| /* |
| * Emulation of Linux signals |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| * MA 02110-1301, USA. |
| */ |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include <stdarg.h> |
| #include <unistd.h> |
| #include <signal.h> |
| #include <errno.h> |
| #include <assert.h> |
| #include <sys/ucontext.h> |
| #include <sys/resource.h> |
| |
| #include "qemu.h" |
| #include "qemu-common.h" |
| #include "target_signal.h" |
| |
| //#define DEBUG_SIGNAL |
| |
| static struct target_sigaltstack target_sigaltstack_used = { |
| .ss_sp = 0, |
| .ss_size = 0, |
| .ss_flags = TARGET_SS_DISABLE, |
| }; |
| |
| static struct target_sigaction sigact_table[TARGET_NSIG]; |
| |
| static void host_signal_handler(int host_signum, siginfo_t *info, |
| void *puc); |
| |
| static uint8_t host_to_target_signal_table[65] = { |
| [SIGHUP] = TARGET_SIGHUP, |
| [SIGINT] = TARGET_SIGINT, |
| [SIGQUIT] = TARGET_SIGQUIT, |
| [SIGILL] = TARGET_SIGILL, |
| [SIGTRAP] = TARGET_SIGTRAP, |
| [SIGABRT] = TARGET_SIGABRT, |
| /* [SIGIOT] = TARGET_SIGIOT,*/ |
| [SIGBUS] = TARGET_SIGBUS, |
| [SIGFPE] = TARGET_SIGFPE, |
| [SIGKILL] = TARGET_SIGKILL, |
| [SIGUSR1] = TARGET_SIGUSR1, |
| [SIGSEGV] = TARGET_SIGSEGV, |
| [SIGUSR2] = TARGET_SIGUSR2, |
| [SIGPIPE] = TARGET_SIGPIPE, |
| [SIGALRM] = TARGET_SIGALRM, |
| [SIGTERM] = TARGET_SIGTERM, |
| #ifdef SIGSTKFLT |
| [SIGSTKFLT] = TARGET_SIGSTKFLT, |
| #endif |
| [SIGCHLD] = TARGET_SIGCHLD, |
| [SIGCONT] = TARGET_SIGCONT, |
| [SIGSTOP] = TARGET_SIGSTOP, |
| [SIGTSTP] = TARGET_SIGTSTP, |
| [SIGTTIN] = TARGET_SIGTTIN, |
| [SIGTTOU] = TARGET_SIGTTOU, |
| [SIGURG] = TARGET_SIGURG, |
| [SIGXCPU] = TARGET_SIGXCPU, |
| [SIGXFSZ] = TARGET_SIGXFSZ, |
| [SIGVTALRM] = TARGET_SIGVTALRM, |
| [SIGPROF] = TARGET_SIGPROF, |
| [SIGWINCH] = TARGET_SIGWINCH, |
| [SIGIO] = TARGET_SIGIO, |
| [SIGPWR] = TARGET_SIGPWR, |
| [SIGSYS] = TARGET_SIGSYS, |
| /* next signals stay the same */ |
| /* Nasty hack: Reverse SIGRTMIN and SIGRTMAX to avoid overlap with |
| host libpthread signals. This assumes noone actually uses SIGRTMAX :-/ |
| To fix this properly we need to do manual signal delivery multiplexed |
| over a single host signal. */ |
| [__SIGRTMIN] = __SIGRTMAX, |
| [__SIGRTMAX] = __SIGRTMIN, |
| }; |
| static uint8_t target_to_host_signal_table[65]; |
| |
| static inline int on_sig_stack(unsigned long sp) |
| { |
| return (sp - target_sigaltstack_used.ss_sp |
| < target_sigaltstack_used.ss_size); |
| } |
| |
| static inline int sas_ss_flags(unsigned long sp) |
| { |
| return (target_sigaltstack_used.ss_size == 0 ? SS_DISABLE |
| : on_sig_stack(sp) ? SS_ONSTACK : 0); |
| } |
| |
| int host_to_target_signal(int sig) |
| { |
| if (sig > 64) |
| return sig; |
| return host_to_target_signal_table[sig]; |
| } |
| |
| int target_to_host_signal(int sig) |
| { |
| if (sig > 64) |
| return sig; |
| return target_to_host_signal_table[sig]; |
| } |
| |
| static inline void target_sigemptyset(target_sigset_t *set) |
| { |
| memset(set, 0, sizeof(*set)); |
| } |
| |
| static inline void target_sigaddset(target_sigset_t *set, int signum) |
| { |
| signum--; |
| abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); |
| set->sig[signum / TARGET_NSIG_BPW] |= mask; |
| } |
| |
| static inline int target_sigismember(const target_sigset_t *set, int signum) |
| { |
| signum--; |
| abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); |
| return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); |
