|  | /* | 
|  | * QEMU MC146818 RTC emulation | 
|  | * | 
|  | * Copyright (c) 2003-2004 Fabrice Bellard | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to deal | 
|  | * in the Software without restriction, including without limitation the rights | 
|  | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | * copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
|  | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | * THE SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/cutils.h" | 
|  | #include "qemu/module.h" | 
|  | #include "qemu/bcd.h" | 
|  | #include "hw/acpi/acpi_aml_interface.h" | 
|  | #include "hw/intc/kvm_irqcount.h" | 
|  | #include "hw/irq.h" | 
|  | #include "hw/qdev-properties.h" | 
|  | #include "hw/qdev-properties-system.h" | 
|  | #include "qemu/timer.h" | 
|  | #include "system/system.h" | 
|  | #include "system/replay.h" | 
|  | #include "system/reset.h" | 
|  | #include "system/runstate.h" | 
|  | #include "system/rtc.h" | 
|  | #include "hw/rtc/mc146818rtc.h" | 
|  | #include "hw/rtc/mc146818rtc_regs.h" | 
|  | #include "migration/vmstate.h" | 
|  | #include "qapi/error.h" | 
|  | #include "qapi/qapi-events-misc.h" | 
|  | #include "qapi/visitor.h" | 
|  |  | 
|  | //#define DEBUG_CMOS | 
|  | //#define DEBUG_COALESCED | 
|  |  | 
|  | #ifdef DEBUG_CMOS | 
|  | # define CMOS_DPRINTF(format, ...)      printf(format, ## __VA_ARGS__) | 
|  | #else | 
|  | # define CMOS_DPRINTF(format, ...)      do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG_COALESCED | 
|  | # define DPRINTF_C(format, ...)      printf(format, ## __VA_ARGS__) | 
|  | #else | 
|  | # define DPRINTF_C(format, ...)      do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #define SEC_PER_MIN     60 | 
|  | #define MIN_PER_HOUR    60 | 
|  | #define SEC_PER_HOUR    3600 | 
|  | #define HOUR_PER_DAY    24 | 
|  | #define SEC_PER_DAY     86400 | 
|  |  | 
|  | #define RTC_REINJECT_ON_ACK_COUNT 20 | 
|  | #define RTC_CLOCK_RATE            32768 | 
|  | #define UIP_HOLD_LENGTH           (8 * NANOSECONDS_PER_SECOND / 32768) | 
|  |  | 
|  | #define RTC_ISA_BASE 0x70 | 
|  |  | 
|  | static void rtc_set_time(MC146818RtcState *s); | 
|  | static void rtc_update_time(MC146818RtcState *s); | 
|  | static void rtc_set_cmos(MC146818RtcState *s, const struct tm *tm); | 
|  | static inline int rtc_from_bcd(MC146818RtcState *s, int a); | 
|  | static uint64_t get_next_alarm(MC146818RtcState *s); | 
|  |  | 
|  | static inline bool rtc_running(MC146818RtcState *s) | 
|  | { | 
|  | return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) && | 
|  | (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20); | 
|  | } | 
|  |  | 
|  | static uint64_t get_guest_rtc_ns(MC146818RtcState *s) | 
|  | { | 
|  | uint64_t guest_clock = qemu_clock_get_ns(rtc_clock); | 
|  |  | 
|  | return s->base_rtc * NANOSECONDS_PER_SECOND + | 
|  | guest_clock - s->last_update + s->offset; | 
|  | } | 
|  |  | 
|  | static void rtc_coalesced_timer_update(MC146818RtcState *s) | 
|  | { | 
|  | if (s->irq_coalesced == 0) { | 
|  | timer_del(s->coalesced_timer); | 
|  | } else { | 
|  | /* divide each RTC interval to 2 - 8 smaller intervals */ | 
|  | int c = MIN(s->irq_coalesced, 7) + 1; | 
|  | int64_t next_clock = qemu_clock_get_ns(rtc_clock) + | 
|  | periodic_clock_to_ns(s->period / c); | 
|  | timer_mod(s->coalesced_timer, next_clock); | 
|  | } | 
|  | } | 
|  |  | 
|  | void rtc_reset_reinjection(MC146818RtcState *rtc) | 
|  | { | 
|  | rtc->irq_coalesced = 0; | 
|  | } | 
|  |  | 
|  | static bool rtc_policy_slew_deliver_irq(MC146818RtcState *s) | 
|  | { | 
|  | kvm_reset_irq_delivered(); | 
|  | qemu_irq_raise(s->irq); | 
|  | return kvm_get_irq_delivered(); | 
|  | } | 
|  |  | 
|  | static void rtc_coalesced_timer(void *opaque) | 
|  | { | 
|  | MC146818RtcState *s = opaque; | 
|  |  | 
|  | if (s->irq_coalesced != 0) { | 
|  | s->cmos_data[RTC_REG_C] |= 0xc0; | 
|  | DPRINTF_C("cmos: injecting from timer\n"); | 
|  | if (rtc_policy_slew_deliver_irq(s)) { | 
|  | s->irq_coalesced--; | 
|  | DPRINTF_C("cmos: coalesced irqs decreased to %d\n", | 
|  | s->irq_coalesced); | 
|  | } | 
|  | } | 
|  |  | 
|  | rtc_coalesced_timer_update(s); | 
|  | } | 
|  |  | 
|  | static uint32_t rtc_periodic_clock_ticks(MC146818RtcState *s) | 
|  | { | 
|  | int period_code; | 
|  |  | 
