| /* |
| * NVMe block driver based on vfio |
| * |
| * Copyright 2016 - 2018 Red Hat, Inc. |
| * |
| * Authors: |
| * Fam Zheng <famz@redhat.com> |
| * Paolo Bonzini <pbonzini@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include <linux/vfio.h> |
| #include "qapi/error.h" |
| #include "qapi/qmp/qdict.h" |
| #include "qapi/qmp/qstring.h" |
| #include "qemu/error-report.h" |
| #include "qemu/cutils.h" |
| #include "qemu/option.h" |
| #include "qemu/vfio-helpers.h" |
| #include "block/block_int.h" |
| #include "trace.h" |
| |
| #include "block/nvme.h" |
| |
| #define NVME_SQ_ENTRY_BYTES 64 |
| #define NVME_CQ_ENTRY_BYTES 16 |
| #define NVME_QUEUE_SIZE 128 |
| #define NVME_BAR_SIZE 8192 |
| |
| typedef struct { |
| int32_t head, tail; |
| uint8_t *queue; |
| uint64_t iova; |
| /* Hardware MMIO register */ |
| volatile uint32_t *doorbell; |
| } NVMeQueue; |
| |
| typedef struct { |
| BlockCompletionFunc *cb; |
| void *opaque; |
| int cid; |
| void *prp_list_page; |
| uint64_t prp_list_iova; |
| bool busy; |
| } NVMeRequest; |
| |
| typedef struct { |
| CoQueue free_req_queue; |
| QemuMutex lock; |
| |
| /* Fields protected by BQL */ |
| int index; |
| uint8_t *prp_list_pages; |
| |
| /* Fields protected by @lock */ |
| NVMeQueue sq, cq; |
| int cq_phase; |
| NVMeRequest reqs[NVME_QUEUE_SIZE]; |
| bool busy; |
| int need_kick; |
| int inflight; |
| } NVMeQueuePair; |
| |
| /* Memory mapped registers */ |
| typedef volatile struct { |
| uint64_t cap; |
| uint32_t vs; |
| uint32_t intms; |
| uint32_t intmc; |
| uint32_t cc; |
| uint32_t reserved0; |
| uint32_t csts; |
| uint32_t nssr; |
| uint32_t aqa; |
| uint64_t asq; |
| uint64_t acq; |
| uint32_t cmbloc; |
| uint32_t cmbsz; |
| uint8_t reserved1[0xec0]; |
| uint8_t cmd_set_specfic[0x100]; |
| uint32_t doorbells[]; |
| } QEMU_PACKED NVMeRegs; |
| |
| QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000); |
| |
| typedef struct { |
| AioContext *aio_context; |
| QEMUVFIOState *vfio; |
| NVMeRegs *regs; |
| /* The submission/completion queue pairs. |
| * [0]: admin queue. |
| * [1..]: io queues. |
| */ |
| NVMeQueuePair **queues; |
| int nr_queues; |
| size_t page_size; |
| /* How many uint32_t elements does each doorbell entry take. */ |
| size_t doorbell_scale; |
| bool write_cache_supported; |
| EventNotifier irq_notifier; |
| uint64_t nsze; /* Namespace size reported by identify command */ |
| int nsid; /* The namespace id to read/write data. */ |
| uint64_t max_transfer; |
| bool plugged; |
| |
| CoMutex dma_map_lock; |
| CoQueue dma_flush_queue; |
| |
| /* Total size of mapped qiov, accessed under dma_map_lock */ |
| int dma_map_count; |
| } BDRVNVMeState; |
| |
| #define NVME_BLOCK_OPT_DEVICE "device" |
| #define NVME_BLOCK_OPT_NAMESPACE "namespace" |
| |
| static QemuOptsList runtime_opts = { |
| .name = "nvme", |
| .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head), |
| .desc = { |
| { |
| .name = NVME_BLOCK_OPT_DEVICE, |
| .type = QEMU_OPT_STRING, |
| .help = "NVMe PCI device address", |
| }, |
| { |
| .name = NVME_BLOCK_OPT_NAMESPACE, |
| .type = QEMU_OPT_NUMBER, |
| .help = "NVMe namespace", |
| }, |
| { /* end of list */ } |
| }, |
| }; |
| |
| static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q, |
| int nentries, int entry_bytes, Error **errp) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| size_t bytes; |
| int r; |
| |
| bytes = ROUND_UP(nentries * entry_bytes, s->page_size); |
| q->head = q->tail = 0; |
| q->queue = qemu_try_blockalign0(bs, bytes); |
| |
| if (!q->queue) { |
| error_setg(errp, "Cannot allocate queue"); |
| return; |
| } |
| r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova); |
| if (r) { |
| error_setg(errp, "Cannot map queue"); |
| } |
| } |
| |
| static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q) |
| { |
| qemu_vfree(q->prp_list_pages); |
| qemu_vfree(q->sq.queue); |
| qemu_vfree(q->cq.queue); |
| qemu_mutex_destroy(&q->lock); |
| g_free(q); |