| } |
| |
| static void host_to_target_sigset_internal(target_sigset_t *d, |
| const sigset_t *s) |
| { |
| int i; |
| target_sigemptyset(d); |
| for (i = 1; i <= TARGET_NSIG; i++) { |
| if (sigismember(s, i)) { |
| target_sigaddset(d, host_to_target_signal(i)); |
| } |
| } |
| } |
| |
| void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) |
| { |
| target_sigset_t d1; |
| int i; |
| |
| host_to_target_sigset_internal(&d1, s); |
| for(i = 0;i < TARGET_NSIG_WORDS; i++) |
| d->sig[i] = tswapl(d1.sig[i]); |
| } |
| |
| static void target_to_host_sigset_internal(sigset_t *d, |
| const target_sigset_t *s) |
| { |
| int i; |
| sigemptyset(d); |
| for (i = 1; i <= TARGET_NSIG; i++) { |
| if (target_sigismember(s, i)) { |
| sigaddset(d, target_to_host_signal(i)); |
| } |
| } |
| } |
| |
| void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) |
| { |
| target_sigset_t s1; |
| int i; |
| |
| for(i = 0;i < TARGET_NSIG_WORDS; i++) |
| s1.sig[i] = tswapl(s->sig[i]); |
| target_to_host_sigset_internal(d, &s1); |
| } |
| |
| void host_to_target_old_sigset(abi_ulong *old_sigset, |
| const sigset_t *sigset) |
| { |
| target_sigset_t d; |
| host_to_target_sigset(&d, sigset); |
| *old_sigset = d.sig[0]; |
| } |
| |
| void target_to_host_old_sigset(sigset_t *sigset, |
| const abi_ulong *old_sigset) |
| { |
| target_sigset_t d; |
| int i; |
| |
| d.sig[0] = *old_sigset; |
| for(i = 1;i < TARGET_NSIG_WORDS; i++) |
| d.sig[i] = 0; |
| target_to_host_sigset(sigset, &d); |
| } |
| |
| /* siginfo conversion */ |
| |
| static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, |
| const siginfo_t *info) |
| { |
| int sig; |
| sig = host_to_target_signal(info->si_signo); |
| tinfo->si_signo = sig; |
| tinfo->si_errno = 0; |
| tinfo->si_code = info->si_code; |
| if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV || |
| sig == SIGBUS || sig == SIGTRAP) { |
| /* should never come here, but who knows. The information for |
| the target is irrelevant */ |
| tinfo->_sifields._sigfault._addr = 0; |
| } else if (sig == SIGIO) { |
| tinfo->_sifields._sigpoll._fd = info->si_fd; |
| } else if (sig >= TARGET_SIGRTMIN) { |
| tinfo->_sifields._rt._pid = info->si_pid; |
| tinfo->_sifields._rt._uid = info->si_uid; |
| /* XXX: potential problem if 64 bit */ |
| tinfo->_sifields._rt._sigval.sival_ptr = |
| (abi_ulong)(unsigned long)info->si_value.sival_ptr; |
| } |
| } |
| |
| static void tswap_siginfo(target_siginfo_t *tinfo, |
| const target_siginfo_t *info) |
| { |
| int sig; |
| sig = info->si_signo; |
| tinfo->si_signo = tswap32(sig); |
| tinfo->si_errno = tswap32(info->si_errno); |
| tinfo->si_code = tswap32(info->si_code); |
| if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV || |
| sig == SIGBUS || sig == SIGTRAP) { |
| tinfo->_sifields._sigfault._addr = |
| tswapl(info->_sifields._sigfault._addr); |
| } else if (sig == SIGIO) { |
| tinfo->_sifields._sigpoll._fd = tswap32(info->_sifields._sigpoll._fd); |
| } else if (sig >= TARGET_SIGRTMIN) { |
| tinfo->_sifields._rt._pid = tswap32(info->_sifields._rt._pid); |
| tinfo->_sifields._rt._uid = tswap32(info->_sifields._rt._uid); |
| tinfo->_sifields._rt._sigval.sival_ptr = |
| tswapl(info->_sifields._rt._sigval.sival_ptr); |
| } |
| } |
| |
| |
| void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) |
| { |
| host_to_target_siginfo_noswap(tinfo, info); |
| tswap_siginfo(tinfo, tinfo); |
