ |
| stl_p(base + 0x544, run_addr + 0x0800); /* unred_ic_isr: */ |
| stl_p(base + 0x548, run_addr + 0x0800); /* reg_esr: */ |
| stl_p(base + 0x54c, run_addr + 0x0800); /* unreg_esr: */ |
| stl_p(base + 0x550, run_addr + 0x0800); /* getchar: */ |
| stl_p(base + 0x554, run_addr + 0x0800); /* syscon_read: */ |
| |
| |
| /* Second part of the bootloader */ |
| p = (uint32_t *) (base + 0x580); |
| |
| if (semihosting_get_argc()) { |
| /* Preserve a0 content as arguments have been passed */ |
| stl_p(p++, 0x00000000); /* nop */ |
| } else { |
| stl_p(p++, 0x24040002); /* addiu a0, zero, 2 */ |
| } |
| |
| /* lui sp, high(ENVP_ADDR) */ |
| stl_p(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); |
| /* ori sp, sp, low(ENVP_ADDR) */ |
| stl_p(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); |
| /* lui a1, high(ENVP_ADDR) */ |
| stl_p(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); |
| /* ori a1, a1, low(ENVP_ADDR) */ |
| stl_p(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); |
| /* lui a2, high(ENVP_ADDR + 8) */ |
| stl_p(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); |
| /* ori a2, a2, low(ENVP_ADDR + 8) */ |
| stl_p(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); |
| /* lui a3, high(ram_low_size) */ |
| stl_p(p++, 0x3c070000 | (loaderparams.ram_low_size >> 16)); |
| /* ori a3, a3, low(ram_low_size) */ |
| stl_p(p++, 0x34e70000 | (loaderparams.ram_low_size & 0xffff)); |
| |
| /* Load BAR registers as done by YAMON */ |
| stl_p(p++, 0x3c09b400); /* lui t1, 0xb400 */ |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| stl_p(p++, 0x3c08df00); /* lui t0, 0xdf00 */ |
| #else |
| stl_p(p++, 0x340800df); /* ori t0, r0, 0x00df */ |
| #endif |
| stl_p(p++, 0xad280068); /* sw t0, 0x0068(t1) */ |
| |
| stl_p(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */ |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| stl_p(p++, 0x3c08c000); /* lui t0, 0xc000 */ |
| #else |
| stl_p(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */ |
| #endif |
| stl_p(p++, 0xad280048); /* sw t0, 0x0048(t1) */ |
| #ifdef TARGET_WORDS_BIGENDIAN |
| stl_p(p++, 0x3c084000); /* lui t0, 0x4000 */ |
| #else |
| stl_p(p++, 0x34080040); /* ori t0, r0, 0x0040 */ |
| #endif |
| stl_p(p++, 0xad280050); /* sw t0, 0x0050(t1) */ |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| stl_p(p++, 0x3c088000); /* lui t0, 0x8000 */ |
| #else |
| stl_p(p++, 0x34080080); /* ori t0, r0, 0x0080 */ |
| #endif |
| stl_p(p++, 0xad280058); /* sw t0, 0x0058(t1) */ |
| #ifdef TARGET_WORDS_BIGENDIAN |
| stl_p(p++, 0x3c083f00); /* lui t0, 0x3f00 */ |
| #else |
| stl_p(p++, 0x3408003f); /* ori t0, r0, 0x003f */ |
| #endif |
| stl_p(p++, 0xad280060); /* sw t0, 0x0060(t1) */ |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| stl_p(p++, 0x3c08c100); /* lui t0, 0xc100 */ |
| #else |
| stl_p(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */ |
| #endif |
| stl_p(p++, 0xad280080); /* sw t0, 0x0080(t1) */ |
| #ifdef TARGET_WORDS_BIGENDIAN |
| stl_p(p++, 0x3c085e00); /* lui t0, 0x5e00 */ |
| #else |
| stl_p(p++, 0x3408005e); /* ori t0, r0, 0x005e */ |
| #endif |
| stl_p(p++, 0xad280088); /* sw t0, 0x0088(t1) */ |
| |
| /* Jump to kernel code */ |
| stl_p(p++, 0x3c1f0000 | |
| ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */ |
| stl_p(p++, 0x37ff0000 | |
| (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */ |
| stl_p(p++, 0x03e00009); /* jalr ra */ |
| stl_p(p++, 0x00000000); /* nop */ |
| |
| /* YAMON subroutines */ |
| p = (uint32_t *) (base + 0x800); |
| stl_p(p++, 0x03e00009); /* jalr ra */ |
| stl_p(p++, 0x24020000); /* li v0,0 */ |
| /* 808 YAMON print */ |
| stl_p(p++, 0x03e06821); /* move t5,ra */ |
| stl_p(p++, 0x00805821); /* move t3,a0 */ |
| stl_p(p++, 0x00a05021); /* move t2,a1 */ |
| stl_p(p++, 0x91440000); /* lbu a0,0(t2) */ |
| stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */ |
| stl_p(p++, 0x10800005); /* beqz a0,834 */ |
| stl_p(p++, 0x00000000); /* nop */ |
| stl_p(p++, 0x0ff0021c); /* jal 870 */ |
| stl_p(p++, 0x00000000); /* nop */ |
| stl_p(p++, 0x1000fff9); /* b 814 */ |
| stl_p(p++, 0x00000000); /* nop */ |
| stl_p(p++, 0x01a00009); /* jalr t5 */ |
| stl_p(p++, 0x01602021); /* move a0,t3 */ |
| /* 0x83c YAMON print_count */ |
| stl_p(p++, 0x03e06821); /* move t5,ra */ |
| stl_p(p++, 0x00805821); /* move t3,a0 */ |
| stl_p(p++, 0x00a05021); /* move t2,a1 */ |
| stl_p(p++, 0x00c06021); /* move t4,a2 */ |
| stl_p(p++, 0x91440000); /* lbu a0,0(t2) */ |
| stl_p(p++, 0x0ff0021c); /* jal 870 */ |
| stl_p(p++, 0x00000000); /* nop */ |
| stl_p(p++, 0x254a0001); /* addiu t2,t2,1 */ |
| stl_p(p++, 0x258cffff); /* addiu t4,t4,-1 */ |
| stl_p(p++, 0x1580fffa); /* bnez t4,84c */ |
| stl_p(p++, 0x00000000); /* nop */ |
| stl_p(p++, 0x01a00009); /* jalr t5 */ |
| stl_p(p++, 0x01602021); /* move a0,t3 */ |
| /* 0x870 */ |
| stl_p(p++, 0x3c08b800); /* lui t0,0xb400 */ |
| stl_p(p++, 0x350803f8); /* ori t0,t0,0x3f8 */ |
| stl_p(p++, 0x91090005); /* lbu t1,5(t0) */ |
| stl_p(p++, 0x00000000); /* nop */ |
| stl_p(p++, 0x31290040); /* andi t1,t1,0x40 */ |
| stl_p(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */ |
| stl_p(p++, 0x00000000); /* nop */ |
| stl_p(p++, 0x03e00009); /* jalr ra */ |
| stl_p(p++, 0xa1040000); /* sb a0,0(t0) */ |
| |
| } |
| |
| static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t *prom_buf, int index, |
| const char *string, ...) |
| { |
| va_list ap; |
| int32_t table_addr; |
| |
| if (index >= ENVP_NB_ENTRIES) { |
| return; |
| } |
| |
| if (string == NULL) { |
| prom_buf[index] = 0; |
| return; |
| } |
| |
| table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE; |
| prom_buf[index] = tswap32(ENVP_ADDR + table_addr); |
| |
| va_start(ap, string); |
| vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap); |
| va_end(ap); |
| } |
| |
| /* Kernel */ |
| static int64_t load_kernel(void) |
| { |
| int64_t kernel_entry, kernel_high, initrd_size; |
| long kernel_size; |
| ram_addr_t initrd_offset; |
| int big_endian; |
| uint32_t *prom_buf; |
| long prom_size; |
| int prom_index = 0; |
| uint64_t (*xlate_to_kseg0) (void *opaque, uint64_t addr); |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| big_endian = 1; |
| #else |
| big_endian = 0; |
| #endif |
| |
| kernel_size = load_elf(loaderparams.kernel_filename, NULL, |
| cpu_mips_kseg0_to_phys, NULL, |
| (uint64_t *)&kernel_entry, NULL, |
| (uint64_t *)&kernel_high, NULL, big_endian, EM_MIPS, |
| 1, 0); |
| if (kernel_size < 0) { |