| } |
| |
| static void nvme_free_req_queue_cb(void *opaque) |
| { |
| NVMeQueuePair *q = opaque; |
| |
| qemu_mutex_lock(&q->lock); |
| while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) { |
| /* Retry all pending requests */ |
| } |
| qemu_mutex_unlock(&q->lock); |
| } |
| |
| static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs, |
| int idx, int size, |
| Error **errp) |
| { |
| int i, r; |
| BDRVNVMeState *s = bs->opaque; |
| Error *local_err = NULL; |
| NVMeQueuePair *q = g_new0(NVMeQueuePair, 1); |
| uint64_t prp_list_iova; |
| |
| qemu_mutex_init(&q->lock); |
| q->index = idx; |
| qemu_co_queue_init(&q->free_req_queue); |
| q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE); |
| r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, |
| s->page_size * NVME_QUEUE_SIZE, |
| false, &prp_list_iova); |
| if (r) { |
| goto fail; |
| } |
| for (i = 0; i < NVME_QUEUE_SIZE; i++) { |
| NVMeRequest *req = &q->reqs[i]; |
| req->cid = i + 1; |
| req->prp_list_page = q->prp_list_pages + i * s->page_size; |
| req->prp_list_iova = prp_list_iova + i * s->page_size; |
| } |
| nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| goto fail; |
| } |
| q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale]; |
| |
| nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| goto fail; |
| } |
| q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1]; |
| |
| return q; |
| fail: |
| nvme_free_queue_pair(bs, q); |
| return NULL; |
| } |
| |
| /* With q->lock */ |
| static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q) |
| { |
| if (s->plugged || !q->need_kick) { |
| return; |
| } |
| trace_nvme_kick(s, q->index); |
| assert(!(q->sq.tail & 0xFF00)); |
| /* Fence the write to submission queue entry before notifying the device. */ |
| smp_wmb(); |
| *q->sq.doorbell = cpu_to_le32(q->sq.tail); |
| q->inflight += q->need_kick; |
| q->need_kick = 0; |
| } |
| |
| /* Find a free request element if any, otherwise: |
| * a) if in coroutine context, try to wait for one to become available; |
| * b) if not in coroutine, return NULL; |
| */ |
| static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q) |
| { |
| int i; |
| NVMeRequest *req = NULL; |
| |
| qemu_mutex_lock(&q->lock); |
| while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) { |
| /* We have to leave one slot empty as that is the full queue case (head |
| * == tail + 1). */ |
| if (qemu_in_coroutine()) { |
| trace_nvme_free_req_queue_wait(q); |
| qemu_co_queue_wait(&q->free_req_queue, &q->lock); |
| } else { |
| qemu_mutex_unlock(&q->lock); |
| return NULL; |
| } |
| } |
| for (i = 0; i < NVME_QUEUE_SIZE; i++) { |
| if (!q->reqs[i].busy) { |
| q->reqs[i].busy = true; |
| req = &q->reqs[i]; |
| break; |
| } |
| } |
| /* We have checked inflight and need_kick while holding q->lock, so one |
| * free req must be available. */ |
| assert(req); |
| qemu_mutex_unlock(&q->lock); |
| return req; |
| } |
| |
| static inline int nvme_translate_error(const NvmeCqe *c) |
| { |
| uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF; |
| if (status) { |
| trace_nvme_error(le32_to_cpu(c->result), |
| le16_to_cpu(c->sq_head), |
| le16_to_cpu(c->sq_id), |
| le16_to_cpu(c->cid), |
| le16_to_cpu(status)); |
| } |
| switch (status) { |
| case 0: |
| return 0; |
| case 1: |
| return -ENOSYS; |
| case 2: |
| return -EINVAL; |
| default: |
| return -EIO; |
| } |
| } |
| |
| /* With q->lock */ |
| static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q) |
| { |
| bool progress = false; |
| NVMeRequest *preq; |
| NVMeRequest req; |
| NvmeCqe *c; |
| |
| trace_nvme_process_completion(s, q->index, q->inflight); |
| if (q->busy || s->plugged) { |
| trace_nvme_process_completion_queue_busy(s, q->index); |
| return false; |
| } |
| q->busy = true; |
| assert(q->inflight >= 0); |
| while (q->inflight) { |
| int16_t cid; |
| c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES]; |