|  | if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | period_code = s->cmos_data[RTC_REG_A] & 0x0f; | 
|  |  | 
|  | return periodic_period_to_clock(period_code); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * handle periodic timer. @old_period indicates the periodic timer update | 
|  | * is just due to period adjustment. | 
|  | */ | 
|  | static void periodic_timer_update(MC146818RtcState *s, int64_t current_time, | 
|  | uint32_t old_period, bool period_change) | 
|  | { | 
|  | uint32_t period; | 
|  | int64_t cur_clock, next_irq_clock, lost_clock = 0; | 
|  |  | 
|  | period = rtc_periodic_clock_ticks(s); | 
|  | s->period = period; | 
|  |  | 
|  | if (!period) { | 
|  | s->irq_coalesced = 0; | 
|  | timer_del(s->periodic_timer); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* compute 32 khz clock */ | 
|  | cur_clock = | 
|  | muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND); | 
|  |  | 
|  | /* | 
|  | * if the periodic timer's update is due to period re-configuration, | 
|  | * we should count the clock since last interrupt. | 
|  | */ | 
|  | if (old_period && period_change) { | 
|  | int64_t last_periodic_clock, next_periodic_clock; | 
|  |  | 
|  | next_periodic_clock = muldiv64(s->next_periodic_time, | 
|  | RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND); | 
|  | last_periodic_clock = next_periodic_clock - old_period; | 
|  | lost_clock = cur_clock - last_periodic_clock; | 
|  | assert(lost_clock >= 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * s->irq_coalesced can change for two reasons: | 
|  | * | 
|  | * a) if one or more periodic timer interrupts have been lost, | 
|  | *    lost_clock will be more that a period. | 
|  | * | 
|  | * b) when the period may be reconfigured, we expect the OS to | 
|  | *    treat delayed tick as the new period.  So, when switching | 
|  | *    from a shorter to a longer period, scale down the missing, | 
|  | *    because the OS will treat past delayed ticks as longer | 
|  | *    (leftovers are put back into lost_clock).  When switching | 
|  | *    to a shorter period, scale up the missing ticks since the | 
|  | *    OS handler will treat past delayed ticks as shorter. | 
|  | */ | 
|  | if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { | 
|  | uint32_t old_irq_coalesced = s->irq_coalesced; | 
|  |  | 
|  | lost_clock += old_irq_coalesced * old_period; | 
|  | s->irq_coalesced = lost_clock / s->period; | 
|  | lost_clock %= s->period; | 
|  | if (old_irq_coalesced != s->irq_coalesced || | 
|  | old_period != s->period) { | 
|  | DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, " | 
|  | "period scaled from %d to %d\n", old_irq_coalesced, | 
|  | s->irq_coalesced, old_period, s->period); | 
|  | rtc_coalesced_timer_update(s); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW | 
|  | * is not used, we should make the time progress anyway. | 
|  | */ | 
|  | lost_clock = MIN(lost_clock, period); | 
|  | } | 
|  |  | 
|  | assert(lost_clock >= 0 && lost_clock <= period); | 
|  |  | 
|  | next_irq_clock = cur_clock + period - lost_clock; | 
|  | s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1; | 
|  | timer_mod(s->periodic_timer, s->next_periodic_time); | 
|  | } | 
|  |  | 
|  | static void rtc_periodic_timer(void *opaque) | 
|  | { | 
|  | MC146818RtcState *s = opaque; | 
|  |  | 
|  | periodic_timer_update(s, s->next_periodic_time, s->period, false); | 
|  | s->cmos_data[RTC_REG_C] |= REG_C_PF; | 
|  | if (s->cmos_data[RTC_REG_B] & REG_B_PIE) { | 
|  | s->cmos_data[RTC_REG_C] |= REG_C_IRQF; | 
|  | if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { | 
|  | if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT) | 
|  | s->irq_reinject_on_ack_count = 0; | 
|  | if (!rtc_policy_slew_deliver_irq(s)) { | 
|  | s->irq_coalesced++; | 
|  | rtc_coalesced_timer_update(s); | 
|  | DPRINTF_C("cmos: coalesced irqs increased to %d\n", | 
|  | s->irq_coalesced); | 
|  | } | 
|  | } else | 
|  | qemu_irq_raise(s->irq); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* handle update-ended timer */ | 
|  | static void check_update_timer(MC146818RtcState *s) | 
|  | { | 
|  | uint64_t next_update_time; | 
|  | uint64_t guest_nsec; | 
|  | int next_alarm_sec; | 
|  |  | 
|  | /* From the data sheet: "Holding the dividers in reset prevents | 
|  | * interrupts from operating, while setting the SET bit allows" | 
|  | * them to occur. | 
