blob: bacadfcac593a1350958145121fc95c81b431b70 [file] [log] [blame]
/*
* QEMU SPAPR Dynamic Reconfiguration Connector Implementation
*
* Copyright IBM Corp. 2014
*
* Authors:
* Michael Roth <mdroth@linux.vnet.ibm.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qapi/qmp/qnull.h"
#include "cpu.h"
#include "qemu/cutils.h"
#include "hw/ppc/spapr_drc.h"
#include "qom/object.h"
#include "hw/qdev.h"
#include "qapi/visitor.h"
#include "qemu/error-report.h"
#include "hw/ppc/spapr.h" /* for RTAS return codes */
#include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
#include "sysemu/device_tree.h"
#include "trace.h"
#define DRC_CONTAINER_PATH "/dr-connector"
#define DRC_INDEX_TYPE_SHIFT 28
#define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
SpaprDrcType spapr_drc_type(SpaprDrc *drc)
{
SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
return 1 << drck->typeshift;
}
uint32_t spapr_drc_index(SpaprDrc *drc)
{
SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
/* no set format for a drc index: it only needs to be globally
* unique. this is how we encode the DRC type on bare-metal
* however, so might as well do that here
*/
return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
| (drc->id & DRC_INDEX_ID_MASK);
}
static uint32_t drc_isolate_physical(SpaprDrc *drc)
{
switch (drc->state) {
case SPAPR_DRC_STATE_PHYSICAL_POWERON:
return RTAS_OUT_SUCCESS; /* Nothing to do */
case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
break; /* see below */
case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
return RTAS_OUT_PARAM_ERROR; /* not allowed */
default:
g_assert_not_reached();
}
drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
if (drc->unplug_requested) {
uint32_t drc_index = spapr_drc_index(drc);
trace_spapr_drc_set_isolation_state_finalizing(drc_index);
spapr_drc_detach(drc);
}
return RTAS_OUT_SUCCESS;
}
static uint32_t drc_unisolate_physical(SpaprDrc *drc)
{
switch (drc->state) {
case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
return RTAS_OUT_SUCCESS; /* Nothing to do */
case SPAPR_DRC_STATE_PHYSICAL_POWERON:
break; /* see below */
default:
g_assert_not_reached();
}
/* cannot unisolate a non-existent resource, and, or resources
* which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
* 13.5.3.5)
*/
if (!drc->dev) {
return RTAS_OUT_NO_SUCH_INDICATOR;
}
drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
drc->ccs_offset = drc->fdt_start_offset;
drc->ccs_depth = 0;
return RTAS_OUT_SUCCESS;
}
static uint32_t drc_isolate_logical(SpaprDrc *drc)
{
switch (drc->state) {
case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
return RTAS_OUT_SUCCESS; /* Nothing to do */
case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
break; /* see below */
case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
return RTAS_OUT_PARAM_ERROR; /* not allowed */
default:
g_assert_not_reached();
}
/*
* Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
* belong to a DIMM device that is marked for removal.
*
* Currently the guest userspace tool drmgr that drives the memory
* hotplug/unplug will just try to remove a set of 'removable' LMBs
* in response to a hot unplug request that is based on drc-count.
* If the LMB being removed doesn't belong to a DIMM device that is
* actually being unplugged, fail the isolation request here.