| } |
| |
| /* XXX: we support only POSIX RT signals are used. */ |
| /* XXX: find a solution for 64 bit (additional malloced data is needed) */ |
| void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) |
| { |
| info->si_signo = tswap32(tinfo->si_signo); |
| info->si_errno = tswap32(tinfo->si_errno); |
| info->si_code = tswap32(tinfo->si_code); |
| info->si_pid = tswap32(tinfo->_sifields._rt._pid); |
| info->si_uid = tswap32(tinfo->_sifields._rt._uid); |
| info->si_value.sival_ptr = |
| (void *)(long)tswapl(tinfo->_sifields._rt._sigval.sival_ptr); |
| } |
| |
| static int fatal_signal (int sig) |
| { |
| switch (sig) { |
| case TARGET_SIGCHLD: |
| case TARGET_SIGURG: |
| case TARGET_SIGWINCH: |
| /* Ignored by default. */ |
| return 0; |
| case TARGET_SIGCONT: |
| case TARGET_SIGSTOP: |
| case TARGET_SIGTSTP: |
| case TARGET_SIGTTIN: |
| case TARGET_SIGTTOU: |
| /* Job control signals. */ |
| return 0; |
| default: |
| return 1; |
| } |
| } |
| |
| /* returns 1 if given signal should dump core if not handled */ |
| static int core_dump_signal(int sig) |
| { |
| switch (sig) { |
| case TARGET_SIGABRT: |
| case TARGET_SIGFPE: |
| case TARGET_SIGILL: |
| case TARGET_SIGQUIT: |
| case TARGET_SIGSEGV: |
| case TARGET_SIGTRAP: |
| case TARGET_SIGBUS: |
| return (1); |
| default: |
| return (0); |
| } |
| } |
| |
| void signal_init(void) |
| { |
| struct sigaction act; |
| struct sigaction oact; |
| int i, j; |
| int host_sig; |
| |
| /* generate signal conversion tables */ |
| for(i = 1; i <= 64; i++) { |
| if (host_to_target_signal_table[i] == 0) |
| host_to_target_signal_table[i] = i; |
| } |
| for(i = 1; i <= 64; i++) { |
| j = host_to_target_signal_table[i]; |
| target_to_host_signal_table[j] = i; |
| } |
| |
| /* set all host signal handlers. ALL signals are blocked during |
| the handlers to serialize them. */ |
| memset(sigact_table, 0, sizeof(sigact_table)); |
| |
| sigfillset(&act.sa_mask); |
| act.sa_flags = SA_SIGINFO; |
| act.sa_sigaction = host_signal_handler; |
| for(i = 1; i <= TARGET_NSIG; i++) { |
| host_sig = target_to_host_signal(i); |
| sigaction(host_sig, NULL, &oact); |
| if (oact.sa_sigaction == (void *)SIG_IGN) { |
| sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; |
| } else if (oact.sa_sigaction == (void *)SIG_DFL) { |
| sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; |
| } |
| /* If there's already a handler installed then something has |
| gone horribly wrong, so don't even try to handle that case. */ |
| /* Install some handlers for our own use. We need at least |
| SIGSEGV and SIGBUS, to detect exceptions. We can not just |
| trap all signals because it affects syscall interrupt |
| behavior. But do trap all default-fatal signals. */ |
| if (fatal_signal (i)) |
| sigaction(host_sig, &act, NULL); |
| } |
| } |
| |
| /* signal queue handling */ |
| |
| static inline struct sigqueue *alloc_sigqueue(CPUState *env) |
| { |
| TaskState *ts = env->opaque; |
| struct sigqueue *q = ts->first_free; |
| if (!q) |
| return NULL; |
| ts->first_free = q->next; |
| return q; |
| } |
| |
| static inline void free_sigqueue(CPUState *env, struct sigqueue *q) |
| { |
| TaskState *ts = env->opaque; |
| q->next = ts->first_free; |
| ts->first_free = q; |
| } |
| |
| /* abort execution with signal */ |
| static void QEMU_NORETURN force_sig(int sig) |
| { |
| TaskState *ts = (TaskState *)thread_env->opaque; |
| int host_sig, core_dumped = 0; |