| error_report("could not load kernel '%s': %s", |
| loaderparams.kernel_filename, |
| load_elf_strerror(kernel_size)); |
| exit(1); |
| } |
| |
| /* Check where the kernel has been linked */ |
| if (kernel_entry & 0x80000000ll) { |
| if (kvm_enabled()) { |
| error_report("KVM guest kernels must be linked in useg. " |
| "Did you forget to enable CONFIG_KVM_GUEST?"); |
| exit(1); |
| } |
| |
| xlate_to_kseg0 = cpu_mips_phys_to_kseg0; |
| } else { |
| /* if kernel entry is in useg it is probably a KVM T&E kernel */ |
| mips_um_ksegs_enable(); |
| |
| xlate_to_kseg0 = cpu_mips_kvm_um_phys_to_kseg0; |
| } |
| |
| /* load initrd */ |
| initrd_size = 0; |
| initrd_offset = 0; |
| if (loaderparams.initrd_filename) { |
| initrd_size = get_image_size(loaderparams.initrd_filename); |
| if (initrd_size > 0) { |
| /* |
| * The kernel allocates the bootmap memory in the low memory after |
| * the initrd. It takes at most 128kiB for 2GB RAM and 4kiB |
| * pages. |
| */ |
| initrd_offset = (loaderparams.ram_low_size - initrd_size |
| - (128 * KiB) |
| - ~INITRD_PAGE_MASK) & INITRD_PAGE_MASK; |
| if (kernel_high >= initrd_offset) { |
| error_report("memory too small for initial ram disk '%s'", |
| loaderparams.initrd_filename); |
| exit(1); |
| } |
| initrd_size = load_image_targphys(loaderparams.initrd_filename, |
| initrd_offset, |
| ram_size - initrd_offset); |
| } |
| if (initrd_size == (target_ulong) -1) { |
| error_report("could not load initial ram disk '%s'", |
| loaderparams.initrd_filename); |
| exit(1); |
| } |
| } |
| |
| /* Setup prom parameters. */ |
| prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE); |
| prom_buf = g_malloc(prom_size); |
| |
| prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename); |
| if (initrd_size > 0) { |
| prom_set(prom_buf, prom_index++, |
| "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s", |
| xlate_to_kseg0(NULL, initrd_offset), |
| initrd_size, loaderparams.kernel_cmdline); |
| } else { |
| prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline); |
| } |
| |
| prom_set(prom_buf, prom_index++, "memsize"); |
| prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size); |
| |
| prom_set(prom_buf, prom_index++, "ememsize"); |
| prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size); |
| |
| prom_set(prom_buf, prom_index++, "modetty0"); |
| prom_set(prom_buf, prom_index++, "38400n8r"); |
| prom_set(prom_buf, prom_index++, NULL); |
| |
| rom_add_blob_fixed("prom", prom_buf, prom_size, |
| cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR)); |
| |
| g_free(prom_buf); |
| return kernel_entry; |
| } |
| |
| static void malta_mips_config(MIPSCPU *cpu) |
| { |
| MachineState *ms = MACHINE(qdev_get_machine()); |
| unsigned int smp_cpus = ms->smp.cpus; |
| CPUMIPSState *env = &cpu->env; |
| CPUState *cs = CPU(cpu); |
| |
| env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) | |
| ((smp_cpus * cs->nr_threads - 1) << CP0MVPC0_PTC); |
| } |
| |
| static void main_cpu_reset(void *opaque) |
| { |
| MIPSCPU *cpu = opaque; |
| CPUMIPSState *env = &cpu->env; |
| |
| cpu_reset(CPU(cpu)); |
| |
| /* |
| * The bootloader does not need to be rewritten as it is located in a |
| * read only location. The kernel location and the arguments table |