*/
if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
&& !drc->unplug_requested) {
return RTAS_OUT_HW_ERROR;
}
drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
/* if we're awaiting release, but still in an unconfigured state,
* it's likely the guest is still in the process of configuring
* the device and is transitioning the devices to an ISOLATED
* state as a part of that process. so we only complete the
* removal when this transition happens for a device in a
* configured state, as suggested by the state diagram from PAPR+
* 2.7, 13.4
*/
if (drc->unplug_requested) {
uint32_t drc_index = spapr_drc_index(drc);
trace_spapr_drc_set_isolation_state_finalizing(drc_index);
spapr_drc_detach(drc);
}
return RTAS_OUT_SUCCESS;
}
static uint32_t drc_unisolate_logical(SpaprDrc *drc)
{
switch (drc->state) {
case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
return RTAS_OUT_SUCCESS; /* Nothing to do */
case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
break; /* see below */
case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
default:
g_assert_not_reached();
}
/* Move to AVAILABLE state should have ensured device was present */
g_assert(drc->dev);
drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
drc->ccs_offset = drc->fdt_start_offset;
drc->ccs_depth = 0;
return RTAS_OUT_SUCCESS;
}
static uint32_t drc_set_usable(SpaprDrc *drc)
{
switch (drc->state) {
case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
return RTAS_OUT_SUCCESS; /* Nothing to do */
case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
break; /* see below */
default:
g_assert_not_reached();
}
/* if there's no resource/device associated with the DRC, there's
* no way for us to put it in an allocation state consistent with
* being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
* result in an RTAS return code of -3 / "no such indicator"
*/
if (!drc->dev) {
return RTAS_OUT_NO_SUCH_INDICATOR;
}
if (drc->unplug_requested) {
/* Don't allow the guest to move a device away from UNUSABLE
* state when we want to unplug it */
return RTAS_OUT_NO_SUCH_INDICATOR;
}
drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
return RTAS_OUT_SUCCESS;
}
static uint32_t drc_set_unusable(SpaprDrc *drc)
{
switch (drc->state) {
case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
return RTAS_OUT_SUCCESS; /* Nothing to do */
case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
break; /* see below */
case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
default:
g_assert_not_reached();
}
drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
if (drc->unplug_requested) {
uint32_t drc_index = spapr_drc_index(drc);
trace_spapr_drc_set_allocation_state_finalizing(drc_index);
spapr_drc_detach(drc);
}
return RTAS_OUT_SUCCESS;
}
static const char *spapr_drc_name(SpaprDrc *drc)
{
SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
/* human-readable name for a DRC to encode into the DT
* description. this is mainly only used within a guest in place
* of the unique DRC index.
*
* in the case of VIO/PCI devices, it corresponds to a "location
* code" that maps a logical device/function (DRC index) to a
* physical (or virtual in the case of VIO) location in the system
* by chaining together the "location label" for each
* encapsulating component.
*
* since this is more to do with diagnosing physical hardware
* issues than guest compatibility, we choose location codes/DRC
* names that adhere to the documented format, but avoid encoding
* the entire topology information into the label/code, instead
* just using the location codes based on the labels for the
* endpoints (VIO/PCI adaptor connectors), which is basically just
* "C" followed by an integer ID.
*
* DRC names as documented by PAPR+ v2.7, 13.5.2.4
* location codes as documented by PAPR+ v2.7, 12.3.1.5
*/
return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
}
/*
* dr-entity-sense sensor value
* returned via get-sensor-state RTAS calls
* as expected by state diagram in PAPR+ 2.7, 13.4
* based on the current allocation/indicator/power states
* for the DR connector.
*/
static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
{
/* this assumes all PCI devices are assigned to a 'live insertion'
* power domain, where QEMU manages power state automatically as
* opposed to the guest. present, non-PCI resources are unaffected
* by power state.