|  | */ | 
|  | if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) { | 
|  | assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0); | 
|  | timer_del(s->update_timer); | 
|  | return; | 
|  | } | 
|  |  | 
|  | guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND; | 
|  | next_update_time = qemu_clock_get_ns(rtc_clock) | 
|  | + NANOSECONDS_PER_SECOND - guest_nsec; | 
|  |  | 
|  | /* Compute time of next alarm.  One second is already accounted | 
|  | * for in next_update_time. | 
|  | */ | 
|  | next_alarm_sec = get_next_alarm(s); | 
|  | s->next_alarm_time = next_update_time + | 
|  | (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND; | 
|  |  | 
|  | /* If update_in_progress latched the UIP bit, we must keep the timer | 
|  | * programmed to the next second, so that UIP is cleared.  Otherwise, | 
|  | * if UF is already set, we might be able to optimize. | 
|  | */ | 
|  | if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) && | 
|  | (s->cmos_data[RTC_REG_C] & REG_C_UF)) { | 
|  | /* If AF cannot change (i.e. either it is set already, or | 
|  | * SET=1 and then the time is not updated), nothing to do. | 
|  | */ | 
|  | if ((s->cmos_data[RTC_REG_B] & REG_B_SET) || | 
|  | (s->cmos_data[RTC_REG_C] & REG_C_AF)) { | 
|  | timer_del(s->update_timer); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* UF is set, but AF is clear.  Program the timer to target | 
|  | * the alarm time.  */ | 
|  | next_update_time = s->next_alarm_time; | 
|  | } | 
|  | if (next_update_time != timer_expire_time_ns(s->update_timer)) { | 
|  | timer_mod(s->update_timer, next_update_time); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint8_t convert_hour(MC146818RtcState *s, uint8_t hour) | 
|  | { | 
|  | if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { | 
|  | hour %= 12; | 
|  | if (s->cmos_data[RTC_HOURS] & 0x80) { | 
|  | hour += 12; | 
|  | } | 
|  | } | 
|  | return hour; | 
|  | } | 
|  |  | 
|  | static uint64_t get_next_alarm(MC146818RtcState *s) | 
|  | { | 
|  | int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec; | 
|  | int32_t hour, min, sec; | 
|  |  | 
|  | rtc_update_time(s); | 
|  |  | 
|  | alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]); | 
|  | alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]); | 
|  | alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]); | 
|  | alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour); | 
|  |  | 
|  | cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); | 
|  | cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); | 
|  | cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]); | 
|  | cur_hour = convert_hour(s, cur_hour); | 
|  |  | 
|  | if (alarm_hour == -1) { | 
|  | alarm_hour = cur_hour; | 
|  | if (alarm_min == -1) { | 
|  | alarm_min = cur_min; | 
|  | if (alarm_sec == -1) { | 
|  | alarm_sec = cur_sec + 1; | 
|  | } else if (cur_sec > alarm_sec) { | 
|  | alarm_min++; | 
|  | } | 
|  | } else if (cur_min == alarm_min) { | 
|  | if (alarm_sec == -1) { | 
|  | alarm_sec = cur_sec + 1; | 
|  | } else { | 
|  | if (cur_sec > alarm_sec) { | 
|  | alarm_hour++; | 
|  | } | 
|  | } | 
|  | if (alarm_sec == SEC_PER_MIN) { | 
|  | /* wrap to next hour, minutes is not in don't care mode */ | 
|  | alarm_sec = 0; | 
|  | alarm_hour++; | 
|  | } | 
|  | } else if (cur_min > alarm_min) { | 
|  | alarm_hour++; | 
|  | } | 
|  | } else if (cur_hour == alarm_hour) { | 
|  | if (alarm_min == -1) { | 
|  | alarm_min = cur_min; | 
|  | if (alarm_sec == -1) { | 
|  | alarm_sec = cur_sec + 1; | 
|  | } else if (cur_sec > alarm_sec) { | 
|  | alarm_min++; | 
|  | } | 
|  |  | 
|  | if (alarm_sec == SEC_PER_MIN) { | 
|  | alarm_sec = 0; | 
|  | alarm_min++; | 
|  | } | 
|  | /* wrap to next day, hour is not in don't care mode */ | 
|  | alarm_min %= MIN_PER_HOUR; | 
|  | } else if (cur_min == alarm_min) { | 
|  | if (alarm_sec == -1) { | 
|  | alarm_sec = cur_sec + 1; | 
|  | } | 
|  | /* wrap to next day, hours+minutes not in don't care mode */ | 
|  | alarm_sec %= SEC_PER_MIN; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* values that are still don't care fire at the next min/sec */ | 
|  | if (alarm_min == -1) { | 
|  | alarm_min = 0; | 
|  | } | 
|  | if (alarm_sec == -1) { | 
|  | alarm_sec = 0; | 
|  | } | 
|  |  | 
|  | /* keep values in range */ | 
|  | if (alarm_sec == SEC_PER_MIN) { | 