| if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) { |
| break; |
| } |
| q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE; |
| if (!q->cq.head) { |
| q->cq_phase = !q->cq_phase; |
| } |
| cid = le16_to_cpu(c->cid); |
| if (cid == 0 || cid > NVME_QUEUE_SIZE) { |
| fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n", |
| cid); |
| continue; |
| } |
| assert(cid <= NVME_QUEUE_SIZE); |
| trace_nvme_complete_command(s, q->index, cid); |
| preq = &q->reqs[cid - 1]; |
| req = *preq; |
| assert(req.cid == cid); |
| assert(req.cb); |
| preq->busy = false; |
| preq->cb = preq->opaque = NULL; |
| qemu_mutex_unlock(&q->lock); |
| req.cb(req.opaque, nvme_translate_error(c)); |
| qemu_mutex_lock(&q->lock); |
| c->cid = cpu_to_le16(0); |
| q->inflight--; |
| /* Flip Phase Tag bit. */ |
| c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1); |
| progress = true; |
| } |
| if (progress) { |
| /* Notify the device so it can post more completions. */ |
| smp_mb_release(); |
| *q->cq.doorbell = cpu_to_le32(q->cq.head); |
| if (!qemu_co_queue_empty(&q->free_req_queue)) { |
| aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q); |
| } |
| } |
| q->busy = false; |
| return progress; |
| } |
| |
| static void nvme_trace_command(const NvmeCmd *cmd) |
| { |
| int i; |
| |
| for (i = 0; i < 8; ++i) { |
| uint8_t *cmdp = (uint8_t *)cmd + i * 8; |
| trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3], |
| cmdp[4], cmdp[5], cmdp[6], cmdp[7]); |
| } |
| } |
| |
| static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q, |
| NVMeRequest *req, |
| NvmeCmd *cmd, BlockCompletionFunc cb, |
| void *opaque) |
| { |
| assert(!req->cb); |
| req->cb = cb; |
| req->opaque = opaque; |
| cmd->cid = cpu_to_le32(req->cid); |
| |
| trace_nvme_submit_command(s, q->index, req->cid); |
| nvme_trace_command(cmd); |
| qemu_mutex_lock(&q->lock); |
| memcpy((uint8_t *)q->sq.queue + |
| q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd)); |
| q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE; |
| q->need_kick++; |
| nvme_kick(s, q); |
| nvme_process_completion(s, q); |
| qemu_mutex_unlock(&q->lock); |
| } |
| |
| static void nvme_cmd_sync_cb(void *opaque, int ret) |
| { |
| int *pret = opaque; |
| *pret = ret; |
| } |
| |
| static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q, |
| NvmeCmd *cmd) |
| { |
| NVMeRequest *req; |
| BDRVNVMeState *s = bs->opaque; |
| int ret = -EINPROGRESS; |
| req = nvme_get_free_req(q); |
| if (!req) { |
| return -EBUSY; |
| } |
| nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret); |
| |
| BDRV_POLL_WHILE(bs, ret == -EINPROGRESS); |
| return ret; |
| } |
| |
| static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| NvmeIdCtrl *idctrl; |
| NvmeIdNs *idns; |
| uint8_t *resp; |
| int r; |
| uint64_t iova; |
| NvmeCmd cmd = { |
| .opcode = NVME_ADM_CMD_IDENTIFY, |
| .cdw10 = cpu_to_le32(0x1), |
| }; |
| |
| resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl)); |
| if (!resp) { |
| error_setg(errp, "Cannot allocate buffer for identify response"); |
| goto out; |
| } |
| idctrl = (NvmeIdCtrl *)resp; |
| idns = (NvmeIdNs *)resp; |
| r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova); |
| if (r) { |
| error_setg(errp, "Cannot map buffer for DMA"); |
| goto out; |
| } |
| cmd.prp1 = cpu_to_le64(iova); |
| |
| if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { |
| error_setg(errp, "Failed to identify controller"); |
| goto out; |
| } |
| |
| if (le32_to_cpu(idctrl->nn) < namespace) { |
| error_setg(errp, "Invalid namespace"); |
| goto out; |
| } |
| s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1; |
| s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size; |
| /* For now the page list buffer per command is one page, to hold at most |
| * s->page_size / sizeof(uint64_t) entries. */ |
| s->max_transfer = MIN_NON_ZERO(s->max_transfer, |
| s->page_size / sizeof(uint64_t) * s->page_size); |
| |
| memset(resp, 0, 4096); |
| |
| cmd.cdw10 = 0; |