*/
return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
: SPAPR_DR_ENTITY_SENSE_EMPTY;
}
static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
{
switch (drc->state) {
case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
g_assert(drc->dev);
return SPAPR_DR_ENTITY_SENSE_PRESENT;
default:
g_assert_not_reached();
}
}
static void prop_get_index(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
uint32_t value = spapr_drc_index(drc);
visit_type_uint32(v, name, &value, errp);
}
static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
QNull *null = NULL;
Error *err = NULL;
int fdt_offset_next, fdt_offset, fdt_depth;
void *fdt;
if (!drc->fdt) {
visit_type_null(v, NULL, &null, errp);
qobject_unref(null);
return;
}
fdt = drc->fdt;
fdt_offset = drc->fdt_start_offset;
fdt_depth = 0;
do {
const char *name = NULL;
const struct fdt_property *prop = NULL;
int prop_len = 0, name_len = 0;
uint32_t tag;
tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
switch (tag) {
case FDT_BEGIN_NODE:
fdt_depth++;
name = fdt_get_name(fdt, fdt_offset, &name_len);
visit_start_struct(v, name, NULL, 0, &err);
if (err) {
error_propagate(errp, err);
return;
}
break;
case FDT_END_NODE:
/* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
g_assert(fdt_depth > 0);
visit_check_struct(v, &err);
visit_end_struct(v, NULL);
if (err) {
error_propagate(errp, err);
return;
}
fdt_depth--;
break;
case FDT_PROP: {
int i;
prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
visit_start_list(v, name, NULL, 0, &err);
if (err) {
error_propagate(errp, err);
return;
}
for (i = 0; i < prop_len; i++) {
visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
if (err) {
error_propagate(errp, err);
return;
}
}
visit_check_list(v, &err);
visit_end_list(v, NULL);
if (err) {
error_propagate(errp, err);
return;
}
break;
}
default:
error_report("device FDT in unexpected state: %d", tag);
abort();
}
fdt_offset = fdt_offset_next;
} while (fdt_depth != 0);
}
void spapr_drc_attach(SpaprDrc *drc, DeviceState *d, Error **errp)
{
trace_spapr_drc_attach(spapr_drc_index(drc));
if (drc->dev) {
error_setg(errp, "an attached device is still awaiting release");
return;
}
g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
|| (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
drc->dev = d;
object_property_add_link(OBJECT(drc), "device",
object_get_typename(OBJECT(drc->dev)),
(Object **)(&drc->dev),
NULL, 0, NULL);
}
static void spapr_drc_release(SpaprDrc *drc)
{
SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
drck->release(drc->dev);
drc->unplug_requested = false;
g_free(drc->fdt);
drc->fdt = NULL;
drc->fdt_start_offset = 0;
object_property_del(OBJECT(drc), "device", &error_abort);
drc->dev = NULL;
}
void spapr_drc_detach(SpaprDrc *drc)
{
SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
trace_spapr_drc_detach(spapr_drc_index(drc));
g_assert(drc->dev);
drc->unplug_requested = true;
if (drc->state != drck->empty_state) {
trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
return;
}
spapr_drc_release(drc);
}
void spapr_drc_reset(SpaprDrc *drc)
{
SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
trace_spapr_drc_reset(spapr_drc_index(drc));
/* immediately upon reset we can safely assume DRCs whose devices
* are pending removal can be safely removed.
*/
if (drc->unplug_requested) {
spapr_drc_release(drc);
}
if (drc->dev) {
/* A device present at reset is ready to go, same as coldplugged */
drc->state = drck->ready_state;
/*
* Ensure that we are able to send the FDT fragment again
* via configure-connector call if the guest requests.
*/
drc->ccs_offset = drc->fdt_start_offset;
drc->ccs_depth = 0;
} else {
drc->state = drck->empty_state;
drc->ccs_offset = -1;
drc->ccs_depth = -1;
}
}
bool spapr_drc_needed(void *opaque)
{
SpaprDrc *drc = (SpaprDrc *)opaque;
SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
/* If no dev is plugged in there is no need to migrate the DRC state */
if (!drc->dev) {
return false;
}
/*
* We need to migrate the state if it's not equal to the expected
* long-term state, which is the same as the coldplugged initial
* state */
return (drc->state != drck->ready_state);
}
static const VMStateDescription vmstate_spapr_drc = {
.name = "spapr_drc",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_drc_needed,