|  | alarm_sec = 0; | 
|  | alarm_min++; | 
|  | } | 
|  | if (alarm_min == MIN_PER_HOUR) { | 
|  | alarm_min = 0; | 
|  | alarm_hour++; | 
|  | } | 
|  | alarm_hour %= HOUR_PER_DAY; | 
|  |  | 
|  | hour = alarm_hour - cur_hour; | 
|  | min = hour * MIN_PER_HOUR + alarm_min - cur_min; | 
|  | sec = min * SEC_PER_MIN + alarm_sec - cur_sec; | 
|  | return sec <= 0 ? sec + SEC_PER_DAY : sec; | 
|  | } | 
|  |  | 
|  | static void rtc_update_timer(void *opaque) | 
|  | { | 
|  | MC146818RtcState *s = opaque; | 
|  | int32_t irqs = REG_C_UF; | 
|  | int32_t new_irqs; | 
|  |  | 
|  | assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60); | 
|  |  | 
|  | /* UIP might have been latched, update time and clear it.  */ | 
|  | rtc_update_time(s); | 
|  | s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; | 
|  |  | 
|  | if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) { | 
|  | irqs |= REG_C_AF; | 
|  | if (s->cmos_data[RTC_REG_B] & REG_B_AIE) { | 
|  | qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | new_irqs = irqs & ~s->cmos_data[RTC_REG_C]; | 
|  | s->cmos_data[RTC_REG_C] |= irqs; | 
|  | if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) { | 
|  | s->cmos_data[RTC_REG_C] |= REG_C_IRQF; | 
|  | qemu_irq_raise(s->irq); | 
|  | } | 
|  | check_update_timer(s); | 
|  | } | 
|  |  | 
|  | static void cmos_ioport_write(void *opaque, hwaddr addr, | 
|  | uint64_t data, unsigned size) | 
|  | { | 
|  | MC146818RtcState *s = opaque; | 
|  | uint32_t old_period; | 
|  | bool update_periodic_timer; | 
|  |  | 
|  | if ((addr & 1) == 0) { | 
|  | s->cmos_index = data & 0x7f; | 
|  | } else { | 
|  | CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n", | 
|  | s->cmos_index, data); | 
|  | switch(s->cmos_index) { | 
|  | case RTC_SECONDS_ALARM: | 
|  | case RTC_MINUTES_ALARM: | 
|  | case RTC_HOURS_ALARM: | 
|  | s->cmos_data[s->cmos_index] = data; | 
|  | check_update_timer(s); | 
|  | break; | 
|  | case RTC_IBM_PS2_CENTURY_BYTE: | 
|  | s->cmos_index = RTC_CENTURY; | 
|  | /* fall through */ | 
|  | case RTC_CENTURY: | 
|  | case RTC_SECONDS: | 
|  | case RTC_MINUTES: | 
|  | case RTC_HOURS: | 
|  | case RTC_DAY_OF_WEEK: | 
|  | case RTC_DAY_OF_MONTH: | 
|  | case RTC_MONTH: | 
|  | case RTC_YEAR: | 
|  | s->cmos_data[s->cmos_index] = data; | 
|  | /* if in set mode, do not update the time */ | 
|  | if (rtc_running(s)) { | 
|  | rtc_set_time(s); | 
|  | check_update_timer(s); | 
|  | } | 
|  | break; | 
|  | case RTC_REG_A: | 
|  | update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f; | 
|  | old_period = rtc_periodic_clock_ticks(s); | 
|  |  | 
|  | if ((data & 0x60) == 0x60) { | 
|  | if (rtc_running(s)) { | 
|  | rtc_update_time(s); | 
|  | } | 
|  | /* What happens to UIP when divider reset is enabled is | 
|  | * unclear from the datasheet.  Shouldn't matter much | 
|  | * though. | 
|  | */ | 
|  | s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; | 
|  | } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) && | 
|  | (data & 0x70)  <= 0x20) { | 
|  | /* when the divider reset is removed, the first update cycle | 
|  | * begins one-half second later*/ | 
|  | if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { | 
|  | s->offset = 500000000; | 
|  | rtc_set_time(s); | 
|  | } | 
|  | s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; | 
|  | } | 
|  | /* UIP bit is read only */ | 
|  | s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | | 
|  | (s->cmos_data[RTC_REG_A] & REG_A_UIP); | 
|  |  | 
|  | if (update_periodic_timer) { | 
|  | periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), | 
|  | old_period, true); | 
|  | } | 
|  |  | 
|  | check_update_timer(s); | 
|  | break; | 
|  | case RTC_REG_B: | 
|  | update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data) | 
|  | & REG_B_PIE; | 
|  | old_period = rtc_periodic_clock_ticks(s); | 
|  |  | 
|  | if (data & REG_B_SET) { | 
|  | /* update cmos to when the rtc was stopping */ | 
|  | if (rtc_running(s)) { | 
|  | rtc_update_time(s); | 
|  | } | 
|  | /* set mode: reset UIP mode */ | 
|  | s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; | 
|  | data &= ~REG_B_UIE; | 
|  | } else { | 
|  | /* if disabling set mode, update the time */ | 
|  | if ((s->cmos_data[RTC_REG_B] & REG_B_SET) && | 
|  | (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) { | 