| * location does not change. |
| */ |
| if (loaderparams.kernel_filename) { |
| env->CP0_Status &= ~(1 << CP0St_ERL); |
| } |
| |
| malta_mips_config(cpu); |
| |
| if (kvm_enabled()) { |
| /* Start running from the bootloader we wrote to end of RAM */ |
| env->active_tc.PC = 0x40000000 + loaderparams.ram_low_size; |
| } |
| } |
| |
| static void create_cpu_without_cps(MachineState *ms, |
| qemu_irq *cbus_irq, qemu_irq *i8259_irq) |
| { |
| CPUMIPSState *env; |
| MIPSCPU *cpu; |
| int i; |
| |
| for (i = 0; i < ms->smp.cpus; i++) { |
| cpu = MIPS_CPU(cpu_create(ms->cpu_type)); |
| |
| /* Init internal devices */ |
| cpu_mips_irq_init_cpu(cpu); |
| cpu_mips_clock_init(cpu); |
| qemu_register_reset(main_cpu_reset, cpu); |
| } |
| |
| cpu = MIPS_CPU(first_cpu); |
| env = &cpu->env; |
| *i8259_irq = env->irq[2]; |
| *cbus_irq = env->irq[4]; |
| } |
| |
| static void create_cps(MachineState *ms, MaltaState *s, |
| qemu_irq *cbus_irq, qemu_irq *i8259_irq) |
| { |
| Error *err = NULL; |
| |
| sysbus_init_child_obj(OBJECT(s), "cps", OBJECT(&s->cps), sizeof(s->cps), |
| TYPE_MIPS_CPS); |
| object_property_set_str(OBJECT(&s->cps), ms->cpu_type, "cpu-type", &err); |
| object_property_set_int(OBJECT(&s->cps), ms->smp.cpus, "num-vp", &err); |
| object_property_set_bool(OBJECT(&s->cps), true, "realized", &err); |
| if (err != NULL) { |
| error_report("%s", error_get_pretty(err)); |
| exit(1); |
| } |
| |
| sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1); |
| |
| *i8259_irq = get_cps_irq(&s->cps, 3); |
| *cbus_irq = NULL; |
| } |
| |
| static void mips_create_cpu(MachineState *ms, MaltaState *s, |
| qemu_irq *cbus_irq, qemu_irq *i8259_irq) |
| { |
| if ((ms->smp.cpus > 1) && cpu_supports_cps_smp(ms->cpu_type)) { |
| create_cps(ms, s, cbus_irq, i8259_irq); |
| } else { |
| create_cpu_without_cps(ms, cbus_irq, i8259_irq); |
| } |
| } |
| |
| static |
| void mips_malta_init(MachineState *machine) |
| { |
| ram_addr_t ram_size = machine->ram_size; |
| ram_addr_t ram_low_size; |
| const char *kernel_filename = machine->kernel_filename; |
| const char *kernel_cmdline = machine->kernel_cmdline; |
| const char *initrd_filename = machine->initrd_filename; |
| char *filename; |
| PFlashCFI01 *fl; |
| MemoryRegion *system_memory = get_system_memory(); |
| MemoryRegion *ram_high = g_new(MemoryRegion, 1); |
| MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1); |
| MemoryRegion *ram_low_postio; |
| MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1); |
| const size_t smbus_eeprom_size = 8 * 256; |
| uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size); |
| int64_t kernel_entry, bootloader_run_addr; |
| PCIBus *pci_bus; |
| ISABus *isa_bus; |
| qemu_irq cbus_irq, i8259_irq; |
| I2CBus *smbus; |
| DriveInfo *dinfo; |
| int fl_idx = 0; |
| int be; |
| |
| DeviceState *dev = qdev_create(NULL, TYPE_MIPS_MALTA); |
| MaltaState *s = MIPS_MALTA(dev); |
| |
| /* |
| * The whole address space decoded by the GT-64120A doesn't generate |
| * exception when accessing invalid memory. Create an empty slot to |
| * emulate this feature. |
| */ |
| empty_slot_init(0, 0x20000000); |
| |
| qdev_init_nofail(dev); |
| |
| /* create CPU */ |
| mips_create_cpu(machine, s, &cbus_irq, &i8259_irq); |
| |