.fields = (VMStateField []) {
VMSTATE_UINT32(state, SpaprDrc),
VMSTATE_END_OF_LIST()
}
};
static void realize(DeviceState *d, Error **errp)
{
SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
Object *root_container;
gchar *link_name;
gchar *child_name;
Error *err = NULL;
trace_spapr_drc_realize(spapr_drc_index(drc));
/* NOTE: we do this as part of realize/unrealize due to the fact
* that the guest will communicate with the DRC via RTAS calls
* referencing the global DRC index. By unlinking the DRC
* from DRC_CONTAINER_PATH/<drc_index> we effectively make it
* inaccessible by the guest, since lookups rely on this path
* existing in the composition tree
*/
root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
link_name = g_strdup_printf("%x", spapr_drc_index(drc));
child_name = object_get_canonical_path_component(OBJECT(drc));
trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
object_property_add_alias(root_container, link_name,
drc->owner, child_name, &err);
g_free(child_name);
g_free(link_name);
if (err) {
error_propagate(errp, err);
return;
}
vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
drc);
trace_spapr_drc_realize_complete(spapr_drc_index(drc));
}
static void unrealize(DeviceState *d, Error **errp)
{
SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
Object *root_container;
gchar *name;
trace_spapr_drc_unrealize(spapr_drc_index(drc));
vmstate_unregister(DEVICE(drc), &vmstate_spapr_drc, drc);
root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
name = g_strdup_printf("%x", spapr_drc_index(drc));
object_property_del(root_container, name, errp);
g_free(name);
}
SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
uint32_t id)
{
SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
char *prop_name;
drc->id = id;
drc->owner = owner;
prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
spapr_drc_index(drc));
object_property_add_child(owner, prop_name, OBJECT(drc), &error_abort);
object_unref(OBJECT(drc));
object_property_set_bool(OBJECT(drc), true, "realized", NULL);
g_free(prop_name);
return drc;
}
static void spapr_dr_connector_instance_init(Object *obj)
{
SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
object_property_add(obj, "index", "uint32", prop_get_index,
NULL, NULL, NULL, NULL);
object_property_add(obj, "fdt", "struct", prop_get_fdt,
NULL, NULL, NULL, NULL);
drc->state = drck->empty_state;
}
static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
{
DeviceClass *dk = DEVICE_CLASS(k);
dk->realize = realize;
dk->unrealize = unrealize;
/*
* Reason: it crashes FIXME find and document the real reason
*/
dk->user_creatable = false;
}
static bool drc_physical_needed(void *opaque)
{
SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
|| (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
return false;
}
return true;
}
static const VMStateDescription vmstate_spapr_drc_physical = {
.name = "spapr_drc/physical",
.version_id = 1,
.minimum_version_id = 1,
.needed = drc_physical_needed,
.fields = (VMStateField []) {
VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
VMSTATE_END_OF_LIST()
}
};
static void drc_physical_reset(void *opaque)
{
SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
if (drc->dev) {
drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
} else {
drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
}
}
static void realize_physical(DeviceState *d, Error **errp)
{
SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
Error *local_err = NULL;
realize(d, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
vmstate_register(DEVICE(drcp), spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
&vmstate_spapr_drc_physical, drcp);
qemu_register_reset(drc_physical_reset, drcp);
}
static void unrealize_physical(DeviceState *d, Error **errp)
{
SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
Error *local_err = NULL;
unrealize(d, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
vmstate_unregister(DEVICE(drcp), &vmstate_spapr_drc_physical, drcp);
qemu_unregister_reset(drc_physical_reset, drcp);
}
static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
{
DeviceClass *dk = DEVICE_CLASS(k);
SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
dk->realize = realize_physical;