|  | s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND; | 
|  | rtc_set_time(s); | 
|  | } | 
|  | } | 
|  | /* if an interrupt flag is already set when the interrupt | 
|  | * becomes enabled, raise an interrupt immediately.  */ | 
|  | if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) { | 
|  | s->cmos_data[RTC_REG_C] |= REG_C_IRQF; | 
|  | qemu_irq_raise(s->irq); | 
|  | } else { | 
|  | s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF; | 
|  | qemu_irq_lower(s->irq); | 
|  | } | 
|  | s->cmos_data[RTC_REG_B] = data; | 
|  |  | 
|  | if (update_periodic_timer) { | 
|  | periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), | 
|  | old_period, true); | 
|  | } | 
|  |  | 
|  | check_update_timer(s); | 
|  | break; | 
|  | case RTC_REG_C: | 
|  | case RTC_REG_D: | 
|  | /* cannot write to them */ | 
|  | break; | 
|  | default: | 
|  | s->cmos_data[s->cmos_index] = data; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int rtc_to_bcd(MC146818RtcState *s, int a) | 
|  | { | 
|  | if (s->cmos_data[RTC_REG_B] & REG_B_DM) { | 
|  | return a; | 
|  | } else { | 
|  | return ((a / 10) << 4) | (a % 10); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int rtc_from_bcd(MC146818RtcState *s, int a) | 
|  | { | 
|  | if ((a & 0xc0) == 0xc0) { | 
|  | return -1; | 
|  | } | 
|  | if (s->cmos_data[RTC_REG_B] & REG_B_DM) { | 
|  | return a; | 
|  | } else { | 
|  | return ((a >> 4) * 10) + (a & 0x0f); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rtc_get_time(MC146818RtcState *s, struct tm *tm) | 
|  | { | 
|  | tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); | 
|  | tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); | 
|  | tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f); | 
|  | if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { | 
|  | tm->tm_hour %= 12; | 
|  | if (s->cmos_data[RTC_HOURS] & 0x80) { | 
|  | tm->tm_hour += 12; | 
|  | } | 
|  | } | 
|  | tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1; | 
|  | tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]); | 
|  | tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1; | 
|  | tm->tm_year = | 
|  | rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year + | 
|  | rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900; | 
|  | } | 
|  |  | 
|  | static void rtc_set_time(MC146818RtcState *s) | 
|  | { | 
|  | struct tm tm = {}; | 
|  | g_autofree const char *qom_path = object_get_canonical_path(OBJECT(s)); | 
|  |  | 
|  | rtc_get_time(s, &tm); | 
|  | s->base_rtc = mktimegm(&tm); | 
|  | s->last_update = qemu_clock_get_ns(rtc_clock); | 
|  |  | 
|  | qapi_event_send_rtc_change(qemu_timedate_diff(&tm), qom_path); | 
|  | } | 
|  |  | 
|  | static void rtc_set_cmos(MC146818RtcState *s, const struct tm *tm) | 
|  | { | 
|  | int year; | 
|  |  | 
|  | s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec); | 
|  | s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min); | 
|  | if (s->cmos_data[RTC_REG_B] & REG_B_24H) { | 
|  | /* 24 hour format */ | 
|  | s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour); | 
|  | } else { | 
|  | /* 12 hour format */ | 
|  | int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12; | 
|  | s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h); | 
|  | if (tm->tm_hour >= 12) | 
|  | s->cmos_data[RTC_HOURS] |= 0x80; | 
|  | } | 
|  | s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1); | 
|  | s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday); | 
|  | s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1); | 
|  | year = tm->tm_year + 1900 - s->base_year; | 
|  | s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100); | 
|  | s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100); | 
|  | } | 
|  |  | 
|  | static void rtc_update_time(MC146818RtcState *s) | 
|  | { | 
|  | struct tm ret; | 
|  | time_t guest_sec; | 
|  | int64_t guest_nsec; | 
|  |  | 
|  | guest_nsec = get_guest_rtc_ns(s); | 
|  | guest_sec = guest_nsec / NANOSECONDS_PER_SECOND; | 
|  | gmtime_r(&guest_sec, &ret); | 
|  |  | 
|  | /* Is SET flag of Register B disabled? */ | 
|  | if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) { | 
|  | rtc_set_cmos(s, &ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int update_in_progress(MC146818RtcState *s) | 
|  | { | 
|  | int64_t guest_nsec; | 
|  |  | 
|  | if (!rtc_running(s)) { | 