| struct sigaction act; |
| host_sig = target_to_host_signal(sig); |
| gdb_signalled(thread_env, sig); |
| |
| /* dump core if supported by target binary format */ |
| if (core_dump_signal(sig) && (ts->bprm->core_dump != NULL)) { |
| stop_all_tasks(); |
| core_dumped = |
| ((*ts->bprm->core_dump)(sig, thread_env) == 0); |
| } |
| if (core_dumped) { |
| /* we already dumped the core of target process, we don't want |
| * a coredump of qemu itself */ |
| struct rlimit nodump; |
| getrlimit(RLIMIT_CORE, &nodump); |
| nodump.rlim_cur=0; |
| setrlimit(RLIMIT_CORE, &nodump); |
| (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", |
| sig, strsignal(host_sig), "core dumped" ); |
| } |
| |
| /* The proper exit code for dieing from an uncaught signal is |
| * -<signal>. The kernel doesn't allow exit() or _exit() to pass |
| * a negative value. To get the proper exit code we need to |
| * actually die from an uncaught signal. Here the default signal |
| * handler is installed, we send ourself a signal and we wait for |
| * it to arrive. */ |
| sigfillset(&act.sa_mask); |
| act.sa_handler = SIG_DFL; |
| sigaction(host_sig, &act, NULL); |
| |
| /* For some reason raise(host_sig) doesn't send the signal when |
| * statically linked on x86-64. */ |
| kill(getpid(), host_sig); |
| |
| /* Make sure the signal isn't masked (just reuse the mask inside |
| of act) */ |
| sigdelset(&act.sa_mask, host_sig); |
| sigsuspend(&act.sa_mask); |
| |
| /* unreachable */ |
| assert(0); |
| |
| } |
| |
| /* queue a signal so that it will be send to the virtual CPU as soon |
| as possible */ |
| int queue_signal(CPUState *env, int sig, target_siginfo_t *info) |
| { |
| TaskState *ts = env->opaque; |
| struct emulated_sigtable *k; |
| struct sigqueue *q, **pq; |
| abi_ulong handler; |
| int queue; |
| |
| #if defined(DEBUG_SIGNAL) |
| fprintf(stderr, "queue_signal: sig=%d\n", |
| sig); |
| #endif |
| k = &ts->sigtab[sig - 1]; |
| queue = gdb_queuesig (); |
| handler = sigact_table[sig - 1]._sa_handler; |
| if (!queue && handler == TARGET_SIG_DFL) { |
| if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { |
| kill(getpid(),SIGSTOP); |
| return 0; |
| } else |
| /* default handler : ignore some signal. The other are fatal */ |
| if (sig != TARGET_SIGCHLD && |
| sig != TARGET_SIGURG && |
| sig != TARGET_SIGWINCH && |
| sig != TARGET_SIGCONT) { |
| force_sig(sig); |
| } else { |
| return 0; /* indicate ignored */ |
| } |
| } else if (!queue && handler == TARGET_SIG_IGN) { |
| /* ignore signal */ |
| return 0; |
| } else if (!queue && handler == TARGET_SIG_ERR) { |
| force_sig(sig); |
| } else { |
| pq = &k->first; |
| if (sig < TARGET_SIGRTMIN) { |
| /* if non real time signal, we queue exactly one signal */ |
| if (!k->pending) |
| q = &k->info; |
| else |
| return 0; |
| } else { |
| if (!k->pending) { |
| /* first signal */ |
| q = &k->info; |
| } else { |
| q = alloc_sigqueue(env); |
| if (!q) |
| return -EAGAIN; |
| while (*pq != NULL) |
| pq = &(*pq)->next; |
| } |
| } |
| *pq = q; |
| q->info = *info; |
| q->next = NULL; |
| k->pending = 1; |
| /* signal that a new signal is pending */ |
| ts->signal_pending = 1; |
| return 1; /* indicates that the signal was queued */ |
| } |
| } |
| |
| static void host_signal_handler(int host_signum, siginfo_t *info, |
| void *puc) |
| { |
| int sig; |
| target_siginfo_t tinfo; |
| |
| /* the CPU emulator uses some host signals to detect exceptions, |