| cmd.nsid = cpu_to_le32(namespace); |
| if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { |
| error_setg(errp, "Failed to identify namespace"); |
| goto out; |
| } |
| |
| s->nsze = le64_to_cpu(idns->nsze); |
| |
| out: |
| qemu_vfio_dma_unmap(s->vfio, resp); |
| qemu_vfree(resp); |
| } |
| |
| static bool nvme_poll_queues(BDRVNVMeState *s) |
| { |
| bool progress = false; |
| int i; |
| |
| for (i = 0; i < s->nr_queues; i++) { |
| NVMeQueuePair *q = s->queues[i]; |
| qemu_mutex_lock(&q->lock); |
| while (nvme_process_completion(s, q)) { |
| /* Keep polling */ |
| progress = true; |
| } |
| qemu_mutex_unlock(&q->lock); |
| } |
| return progress; |
| } |
| |
| static void nvme_handle_event(EventNotifier *n) |
| { |
| BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier); |
| |
| trace_nvme_handle_event(s); |
| event_notifier_test_and_clear(n); |
| nvme_poll_queues(s); |
| } |
| |
| static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| int n = s->nr_queues; |
| NVMeQueuePair *q; |
| NvmeCmd cmd; |
| int queue_size = NVME_QUEUE_SIZE; |
| |
| q = nvme_create_queue_pair(bs, n, queue_size, errp); |
| if (!q) { |
| return false; |
| } |
| cmd = (NvmeCmd) { |
| .opcode = NVME_ADM_CMD_CREATE_CQ, |
| .prp1 = cpu_to_le64(q->cq.iova), |
| .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), |
| .cdw11 = cpu_to_le32(0x3), |
| }; |
| if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { |
| error_setg(errp, "Failed to create io queue [%d]", n); |
| nvme_free_queue_pair(bs, q); |
| return false; |
| } |
| cmd = (NvmeCmd) { |
| .opcode = NVME_ADM_CMD_CREATE_SQ, |
| .prp1 = cpu_to_le64(q->sq.iova), |
| .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)), |
| .cdw11 = cpu_to_le32(0x1 | (n << 16)), |
| }; |
| if (nvme_cmd_sync(bs, s->queues[0], &cmd)) { |
| error_setg(errp, "Failed to create io queue [%d]", n); |
| nvme_free_queue_pair(bs, q); |
| return false; |
| } |
| s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1); |
| s->queues[n] = q; |
| s->nr_queues++; |
| return true; |
| } |
| |
| static bool nvme_poll_cb(void *opaque) |
| { |
| EventNotifier *e = opaque; |
| BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier); |
| bool progress = false; |
| |
| trace_nvme_poll_cb(s); |
| progress = nvme_poll_queues(s); |
| return progress; |
| } |
| |
| static int nvme_init(BlockDriverState *bs, const char *device, int namespace, |
| Error **errp) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| int ret; |
| uint64_t cap; |
| uint64_t timeout_ms; |
| uint64_t deadline, now; |
| Error *local_err = NULL; |
| |
| qemu_co_mutex_init(&s->dma_map_lock); |
| qemu_co_queue_init(&s->dma_flush_queue); |
| s->nsid = namespace; |
| s->aio_context = bdrv_get_aio_context(bs); |
| ret = event_notifier_init(&s->irq_notifier, 0); |
| if (ret) { |
| error_setg(errp, "Failed to init event notifier"); |
| return ret; |
| } |
| |
| s->vfio = qemu_vfio_open_pci(device, errp); |
| if (!s->vfio) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp); |
| if (!s->regs) { |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| /* Perform initialize sequence as described in NVMe spec "7.6.1 |
| * Initialization". */ |
| |
| cap = le64_to_cpu(s->regs->cap); |
| if (!(cap & (1ULL << 37))) { |
| error_setg(errp, "Device doesn't support NVMe command set"); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF))); |
| s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t); |
| bs->bl.opt_mem_alignment = s->page_size; |
| timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000); |
| |
| /* Reset device to get a clean state. */ |
| s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE); |
| /* Wait for CSTS.RDY = 0. */ |
| deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL; |
| while (le32_to_cpu(s->regs->csts) & 0x1) { |
| if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { |
| error_setg(errp, "Timeout while waiting for device to reset (%" |