dk->unrealize = unrealize_physical;
drck->dr_entity_sense = physical_entity_sense;
drck->isolate = drc_isolate_physical;
drck->unisolate = drc_unisolate_physical;
drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
}
static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
{
SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
drck->dr_entity_sense = logical_entity_sense;
drck->isolate = drc_isolate_logical;
drck->unisolate = drc_unisolate_logical;
drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
}
static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
{
SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
drck->typename = "CPU";
drck->drc_name_prefix = "CPU ";
drck->release = spapr_core_release;
drck->dt_populate = spapr_core_dt_populate;
}
static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
{
SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
drck->typename = "28";
drck->drc_name_prefix = "C";
drck->release = spapr_phb_remove_pci_device_cb;
drck->dt_populate = spapr_pci_dt_populate;
}
static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
{
SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
drck->typename = "MEM";
drck->drc_name_prefix = "LMB ";
drck->release = spapr_lmb_release;
drck->dt_populate = spapr_lmb_dt_populate;
}
static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
{
SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
drck->typename = "PHB";
drck->drc_name_prefix = "PHB ";
drck->release = spapr_phb_release;
drck->dt_populate = spapr_phb_dt_populate;
}
static const TypeInfo spapr_dr_connector_info = {
.name = TYPE_SPAPR_DR_CONNECTOR,
.parent = TYPE_DEVICE,
.instance_size = sizeof(SpaprDrc),
.instance_init = spapr_dr_connector_instance_init,
.class_size = sizeof(SpaprDrcClass),
.class_init = spapr_dr_connector_class_init,
.abstract = true,
};
static const TypeInfo spapr_drc_physical_info = {
.name = TYPE_SPAPR_DRC_PHYSICAL,
.parent = TYPE_SPAPR_DR_CONNECTOR,
.instance_size = sizeof(SpaprDrcPhysical),
.class_init = spapr_drc_physical_class_init,
.abstract = true,
};
static const TypeInfo spapr_drc_logical_info = {
.name = TYPE_SPAPR_DRC_LOGICAL,
.parent = TYPE_SPAPR_DR_CONNECTOR,
.class_init = spapr_drc_logical_class_init,
.abstract = true,
};
static const TypeInfo spapr_drc_cpu_info = {
.name = TYPE_SPAPR_DRC_CPU,
.parent = TYPE_SPAPR_DRC_LOGICAL,
.class_init = spapr_drc_cpu_class_init,
};
static const TypeInfo spapr_drc_pci_info = {
.name = TYPE_SPAPR_DRC_PCI,
.parent = TYPE_SPAPR_DRC_PHYSICAL,
.class_init = spapr_drc_pci_class_init,
};
static const TypeInfo spapr_drc_lmb_info = {
.name = TYPE_SPAPR_DRC_LMB,
.parent = TYPE_SPAPR_DRC_LOGICAL,
.class_init = spapr_drc_lmb_class_init,
};
static const TypeInfo spapr_drc_phb_info = {
.name = TYPE_SPAPR_DRC_PHB,
.parent = TYPE_SPAPR_DRC_LOGICAL,
.instance_size = sizeof(SpaprDrc),
.class_init = spapr_drc_phb_class_init,
};
/* helper functions for external users */
SpaprDrc *spapr_drc_by_index(uint32_t index)
{
Object *obj;
gchar *name;
name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
obj = object_resolve_path(name, NULL);
g_free(name);
return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
}
SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
{
SpaprDrcClass *drck
= SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
| (id & DRC_INDEX_ID_MASK));
}
/**
* spapr_dt_drc
*
* @fdt: libfdt device tree
* @path: path in the DT to generate properties
* @owner: parent Object/DeviceState for which to generate DRC
* descriptions for
* @drc_type_mask: mask of SpaprDrcType values corresponding
* to the types of DRCs to generate entries for
*
* generate OF properties to describe DRC topology/indices to guests
*
* as documented in PAPR+ v2.1, 13.5.2
*/
int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
{
Object *root_container;
ObjectProperty *prop;
ObjectPropertyIterator iter;
uint32_t drc_count = 0;
GArray *drc_indexes, *drc_power_domains;
GString *drc_names, *drc_types;
int ret;
/* the first entry of each properties is a 32-bit integer encoding
* the number of elements in the array. we won't know this until
* we complete the iteration through all the matching DRCs, but
* reserve the space now and set the offsets accordingly so we
* can fill them in later.