| we forward to it some signals */ |
| if ((host_signum == SIGSEGV || host_signum == SIGBUS) |
| && info->si_code > 0) { |
| if (cpu_signal_handler(host_signum, info, puc)) |
| return; |
| } |
| |
| /* get target signal number */ |
| sig = host_to_target_signal(host_signum); |
| if (sig < 1 || sig > TARGET_NSIG) |
| return; |
| #if defined(DEBUG_SIGNAL) |
| fprintf(stderr, "qemu: got signal %d\n", sig); |
| #endif |
| host_to_target_siginfo_noswap(&tinfo, info); |
| if (queue_signal(thread_env, sig, &tinfo) == 1) { |
| /* interrupt the virtual CPU as soon as possible */ |
| cpu_exit(thread_env); |
| } |
| } |
| |
| /* do_sigaltstack() returns target values and errnos. */ |
| /* compare linux/kernel/signal.c:do_sigaltstack() */ |
| abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) |
| { |
| int ret; |
| struct target_sigaltstack oss; |
| |
| /* XXX: test errors */ |
| if(uoss_addr) |
| { |
| __put_user(target_sigaltstack_used.ss_sp, &oss.ss_sp); |
| __put_user(target_sigaltstack_used.ss_size, &oss.ss_size); |
| __put_user(sas_ss_flags(sp), &oss.ss_flags); |
| } |
| |
| if(uss_addr) |
| { |
| struct target_sigaltstack *uss; |
| struct target_sigaltstack ss; |
| |
| ret = -TARGET_EFAULT; |
| if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1) |
| || __get_user(ss.ss_sp, &uss->ss_sp) |
| || __get_user(ss.ss_size, &uss->ss_size) |
| || __get_user(ss.ss_flags, &uss->ss_flags)) |
| goto out; |
| unlock_user_struct(uss, uss_addr, 0); |
| |
| ret = -TARGET_EPERM; |
| if (on_sig_stack(sp)) |
| goto out; |
| |
| ret = -TARGET_EINVAL; |
| if (ss.ss_flags != TARGET_SS_DISABLE |
| && ss.ss_flags != TARGET_SS_ONSTACK |
| && ss.ss_flags != 0) |
| goto out; |
| |
| if (ss.ss_flags == TARGET_SS_DISABLE) { |
| ss.ss_size = 0; |
| ss.ss_sp = 0; |
| } else { |
| ret = -TARGET_ENOMEM; |
| if (ss.ss_size < MINSIGSTKSZ) |
| goto out; |
| } |
| |
| target_sigaltstack_used.ss_sp = ss.ss_sp; |
| target_sigaltstack_used.ss_size = ss.ss_size; |
| } |
| |
| if (uoss_addr) { |
| ret = -TARGET_EFAULT; |
| if (copy_to_user(uoss_addr, &oss, sizeof(oss))) |
| goto out; |
| } |
| |
| ret = 0; |
| out: |
| return ret; |
| } |
| |
| /* do_sigaction() return host values and errnos */ |
| int do_sigaction(int sig, const struct target_sigaction *act, |
| struct target_sigaction *oact) |
| { |
| struct target_sigaction *k; |
| struct sigaction act1; |
| int host_sig; |
| int ret = 0; |
| |
| if (sig < 1 || sig > TARGET_NSIG || sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) |
| return -EINVAL; |
| k = &sigact_table[sig - 1]; |
| #if defined(DEBUG_SIGNAL) |
| fprintf(stderr, "sigaction sig=%d act=0x%08x, oact=0x%08x\n", |
| sig, (int)act, (int)oact); |
| #endif |
| if (oact) { |
| oact->_sa_handler = tswapl(k->_sa_handler); |
| oact->sa_flags = tswapl(k->sa_flags); |
| #if !defined(TARGET_MIPS) |
| oact->sa_restorer = tswapl(k->sa_restorer); |
| #endif |
| oact->sa_mask = k->sa_mask; |
| } |
| if (act) { |
| /* FIXME: This is not threadsafe. */ |
| k->_sa_handler = tswapl(act->_sa_handler); |
| k->sa_flags = tswapl(act->sa_flags); |
| #if !defined(TARGET_MIPS) |
| k->sa_restorer = tswapl(act->sa_restorer); |
| #endif |
| k->sa_mask = act->sa_mask; |
| |
| /* we update the host linux signal state */ |
| host_sig = target_to_host_signal(sig); |
| if (host_sig != SIGSEGV && host_sig != SIGBUS) { |
| sigfillset(&act1.sa_mask); |
| act1.sa_flags = SA_SIGINFO; |