|  | return 0; | 
|  | } | 
|  | if (timer_pending(s->update_timer)) { | 
|  | int64_t next_update_time = timer_expire_time_ns(s->update_timer); | 
|  | /* Latch UIP until the timer expires.  */ | 
|  | if (qemu_clock_get_ns(rtc_clock) >= | 
|  | (next_update_time - UIP_HOLD_LENGTH)) { | 
|  | s->cmos_data[RTC_REG_A] |= REG_A_UIP; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | guest_nsec = get_guest_rtc_ns(s); | 
|  | /* UIP bit will be set at last 244us of every second. */ | 
|  | if ((guest_nsec % NANOSECONDS_PER_SECOND) >= | 
|  | (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) { | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static uint64_t cmos_ioport_read(void *opaque, hwaddr addr, | 
|  | unsigned size) | 
|  | { | 
|  | MC146818RtcState *s = opaque; | 
|  | int ret; | 
|  | if ((addr & 1) == 0) { | 
|  | return 0xff; | 
|  | } else { | 
|  | switch(s->cmos_index) { | 
|  | case RTC_IBM_PS2_CENTURY_BYTE: | 
|  | s->cmos_index = RTC_CENTURY; | 
|  | /* fall through */ | 
|  | case RTC_CENTURY: | 
|  | case RTC_SECONDS: | 
|  | case RTC_MINUTES: | 
|  | case RTC_HOURS: | 
|  | case RTC_DAY_OF_WEEK: | 
|  | case RTC_DAY_OF_MONTH: | 
|  | case RTC_MONTH: | 
|  | case RTC_YEAR: | 
|  | /* if not in set mode, calibrate cmos before | 
|  | * reading*/ | 
|  | if (rtc_running(s)) { | 
|  | rtc_update_time(s); | 
|  | } | 
|  | ret = s->cmos_data[s->cmos_index]; | 
|  | break; | 
|  | case RTC_REG_A: | 
|  | ret = s->cmos_data[s->cmos_index]; | 
|  | if (update_in_progress(s)) { | 
|  | ret |= REG_A_UIP; | 
|  | } | 
|  | break; | 
|  | case RTC_REG_C: | 
|  | ret = s->cmos_data[s->cmos_index]; | 
|  | qemu_irq_lower(s->irq); | 
|  | s->cmos_data[RTC_REG_C] = 0x00; | 
|  | if (ret & (REG_C_UF | REG_C_AF)) { | 
|  | check_update_timer(s); | 
|  | } | 
|  |  | 
|  | if(s->irq_coalesced && | 
|  | (s->cmos_data[RTC_REG_B] & REG_B_PIE) && | 
|  | s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) { | 
|  | s->irq_reinject_on_ack_count++; | 
|  | s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF; | 
|  | DPRINTF_C("cmos: injecting on ack\n"); | 
|  | if (rtc_policy_slew_deliver_irq(s)) { | 
|  | s->irq_coalesced--; | 
|  | DPRINTF_C("cmos: coalesced irqs decreased to %d\n", | 
|  | s->irq_coalesced); | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | ret = s->cmos_data[s->cmos_index]; | 
|  | break; | 
|  | } | 
|  | CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n", | 
|  | s->cmos_index, ret); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | void mc146818rtc_set_cmos_data(MC146818RtcState *s, int addr, int val) | 
|  | { | 
|  | if (addr >= 0 && addr <= 127) | 
|  | s->cmos_data[addr] = val; | 
|  | } | 
|  |  | 
|  | int mc146818rtc_get_cmos_data(MC146818RtcState *s, int addr) | 
|  | { | 
|  | assert(addr >= 0 && addr <= 127); | 
|  | return s->cmos_data[addr]; | 
|  | } | 
|  |  | 
|  | static void rtc_set_date_from_host(ISADevice *dev) | 
|  | { | 
|  | MC146818RtcState *s = MC146818_RTC(dev); | 
|  | struct tm tm; | 
|  |  | 
|  | qemu_get_timedate(&tm, 0); | 
|  |  | 
|  | s->base_rtc = mktimegm(&tm); | 
|  | s->last_update = qemu_clock_get_ns(rtc_clock); | 
|  | s->offset = 0; | 
|  |  | 
|  | /* set the CMOS date */ | 
|  | rtc_set_cmos(s, &tm); | 
|  | } | 
|  |  | 
|  | static int rtc_pre_save(void *opaque) | 
|  | { | 
|  | MC146818RtcState *s = opaque; | 
|  |  | 
|  | rtc_update_time(s); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rtc_post_load(void *opaque, int version_id) | 
|  | { | 
|  | MC146818RtcState *s = opaque; | 
|  |  | 
|  | if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) { | 
|  | rtc_set_time(s); | 
|  | s->offset = 0; | 
|  | check_update_timer(s); | 
|  | } | 
|  | s->period = rtc_periodic_clock_ticks(s); | 
|  |  | 
|  | /* The periodic timer is deterministic in record/replay mode, | 
|  | * so there is no need to update it after loading the vmstate. | 
|  | * Reading RTC here would misalign record and replay. | 
|  | */ | 
|  | if (replay_mode == REPLAY_MODE_NONE) { | 
|  | uint64_t now = qemu_clock_get_ns(rtc_clock); | 
|  | if (now < s->next_periodic_time || | 
|  | now > (s->next_periodic_time + get_max_clock_jump())) { | 
|  | periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), s->period, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (version_id >= 2) { | 
|  | if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { | 