*/
drc_indexes = g_array_new(false, true, sizeof(uint32_t));
drc_indexes = g_array_set_size(drc_indexes, 1);
drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
drc_power_domains = g_array_set_size(drc_power_domains, 1);
drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
/* aliases for all DRConnector objects will be rooted in QOM
* composition tree at DRC_CONTAINER_PATH
*/
root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
object_property_iter_init(&iter, root_container);
while ((prop = object_property_iter_next(&iter))) {
Object *obj;
SpaprDrc *drc;
SpaprDrcClass *drck;
uint32_t drc_index, drc_power_domain;
if (!strstart(prop->type, "link<", NULL)) {
continue;
}
obj = object_property_get_link(root_container, prop->name, NULL);
drc = SPAPR_DR_CONNECTOR(obj);
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
if (owner && (drc->owner != owner)) {
continue;
}
if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
continue;
}
drc_count++;
/* ibm,drc-indexes */
drc_index = cpu_to_be32(spapr_drc_index(drc));
g_array_append_val(drc_indexes, drc_index);
/* ibm,drc-power-domains */
drc_power_domain = cpu_to_be32(-1);
g_array_append_val(drc_power_domains, drc_power_domain);
/* ibm,drc-names */
drc_names = g_string_append(drc_names, spapr_drc_name(drc));
drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
/* ibm,drc-types */
drc_types = g_string_append(drc_types, drck->typename);
drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
}
/* now write the drc count into the space we reserved at the
* beginning of the arrays previously
*/
*(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
*(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
*(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
*(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
drc_indexes->data,
drc_indexes->len * sizeof(uint32_t));
if (ret) {
error_report("Couldn't create ibm,drc-indexes property");
goto out;
}
ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
drc_power_domains->data,
drc_power_domains->len * sizeof(uint32_t));
if (ret) {
error_report("Couldn't finalize ibm,drc-power-domains property");
goto out;
}
ret = fdt_setprop(fdt, offset, "ibm,drc-names",
drc_names->str, drc_names->len);
if (ret) {
error_report("Couldn't finalize ibm,drc-names property");
goto out;
}
ret = fdt_setprop(fdt, offset, "ibm,drc-types",
drc_types->str, drc_types->len);
if (ret) {
error_report("Couldn't finalize ibm,drc-types property");
goto out;
}
out:
g_array_free(drc_indexes, true);
g_array_free(drc_power_domains, true);
g_string_free(drc_names, true);
g_string_free(drc_types, true);
return ret;
}
/*
* RTAS calls
*/
static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
{
SpaprDrc *drc = spapr_drc_by_index(idx);
SpaprDrcClass *drck;
if (!drc) {
return RTAS_OUT_NO_SUCH_INDICATOR;
}
trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
switch (state) {
case SPAPR_DR_ISOLATION_STATE_ISOLATED:
return drck->isolate(drc);
case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
return drck->unisolate(drc);
default:
return RTAS_OUT_PARAM_ERROR;
}
}
static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
{
SpaprDrc *drc = spapr_drc_by_index(idx);
if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
return RTAS_OUT_NO_SUCH_INDICATOR;
}
trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
switch (state) {
case SPAPR_DR_ALLOCATION_STATE_USABLE:
return drc_set_usable(drc);
case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
return drc_set_unusable(drc);
default:
return RTAS_OUT_PARAM_ERROR;
}
}
static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
{
SpaprDrc *drc = spapr_drc_by_index(idx);
if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
return RTAS_OUT_NO_SUCH_INDICATOR;
}
if ((state != SPAPR_DR_INDICATOR_INACTIVE)
&& (state != SPAPR_DR_INDICATOR_ACTIVE)
&& (state != SPAPR_DR_INDICATOR_IDENTIFY)
&& (state != SPAPR_DR_INDICATOR_ACTION)) {
return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
}
trace_spapr_drc_set_dr_indicator(idx, state);
SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
return RTAS_OUT_SUCCESS;
}
static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
uint32_t token,
uint32_t nargs, target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t type, idx, state;
uint32_t ret = RTAS_OUT_SUCCESS;
if (nargs != 3 || nret != 1) {
ret = RTAS_OUT_PARAM_ERROR;
goto out;
}
type = rtas_ld(args, 0);
idx = rtas_ld(args, 1);
state = rtas_ld(args, 2);
switch (type) {
case RTAS_SENSOR_TYPE_ISOLATION_STATE:
ret = rtas_set_isolation_state(idx, state);
break;
case RTAS_SENSOR_TYPE_DR:
ret = rtas_set_dr_indicator(idx, state);
break;
case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
ret = rtas_set_allocation_state(idx, state);
break;
default:
ret = RTAS_OUT_NOT_SUPPORTED;
}
out:
rtas_st(rets, 0, ret);
}
static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
uint32_t sensor_type;
uint32_t sensor_index;
uint32_t sensor_state = 0;
SpaprDrc *drc;
SpaprDrcClass *drck;
uint32_t ret = RTAS_OUT_SUCCESS;
if (nargs != 2 || nret != 2) {
ret = RTAS_OUT_PARAM_ERROR;
goto out;
}
sensor_type = rtas_ld(args, 0);
sensor_index = rtas_ld(args, 1);
if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
/* currently only DR-related sensors are implemented */
trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
sensor_type);
ret = RTAS_OUT_NOT_SUPPORTED;
goto out;
}
drc = spapr_drc_by_index(sensor_index);
if (!drc) {
trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
ret = RTAS_OUT_PARAM_ERROR;
goto out;
}
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
sensor_state = drck->dr_entity_sense(drc);
out:
rtas_st(rets, 0, ret);
rtas_st(rets, 1, sensor_state);
}
/* configure-connector work area offsets, int32_t units for field
* indexes, bytes for field offset/len values.