| PRId64 " ms)", |
| timeout_ms); |
| ret = -ETIMEDOUT; |
| goto out; |
| } |
| } |
| |
| /* Set up admin queue. */ |
| s->queues = g_new(NVMeQueuePair *, 1); |
| s->nr_queues = 1; |
| s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp); |
| if (!s->queues[0]) { |
| ret = -EINVAL; |
| goto out; |
| } |
| QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000); |
| s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE); |
| s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova); |
| s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova); |
| |
| /* After setting up all control registers we can enable device now. */ |
| s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) | |
| (ctz32(NVME_SQ_ENTRY_BYTES) << 16) | |
| 0x1); |
| /* Wait for CSTS.RDY = 1. */ |
| now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
| deadline = now + timeout_ms * 1000000; |
| while (!(le32_to_cpu(s->regs->csts) & 0x1)) { |
| if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) { |
| error_setg(errp, "Timeout while waiting for device to start (%" |
| PRId64 " ms)", |
| timeout_ms); |
| ret = -ETIMEDOUT; |
| goto out; |
| } |
| } |
| |
| ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier, |
| VFIO_PCI_MSIX_IRQ_INDEX, errp); |
| if (ret) { |
| goto out; |
| } |
| aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, |
| false, nvme_handle_event, nvme_poll_cb); |
| |
| nvme_identify(bs, namespace, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* Set up command queues. */ |
| if (!nvme_add_io_queue(bs, errp)) { |
| ret = -EIO; |
| } |
| out: |
| /* Cleaning up is done in nvme_file_open() upon error. */ |
| return ret; |
| } |
| |
| /* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example: |
| * |
| * nvme://0000:44:00.0/1 |
| * |
| * where the "nvme://" is a fixed form of the protocol prefix, the middle part |
| * is the PCI address, and the last part is the namespace number starting from |
| * 1 according to the NVMe spec. */ |
| static void nvme_parse_filename(const char *filename, QDict *options, |
| Error **errp) |
| { |
| int pref = strlen("nvme://"); |
| |
| if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) { |
| const char *tmp = filename + pref; |
| char *device; |
| const char *namespace; |
| unsigned long ns; |
| const char *slash = strchr(tmp, '/'); |
| if (!slash) { |
| qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp); |
| return; |
| } |
| device = g_strndup(tmp, slash - tmp); |
| qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device); |
| g_free(device); |
| namespace = slash + 1; |
| if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) { |
| error_setg(errp, "Invalid namespace '%s', positive number expected", |
| namespace); |
| return; |
| } |
| qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE, |
| *namespace ? namespace : "1"); |
| } |
| } |
| |
| static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable, |
| Error **errp) |
| { |
| int ret; |
| BDRVNVMeState *s = bs->opaque; |
| NvmeCmd cmd = { |
| .opcode = NVME_ADM_CMD_SET_FEATURES, |
| .nsid = cpu_to_le32(s->nsid), |
| .cdw10 = cpu_to_le32(0x06), |
| .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00), |
| }; |
| |
| ret = nvme_cmd_sync(bs, s->queues[0], &cmd); |
| if (ret) { |
| error_setg(errp, "Failed to configure NVMe write cache"); |
| } |
| return ret; |
| } |
| |
| static void nvme_close(BlockDriverState *bs) |
| { |
| int i; |
| BDRVNVMeState *s = bs->opaque; |
| |
| for (i = 0; i < s->nr_queues; ++i) { |
| nvme_free_queue_pair(bs, s->queues[i]); |
| } |
| g_free(s->queues); |
| aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, |
| false, NULL, NULL); |
| event_notifier_cleanup(&s->irq_notifier); |
| qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE); |
| qemu_vfio_close(s->vfio); |
| } |
| |
| static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags, |
| Error **errp) |
| { |
| const char *device; |
| QemuOpts *opts; |