|  | rtc_coalesced_timer_update(s); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool rtc_irq_reinject_on_ack_count_needed(void *opaque) | 
|  | { | 
|  | MC146818RtcState *s = (MC146818RtcState *)opaque; | 
|  | return s->irq_reinject_on_ack_count != 0; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = { | 
|  | .name = "mc146818rtc/irq_reinject_on_ack_count", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = rtc_irq_reinject_on_ack_count_needed, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT16(irq_reinject_on_ack_count, MC146818RtcState), | 
|  | VMSTATE_END_OF_LIST() | 
|  | } | 
|  | }; | 
|  |  | 
|  | static const VMStateDescription vmstate_rtc = { | 
|  | .name = "mc146818rtc", | 
|  | .version_id = 3, | 
|  | .minimum_version_id = 3, | 
|  | .pre_save = rtc_pre_save, | 
|  | .post_load = rtc_post_load, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_BUFFER(cmos_data, MC146818RtcState), | 
|  | VMSTATE_UINT8(cmos_index, MC146818RtcState), | 
|  | VMSTATE_UNUSED(7*4), | 
|  | VMSTATE_TIMER_PTR(periodic_timer, MC146818RtcState), | 
|  | VMSTATE_INT64(next_periodic_time, MC146818RtcState), | 
|  | VMSTATE_UNUSED(3*8), | 
|  | VMSTATE_UINT32(irq_coalesced, MC146818RtcState), | 
|  | VMSTATE_UINT32(period, MC146818RtcState), | 
|  | VMSTATE_UINT64(base_rtc, MC146818RtcState), | 
|  | VMSTATE_UINT64(last_update, MC146818RtcState), | 
|  | VMSTATE_INT64(offset, MC146818RtcState), | 
|  | VMSTATE_TIMER_PTR(update_timer, MC146818RtcState), | 
|  | VMSTATE_UINT64(next_alarm_time, MC146818RtcState), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | .subsections = (const VMStateDescription * const []) { | 
|  | &vmstate_rtc_irq_reinject_on_ack_count, | 
|  | NULL | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE) | 
|  | BIOS will read it and start S3 resume at POST Entry */ | 
|  | static void rtc_notify_suspend(Notifier *notifier, void *data) | 
|  | { | 
|  | MC146818RtcState *s = container_of(notifier, MC146818RtcState, | 
|  | suspend_notifier); | 
|  | mc146818rtc_set_cmos_data(s, 0xF, 0xFE); | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps cmos_ops = { | 
|  | .read = cmos_ioport_read, | 
|  | .write = cmos_ioport_write, | 
|  | .impl = { | 
|  | .min_access_size = 1, | 
|  | .max_access_size = 1, | 
|  | }, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | }; | 
|  |  | 
|  | static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp) | 
|  | { | 
|  | MC146818RtcState *s = MC146818_RTC(obj); | 
|  |  | 
|  | rtc_update_time(s); | 
|  | rtc_get_time(s, current_tm); | 
|  | } | 
|  |  | 
|  | static void rtc_realizefn(DeviceState *dev, Error **errp) | 
|  | { | 
|  | ISADevice *isadev = ISA_DEVICE(dev); | 
|  | MC146818RtcState *s = MC146818_RTC(dev); | 
|  |  | 
|  | s->cmos_data[RTC_REG_A] = 0x26; | 
|  | s->cmos_data[RTC_REG_B] = 0x02; | 
|  | s->cmos_data[RTC_REG_C] = 0x00; | 
|  | s->cmos_data[RTC_REG_D] = 0x80; | 
|  |  | 
|  | /* This is for historical reasons.  The default base year qdev property | 
|  | * was set to 2000 for most machine types before the century byte was | 
|  | * implemented. | 
|  | * | 
|  | * This if statement means that the century byte will be always 0 | 
|  | * (at least until 2079...) for base_year = 1980, but will be set | 
|  | * correctly for base_year = 2000. | 
|  | */ | 
|  | if (s->base_year == 2000) { | 
|  | s->base_year = 0; | 
|  | } | 
|  |  | 
|  | if (s->isairq >= ISA_NUM_IRQS) { | 
|  | error_setg(errp, "Maximum value for \"irq\" is: %u", ISA_NUM_IRQS - 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rtc_set_date_from_host(isadev); | 
|  |  | 
|  | switch (s->lost_tick_policy) { | 
|  | case LOST_TICK_POLICY_SLEW: | 
|  | s->coalesced_timer = | 
|  | timer_new_ns(rtc_clock, rtc_coalesced_timer, s); | 
|  | break; | 
|  | case LOST_TICK_POLICY_DISCARD: | 
|  | break; | 
|  | default: | 
|  | error_setg(errp, "Invalid lost tick policy."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s); | 
|  | s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s); | 
|  | check_update_timer(s); | 
|  |  | 
|  | s->suspend_notifier.notify = rtc_notify_suspend; | 
|  | qemu_register_suspend_notifier(&s->suspend_notifier); | 
|  |  | 
|  | memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2); | 
|  | isa_register_ioport(isadev, &s->io, s->io_base); | 
|  |  | 
|  | /* register rtc 0x70 port for coalesced_pio */ | 