*
* as documented by PAPR+ v2.7, 13.5.3.5
*/
#define CC_IDX_NODE_NAME_OFFSET 2
#define CC_IDX_PROP_NAME_OFFSET 2
#define CC_IDX_PROP_LEN 3
#define CC_IDX_PROP_DATA_OFFSET 4
#define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
#define CC_WA_LEN 4096
static void configure_connector_st(target_ulong addr, target_ulong offset,
const void *buf, size_t len)
{
cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
buf, MIN(len, CC_WA_LEN - offset));
}
static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
SpaprMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
uint64_t wa_addr;
uint64_t wa_offset;
uint32_t drc_index;
SpaprDrc *drc;
SpaprDrcClass *drck;
SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
int rc;
if (nargs != 2 || nret != 1) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
drc_index = rtas_ld(wa_addr, 0);
drc = spapr_drc_by_index(drc_index);
if (!drc) {
trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
rc = RTAS_OUT_PARAM_ERROR;
goto out;
}
if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
&& (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
&& (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
&& (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
/*
* Need to unisolate the device before configuring
* or it should already be in configured state to
* allow configure-connector be called repeatedly.
*/
rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
goto out;
}
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
if (!drc->fdt) {
Error *local_err = NULL;
void *fdt;
int fdt_size;
fdt = create_device_tree(&fdt_size);
if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
&local_err)) {
g_free(fdt);
error_free(local_err);
rc = SPAPR_DR_CC_RESPONSE_ERROR;
goto out;
}
drc->fdt = fdt;
drc->ccs_offset = drc->fdt_start_offset;
drc->ccs_depth = 0;
}
do {
uint32_t tag;
const char *name;
const struct fdt_property *prop;
int fdt_offset_next, prop_len;
tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
switch (tag) {
case FDT_BEGIN_NODE:
drc->ccs_depth++;
name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
/* provide the name of the next OF node */
wa_offset = CC_VAL_DATA_OFFSET;
rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
break;
case FDT_END_NODE:
drc->ccs_depth--;
if (drc->ccs_depth == 0) {
uint32_t drc_index = spapr_drc_index(drc);
/* done sending the device tree, move to configured state */
trace_spapr_drc_set_configured(drc_index);
drc->state = drck->ready_state;
/*
* Ensure that we are able to send the FDT fragment
* again via configure-connector call if the guest requests.
*/
drc->ccs_offset = drc->fdt_start_offset;
drc->ccs_depth = 0;
fdt_offset_next = drc->fdt_start_offset;
resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
} else {
resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
}
break;
case FDT_PROP:
prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
&prop_len);
name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
/* provide the name of the next OF property */
wa_offset = CC_VAL_DATA_OFFSET;
rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
/* provide the length and value of the OF property. data gets
* placed immediately after NULL terminator of the OF property's
* name string
*/
wa_offset += strlen(name) + 1,
rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
break;
case FDT_END:
resp = SPAPR_DR_CC_RESPONSE_ERROR;
default:
/* keep seeking for an actionable tag */
break;
}
if (drc->ccs_offset >= 0) {
drc->ccs_offset = fdt_offset_next;
}
} while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
rc = resp;
out:
rtas_st(rets, 0, rc);
}
static void spapr_drc_register_types(void)
{
type_register_static(&spapr_dr_connector_info);
type_register_static(&spapr_drc_physical_info);
type_register_static(&spapr_drc_logical_info);
type_register_static(&spapr_drc_cpu_info);
type_register_static(&spapr_drc_pci_info);
type_register_static(&spapr_drc_lmb_info);
type_register_static(&spapr_drc_phb_info);
spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
rtas_set_indicator);
spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
rtas_get_sensor_state);
spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
rtas_ibm_configure_connector);
}
type_init(spapr_drc_register_types)