| /* allocate RAM */ |
| if (ram_size > 2 * GiB) { |
| error_report("Too much memory for this machine: %" PRId64 "MB," |
| " maximum 2048MB", ram_size / MiB); |
| exit(1); |
| } |
| |
| /* register RAM at high address where it is undisturbed by IO */ |
| memory_region_allocate_system_memory(ram_high, NULL, "mips_malta.ram", |
| ram_size); |
| memory_region_add_subregion(system_memory, 0x80000000, ram_high); |
| |
| /* alias for pre IO hole access */ |
| memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram", |
| ram_high, 0, MIN(ram_size, 256 * MiB)); |
| memory_region_add_subregion(system_memory, 0, ram_low_preio); |
| |
| /* alias for post IO hole access, if there is enough RAM */ |
| if (ram_size > 512 * MiB) { |
| ram_low_postio = g_new(MemoryRegion, 1); |
| memory_region_init_alias(ram_low_postio, NULL, |
| "mips_malta_low_postio.ram", |
| ram_high, 512 * MiB, |
| ram_size - 512 * MiB); |
| memory_region_add_subregion(system_memory, 512 * MiB, |
| ram_low_postio); |
| } |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| be = 1; |
| #else |
| be = 0; |
| #endif |
| |
| /* FPGA */ |
| |
| /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */ |
| malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2)); |
| |
| /* Load firmware in flash / BIOS. */ |
| dinfo = drive_get(IF_PFLASH, 0, fl_idx); |
| fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios", |
| FLASH_SIZE, |
| dinfo ? blk_by_legacy_dinfo(dinfo) : NULL, |
| 65536, |
| 4, 0x0000, 0x0000, 0x0000, 0x0000, be); |
| bios = pflash_cfi01_get_memory(fl); |
| fl_idx++; |
| if (kernel_filename) { |
| ram_low_size = MIN(ram_size, 256 * MiB); |
| /* For KVM we reserve 1MB of RAM for running bootloader */ |
| if (kvm_enabled()) { |
| ram_low_size -= 0x100000; |
| bootloader_run_addr = 0x40000000 + ram_low_size; |
| } else { |
| bootloader_run_addr = 0xbfc00000; |
| } |
| |
| /* Write a small bootloader to the flash location. */ |
| loaderparams.ram_size = ram_size; |
| loaderparams.ram_low_size = ram_low_size; |
| loaderparams.kernel_filename = kernel_filename; |
| loaderparams.kernel_cmdline = kernel_cmdline; |
| loaderparams.initrd_filename = initrd_filename; |
| kernel_entry = load_kernel(); |
| |
| if (!cpu_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) { |
| write_bootloader(memory_region_get_ram_ptr(bios), |
| bootloader_run_addr, kernel_entry); |
| } else { |
| write_bootloader_nanomips(memory_region_get_ram_ptr(bios), |
| bootloader_run_addr, kernel_entry); |
| } |
| if (kvm_enabled()) { |
| /* Write the bootloader code @ the end of RAM, 1MB reserved */ |
| write_bootloader(memory_region_get_ram_ptr(ram_low_preio) + |
| ram_low_size, |
| bootloader_run_addr, kernel_entry); |
| } |
| } else { |
| target_long bios_size = FLASH_SIZE; |
| /* The flash region isn't executable from a KVM guest */ |
| if (kvm_enabled()) { |
| error_report("KVM enabled but no -kernel argument was specified. " |
| "Booting from flash is not supported with KVM."); |
| exit(1); |
| } |
| /* Load firmware from flash. */ |
| if (!dinfo) { |
| /* Load a BIOS image. */ |
| if (bios_name == NULL) { |
| bios_name = BIOS_FILENAME; |
| } |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); |
| if (filename) { |