|  | memory_region_set_flush_coalesced(&s->io); | 
|  | memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops, | 
|  | s, "rtc-index", 1); | 
|  | memory_region_add_subregion(&s->io, 0, &s->coalesced_io); | 
|  | memory_region_add_coalescing(&s->coalesced_io, 0, 1); | 
|  |  | 
|  | object_property_add_tm(OBJECT(s), "date", rtc_get_date); | 
|  |  | 
|  | qdev_init_gpio_out(dev, &s->irq, 1); | 
|  | } | 
|  |  | 
|  | MC146818RtcState *mc146818_rtc_init(ISABus *bus, int base_year, | 
|  | qemu_irq intercept_irq) | 
|  | { | 
|  | DeviceState *dev; | 
|  | ISADevice *isadev; | 
|  | MC146818RtcState *s; | 
|  |  | 
|  | isadev = isa_new(TYPE_MC146818_RTC); | 
|  | dev = DEVICE(isadev); | 
|  | s = MC146818_RTC(isadev); | 
|  | qdev_prop_set_int32(dev, "base_year", base_year); | 
|  | isa_realize_and_unref(isadev, bus, &error_fatal); | 
|  | if (intercept_irq) { | 
|  | qdev_connect_gpio_out(dev, 0, intercept_irq); | 
|  | } else { | 
|  | isa_connect_gpio_out(isadev, 0, s->isairq); | 
|  | } | 
|  |  | 
|  | object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(isadev), | 
|  | "date"); | 
|  |  | 
|  | return s; | 
|  | } | 
|  |  | 
|  | static const Property mc146818rtc_properties[] = { | 
|  | DEFINE_PROP_INT32("base_year", MC146818RtcState, base_year, 1980), | 
|  | DEFINE_PROP_UINT16("iobase", MC146818RtcState, io_base, RTC_ISA_BASE), | 
|  | DEFINE_PROP_UINT8("irq", MC146818RtcState, isairq, RTC_ISA_IRQ), | 
|  | DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", MC146818RtcState, | 
|  | lost_tick_policy, LOST_TICK_POLICY_DISCARD), | 
|  | }; | 
|  |  | 
|  | static void rtc_reset_enter(Object *obj, ResetType type) | 
|  | { | 
|  | MC146818RtcState *s = MC146818_RTC(obj); | 
|  |  | 
|  | /* Reason: VM do suspend self will set 0xfe | 
|  | * Reset any values other than 0xfe(Guest suspend case) */ | 
|  | if (s->cmos_data[0x0f] != 0xfe) { | 
|  | s->cmos_data[0x0f] = 0x00; | 
|  | } | 
|  |  | 
|  | s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE); | 
|  | s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF); | 
|  | check_update_timer(s); | 
|  |  | 
|  |  | 
|  | if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { | 
|  | s->irq_coalesced = 0; | 
|  | s->irq_reinject_on_ack_count = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rtc_reset_hold(Object *obj, ResetType type) | 
|  | { | 
|  | MC146818RtcState *s = MC146818_RTC(obj); | 
|  |  | 
|  | qemu_irq_lower(s->irq); | 
|  | } | 
|  |  | 
|  | static void rtc_build_aml(AcpiDevAmlIf *adev, Aml *scope) | 
|  | { | 
|  | MC146818RtcState *s = MC146818_RTC(adev); | 
|  | Aml *dev; | 
|  | Aml *crs; | 
|  |  | 
|  | /* | 
|  | * Reserving 8 io ports here, following what physical hardware | 
|  | * does, even though qemu only responds to the first two ports. | 
|  | */ | 
|  | crs = aml_resource_template(); | 
|  | aml_append(crs, aml_io(AML_DECODE16, s->io_base, s->io_base, | 
|  | 0x01, 0x08)); | 
|  | aml_append(crs, aml_irq_no_flags(s->isairq)); | 
|  |  | 
|  | dev = aml_device("RTC"); | 
|  | aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0B00"))); | 
|  | aml_append(dev, aml_name_decl("_CRS", crs)); | 
|  |  | 
|  | aml_append(scope, dev); | 
|  | } | 
|  |  | 
|  | static void rtc_class_initfn(ObjectClass *klass, const void *data) | 
|  | { | 
|  | DeviceClass *dc = DEVICE_CLASS(klass); | 
|  | ResettableClass *rc = RESETTABLE_CLASS(klass); | 
|  | AcpiDevAmlIfClass *adevc = ACPI_DEV_AML_IF_CLASS(klass); | 
|  |  | 
|  | dc->realize = rtc_realizefn; | 
|  | dc->vmsd = &vmstate_rtc; | 
|  | rc->phases.enter = rtc_reset_enter; | 
|  | rc->phases.hold = rtc_reset_hold; | 
|  | adevc->build_dev_aml = rtc_build_aml; | 
|  | device_class_set_props(dc, mc146818rtc_properties); | 
|  | set_bit(DEVICE_CATEGORY_MISC, dc->categories); | 
|  | } | 
|  |  | 
|  | static const TypeInfo mc146818rtc_info = { | 
|  | .name          = TYPE_MC146818_RTC, | 
|  | .parent        = TYPE_ISA_DEVICE, | 
|  | .instance_size = sizeof(MC146818RtcState), | 
|  | .class_init    = rtc_class_initfn, | 
|  | .interfaces = (const InterfaceInfo[]) { | 
|  | { TYPE_ACPI_DEV_AML_IF }, | 
|  | { }, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void mc146818rtc_register_types(void) | 
|  | { | 
|  | type_register_static(&mc146818rtc_info); | 
|  | } | 
|  |  | 
|  | type_init(mc146818rtc_register_types) |