| int namespace; |
| int ret; |
| BDRVNVMeState *s = bs->opaque; |
| |
| opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort); |
| qemu_opts_absorb_qdict(opts, options, &error_abort); |
| device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE); |
| if (!device) { |
| error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required"); |
| qemu_opts_del(opts); |
| return -EINVAL; |
| } |
| |
| namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1); |
| ret = nvme_init(bs, device, namespace, errp); |
| qemu_opts_del(opts); |
| if (ret) { |
| goto fail; |
| } |
| if (flags & BDRV_O_NOCACHE) { |
| if (!s->write_cache_supported) { |
| error_setg(errp, |
| "NVMe controller doesn't support write cache configuration"); |
| ret = -EINVAL; |
| } else { |
| ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE), |
| errp); |
| } |
| if (ret) { |
| goto fail; |
| } |
| } |
| bs->supported_write_flags = BDRV_REQ_FUA; |
| return 0; |
| fail: |
| nvme_close(bs); |
| return ret; |
| } |
| |
| static int64_t nvme_getlength(BlockDriverState *bs) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| |
| return s->nsze << BDRV_SECTOR_BITS; |
| } |
| |
| /* Called with s->dma_map_lock */ |
| static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs, |
| QEMUIOVector *qiov) |
| { |
| int r = 0; |
| BDRVNVMeState *s = bs->opaque; |
| |
| s->dma_map_count -= qiov->size; |
| if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) { |
| r = qemu_vfio_dma_reset_temporary(s->vfio); |
| if (!r) { |
| qemu_co_queue_restart_all(&s->dma_flush_queue); |
| } |
| } |
| return r; |
| } |
| |
| /* Called with s->dma_map_lock */ |
| static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd, |
| NVMeRequest *req, QEMUIOVector *qiov) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| uint64_t *pagelist = req->prp_list_page; |
| int i, j, r; |
| int entries = 0; |
| |
| assert(qiov->size); |
| assert(QEMU_IS_ALIGNED(qiov->size, s->page_size)); |
| assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t)); |
| for (i = 0; i < qiov->niov; ++i) { |
| bool retry = true; |
| uint64_t iova; |
| try_map: |
| r = qemu_vfio_dma_map(s->vfio, |
| qiov->iov[i].iov_base, |
| qiov->iov[i].iov_len, |
| true, &iova); |
| if (r == -ENOMEM && retry) { |
| retry = false; |
| trace_nvme_dma_flush_queue_wait(s); |
| if (s->dma_map_count) { |
| trace_nvme_dma_map_flush(s); |
| qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock); |
| } else { |
| r = qemu_vfio_dma_reset_temporary(s->vfio); |
| if (r) { |
| goto fail; |
| } |
| } |
| goto try_map; |
| } |
| if (r) { |
| goto fail; |
| } |
| |
| for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) { |
| pagelist[entries++] = cpu_to_le64(iova + j * s->page_size); |
| } |
| trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base, |
| qiov->iov[i].iov_len / s->page_size); |
| } |
| |
| s->dma_map_count += qiov->size; |
| |
| assert(entries <= s->page_size / sizeof(uint64_t)); |
| switch (entries) { |
| case 0: |
| abort(); |
| case 1: |
| cmd->prp1 = pagelist[0]; |
| cmd->prp2 = 0; |
| break; |
| case 2: |
| cmd->prp1 = pagelist[0]; |
| cmd->prp2 = pagelist[1]; |
| break; |
| default: |
| cmd->prp1 = pagelist[0]; |
| cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t)); |
| break; |
| } |
| trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries); |
| for (i = 0; i < entries; ++i) { |
| trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]); |
| } |
| return 0; |
| fail: |
| /* No need to unmap [0 - i) iovs even if we've failed, since we don't |
| * increment s->dma_map_count. This is okay for fixed mapping memory areas |
| * because they are already mapped before calling this function; for |
| * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by |
| * calling qemu_vfio_dma_reset_temporary when necessary. */ |
| return r; |
| } |
| |
| typedef struct { |
| Coroutine *co; |
| int ret; |
| AioContext *ctx; |
| } NVMeCoData; |