| bios_size = load_image_targphys(filename, FLASH_ADDRESS, |
| BIOS_SIZE); |
| g_free(filename); |
| } else { |
| bios_size = -1; |
| } |
| if ((bios_size < 0 || bios_size > BIOS_SIZE) && |
| !kernel_filename && !qtest_enabled()) { |
| error_report("Could not load MIPS bios '%s', and no " |
| "-kernel argument was specified", bios_name); |
| exit(1); |
| } |
| } |
| /* |
| * In little endian mode the 32bit words in the bios are swapped, |
| * a neat trick which allows bi-endian firmware. |
| */ |
| #ifndef TARGET_WORDS_BIGENDIAN |
| { |
| uint32_t *end, *addr; |
| const size_t swapsize = MIN(bios_size, 0x3e0000); |
| addr = rom_ptr(FLASH_ADDRESS, swapsize); |
| if (!addr) { |
| addr = memory_region_get_ram_ptr(bios); |
| } |
| end = (void *)addr + swapsize; |
| while (addr < end) { |
| bswap32s(addr); |
| addr++; |
| } |
| } |
| #endif |
| } |
| |
| /* |
| * Map the BIOS at a 2nd physical location, as on the real board. |
| * Copy it so that we can patch in the MIPS revision, which cannot be |
| * handled by an overlapping region as the resulting ROM code subpage |
| * regions are not executable. |
| */ |
| memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE, |
| &error_fatal); |
| if (!rom_copy(memory_region_get_ram_ptr(bios_copy), |
| FLASH_ADDRESS, BIOS_SIZE)) { |
| memcpy(memory_region_get_ram_ptr(bios_copy), |
| memory_region_get_ram_ptr(bios), BIOS_SIZE); |
| } |
| memory_region_set_readonly(bios_copy, true); |
| memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy); |
| |
| /* Board ID = 0x420 (Malta Board with CoreLV) */ |
| stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420); |
| |
| /* Northbridge */ |
| pci_bus = gt64120_register(s->i8259); |
| |
| /* Southbridge */ |
| dev = piix4_create(pci_bus, &isa_bus, &smbus, MAX_IDE_BUS); |
| |
| /* Interrupt controller */ |
| qdev_connect_gpio_out_named(dev, "intr", 0, i8259_irq); |
| for (int i = 0; i < ISA_NUM_IRQS; i++) { |
| s->i8259[i] = qdev_get_gpio_in_named(dev, "isa", i); |
| } |
| |
| /* generate SPD EEPROM data */ |
| generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size); |
| generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]); |
| smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size); |
| g_free(smbus_eeprom_buf); |
| |
| /* Super I/O: SMS FDC37M817 */ |
| isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO); |
| |
| /* Network card */ |
| network_init(pci_bus); |
| |
| /* Optional PCI video card */ |
| pci_vga_init(pci_bus); |
| } |
| |
| static const TypeInfo mips_malta_device = { |
| .name = TYPE_MIPS_MALTA, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(MaltaState), |
| }; |
| |
| static void mips_malta_machine_init(MachineClass *mc) |
| { |
| mc->desc = "MIPS Malta Core LV"; |
| mc->init = mips_malta_init; |
| mc->block_default_type = IF_IDE; |
| mc->max_cpus = 16; |
| mc->is_default = 1; |
| #ifdef TARGET_MIPS64 |
| mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc"); |
| #else |
| mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf"); |
| #endif |
| } |
| |
| DEFINE_MACHINE("malta", mips_malta_machine_init) |
| |
| static void mips_malta_register_types(void) |
| { |
| type_register_static(&mips_malta_device); |
| } |
| |
| type_init(mips_malta_register_types) |