| |
| static void nvme_rw_cb_bh(void *opaque) |
| { |
| NVMeCoData *data = opaque; |
| qemu_coroutine_enter(data->co); |
| } |
| |
| static void nvme_rw_cb(void *opaque, int ret) |
| { |
| NVMeCoData *data = opaque; |
| data->ret = ret; |
| if (!data->co) { |
| /* The rw coroutine hasn't yielded, don't try to enter. */ |
| return; |
| } |
| aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data); |
| } |
| |
| static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs, |
| uint64_t offset, uint64_t bytes, |
| QEMUIOVector *qiov, |
| bool is_write, |
| int flags) |
| { |
| int r; |
| BDRVNVMeState *s = bs->opaque; |
| NVMeQueuePair *ioq = s->queues[1]; |
| NVMeRequest *req; |
| uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) | |
| (flags & BDRV_REQ_FUA ? 1 << 30 : 0); |
| NvmeCmd cmd = { |
| .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ, |
| .nsid = cpu_to_le32(s->nsid), |
| .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF), |
| .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF), |
| .cdw12 = cpu_to_le32(cdw12), |
| }; |
| NVMeCoData data = { |
| .ctx = bdrv_get_aio_context(bs), |
| .ret = -EINPROGRESS, |
| }; |
| |
| trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov); |
| assert(s->nr_queues > 1); |
| req = nvme_get_free_req(ioq); |
| assert(req); |
| |
| qemu_co_mutex_lock(&s->dma_map_lock); |
| r = nvme_cmd_map_qiov(bs, &cmd, req, qiov); |
| qemu_co_mutex_unlock(&s->dma_map_lock); |
| if (r) { |
| req->busy = false; |
| return r; |
| } |
| nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); |
| |
| data.co = qemu_coroutine_self(); |
| while (data.ret == -EINPROGRESS) { |
| qemu_coroutine_yield(); |
| } |
| |
| qemu_co_mutex_lock(&s->dma_map_lock); |
| r = nvme_cmd_unmap_qiov(bs, qiov); |
| qemu_co_mutex_unlock(&s->dma_map_lock); |
| if (r) { |
| return r; |
| } |
| |
| trace_nvme_rw_done(s, is_write, offset, bytes, data.ret); |
| return data.ret; |
| } |
| |
| static inline bool nvme_qiov_aligned(BlockDriverState *bs, |
| const QEMUIOVector *qiov) |
| { |
| int i; |
| BDRVNVMeState *s = bs->opaque; |
| |
| for (i = 0; i < qiov->niov; ++i) { |
| if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) || |
| !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) { |
| trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base, |
| qiov->iov[i].iov_len, s->page_size); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes, |
| QEMUIOVector *qiov, bool is_write, int flags) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| int r; |
| uint8_t *buf = NULL; |
| QEMUIOVector local_qiov; |
| |
| assert(QEMU_IS_ALIGNED(offset, s->page_size)); |
| assert(QEMU_IS_ALIGNED(bytes, s->page_size)); |
| assert(bytes <= s->max_transfer); |
| if (nvme_qiov_aligned(bs, qiov)) { |
| return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags); |
| } |
| trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write); |
| buf = qemu_try_blockalign(bs, bytes); |
| |
| if (!buf) { |
| return -ENOMEM; |
| } |
| qemu_iovec_init(&local_qiov, 1); |
| if (is_write) { |
| qemu_iovec_to_buf(qiov, 0, buf, bytes); |
| } |
| qemu_iovec_add(&local_qiov, buf, bytes); |
| r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags); |
| qemu_iovec_destroy(&local_qiov); |
| if (!r && !is_write) { |
| qemu_iovec_from_buf(qiov, 0, buf, bytes); |
| } |
| qemu_vfree(buf); |
| return r; |
| } |
| |
| static coroutine_fn int nvme_co_preadv(BlockDriverState *bs, |
| uint64_t offset, uint64_t bytes, |
| QEMUIOVector *qiov, int flags) |
| { |
| return nvme_co_prw(bs, offset, bytes, qiov, false, flags); |
| } |
| |
| static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs, |
| uint64_t offset, uint64_t bytes, |
| QEMUIOVector *qiov, int flags) |
| { |
| return nvme_co_prw(bs, offset, bytes, qiov, true, flags); |
| } |
| |
| static coroutine_fn int nvme_co_flush(BlockDriverState *bs) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| NVMeQueuePair *ioq = s->queues[1]; |
| NVMeRequest *req; |
| NvmeCmd cmd = { |
| .opcode = NVME_CMD_FLUSH, |
| .nsid = cpu_to_le32(s->nsid), |
| }; |
| NVMeCoData data = { |
| .ctx = bdrv_get_aio_context(bs), |
| .ret = -EINPROGRESS, |
| }; |
| |
| assert(s->nr_queues > 1); |
| req = nvme_get_free_req(ioq); |
| assert(req); |
| nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data); |
| |
| data.co = qemu_coroutine_self(); |
| if (data.ret == -EINPROGRESS) { |
| qemu_coroutine_yield(); |
| } |
| |
| return data.ret; |
| } |
| |
| |
| static int nvme_reopen_prepare(BDRVReopenState *reopen_state, |
| BlockReopenQueue *queue, Error **errp) |
| { |
| return 0; |
| } |
| |
| static void nvme_refresh_filename(BlockDriverState *bs, QDict *opts) |
| { |
| qdict_del(opts, "filename"); |
| |
| if (!qdict_size(opts)) { |
| snprintf(bs->exact_filename, sizeof(bs->exact_filename), "%s://", |
| bs->drv->format_name); |
| } |
| |
| qdict_put_str(opts, "driver", bs->drv->format_name); |
| bs->full_open_options = qobject_ref(opts); |
| } |
| |
| static void nvme_refresh_limits(BlockDriverState *bs, Error **errp) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| |
| bs->bl.opt_mem_alignment = s->page_size; |
| bs->bl.request_alignment = s->page_size; |
| bs->bl.max_transfer = s->max_transfer; |
| } |
| |
| static void nvme_detach_aio_context(BlockDriverState *bs) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| |
| aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier, |
| false, NULL, NULL); |
| } |
| |
| static void nvme_attach_aio_context(BlockDriverState *bs, |
| AioContext *new_context) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| |
| s->aio_context = new_context; |
| aio_set_event_notifier(new_context, &s->irq_notifier, |
| false, nvme_handle_event, nvme_poll_cb); |
| } |
| |
| static void nvme_aio_plug(BlockDriverState *bs) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| assert(!s->plugged); |
| s->plugged = true; |
| } |
| |
| static void nvme_aio_unplug(BlockDriverState *bs) |
| { |
| int i; |
| BDRVNVMeState *s = bs->opaque; |
| assert(s->plugged); |
| s->plugged = false; |
| for (i = 1; i < s->nr_queues; i++) { |
| NVMeQueuePair *q = s->queues[i]; |
| qemu_mutex_lock(&q->lock); |
| nvme_kick(s, q); |
| nvme_process_completion(s, q); |
| qemu_mutex_unlock(&q->lock); |
| } |
| } |
| |
| static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size) |
| { |
| int ret; |
| BDRVNVMeState *s = bs->opaque; |
| |
| ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL); |
| if (ret) { |
| /* FIXME: we may run out of IOVA addresses after repeated |
| * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap |
| * doesn't reclaim addresses for fixed mappings. */ |
| error_report("nvme_register_buf failed: %s", strerror(-ret)); |
| } |
| } |
| |
| static void nvme_unregister_buf(BlockDriverState *bs, void *host) |
| { |
| BDRVNVMeState *s = bs->opaque; |
| |
| qemu_vfio_dma_unmap(s->vfio, host); |
| } |
| |
| static BlockDriver bdrv_nvme = { |
| .format_name = "nvme", |
| .protocol_name = "nvme", |
| .instance_size = sizeof(BDRVNVMeState), |
| |
| .bdrv_parse_filename = nvme_parse_filename, |
| .bdrv_file_open = nvme_file_open, |
| .bdrv_close = nvme_close, |
| .bdrv_getlength = nvme_getlength, |
| |
| .bdrv_co_preadv = nvme_co_preadv, |
| .bdrv_co_pwritev = nvme_co_pwritev, |
| .bdrv_co_flush_to_disk = nvme_co_flush, |
| .bdrv_reopen_prepare = nvme_reopen_prepare, |
| |
| .bdrv_refresh_filename = nvme_refresh_filename, |
| .bdrv_refresh_limits = nvme_refresh_limits, |
| |
| .bdrv_detach_aio_context = nvme_detach_aio_context, |
| .bdrv_attach_aio_context = nvme_attach_aio_context, |
| |
| .bdrv_io_plug = nvme_aio_plug, |
| .bdrv_io_unplug = nvme_aio_unplug, |
| |
| .bdrv_register_buf = nvme_register_buf, |
| .bdrv_unregister_buf = nvme_unregister_buf, |
| }; |
| |
| static void bdrv_nvme_init(void) |
| { |
| bdrv_register(&bdrv_nvme); |
| } |
| |
| block_init(bdrv_nvme_init); |