| if (k->sa_flags & TARGET_SA_RESTART) |
| act1.sa_flags |= SA_RESTART; |
| /* NOTE: it is important to update the host kernel signal |
| ignore state to avoid getting unexpected interrupted |
| syscalls */ |
| if (k->_sa_handler == TARGET_SIG_IGN) { |
| act1.sa_sigaction = (void *)SIG_IGN; |
| } else if (k->_sa_handler == TARGET_SIG_DFL) { |
| if (fatal_signal (sig)) |
| act1.sa_sigaction = host_signal_handler; |
| else |
| act1.sa_sigaction = (void *)SIG_DFL; |
| } else { |
| act1.sa_sigaction = host_signal_handler; |
| } |
| ret = sigaction(host_sig, &act1, NULL); |
| } |
| } |
| return ret; |
| } |
| |
| static inline int copy_siginfo_to_user(target_siginfo_t *tinfo, |
| const target_siginfo_t *info) |
| { |
| tswap_siginfo(tinfo, info); |
| return 0; |
| } |
| |
| static inline int current_exec_domain_sig(int sig) |
| { |
| return /* current->exec_domain && current->exec_domain->signal_invmap |
| && sig < 32 ? current->exec_domain->signal_invmap[sig] : */ sig; |
| } |
| |
| #if defined(TARGET_I386) && TARGET_ABI_BITS == 32 |
| |
| /* from the Linux kernel */ |
| |
| struct target_fpreg { |
| uint16_t significand[4]; |
| uint16_t exponent; |
| }; |
| |
| struct target_fpxreg { |
| uint16_t significand[4]; |
| uint16_t exponent; |
| uint16_t padding[3]; |
| }; |
| |
| struct target_xmmreg { |
| abi_ulong element[4]; |
| }; |
| |
| struct target_fpstate { |
| /* Regular FPU environment */ |
| abi_ulong cw; |
| abi_ulong sw; |
| abi_ulong tag; |
| abi_ulong ipoff; |
| abi_ulong cssel; |
| abi_ulong dataoff; |
| abi_ulong datasel; |
| struct target_fpreg _st[8]; |
| uint16_t status; |
| uint16_t magic; /* 0xffff = regular FPU data only */ |
| |
| /* FXSR FPU environment */ |
| abi_ulong _fxsr_env[6]; /* FXSR FPU env is ignored */ |
| abi_ulong mxcsr; |
| abi_ulong reserved; |
| struct target_fpxreg _fxsr_st[8]; /* FXSR FPU reg data is ignored */ |
| struct target_xmmreg _xmm[8]; |
| abi_ulong padding[56]; |
| }; |
| |
| #define X86_FXSR_MAGIC 0x0000 |
| |
| struct target_sigcontext { |
| uint16_t gs, __gsh; |
| uint16_t fs, __fsh; |
| uint16_t es, __esh; |
| uint16_t ds, __dsh; |
| abi_ulong edi; |
| abi_ulong esi; |
| abi_ulong ebp; |
| abi_ulong esp; |
| abi_ulong ebx; |
| abi_ulong edx; |
| abi_ulong ecx; |
| abi_ulong eax; |
| abi_ulong trapno; |
| abi_ulong err; |
| abi_ulong eip; |
| uint16_t cs, __csh; |
| abi_ulong eflags; |
| abi_ulong esp_at_signal; |
| uint16_t ss, __ssh; |
| abi_ulong fpstate; /* pointer */ |
| abi_ulong oldmask; |
| abi_ulong cr2; |
| }; |
| |
| struct target_ucontext { |
| abi_ulong tuc_flags; |
| abi_ulong tuc_link; |
| target_stack_t tuc_stack; |
| struct target_sigcontext tuc_mcontext; |
| target_sigset_t tuc_sigmask; /* mask last for extensibility */ |
| }; |
| |
| struct sigframe |
| { |
| abi_ulong pretcode; |
| int sig; |
| struct target_sigcontext sc; |
| struct target_fpstate fpstate; |
| abi_ulong extramask[TARGET_NSIG_WORDS-1]; |
| char retcode[8]; |
| }; |
| |
| struct rt_sigframe |
| { |
| abi_ulong pretcode; |
| int sig; |
| abi_ulong pinfo; |
| abi_ulong puc; |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| struct target_fpstate fpstate; |
| char retcode[8]; |
| }; |
| |
| /* |
| * Set up a signal frame. |
| */ |
| |
| /* XXX: save x87 state */ |
| static int |
| setup_sigcontext(struct target_sigcontext *sc, struct target_fpstate *fpstate, |
| CPUX86State *env, abi_ulong mask, abi_ulong fpstate_addr) |
| { |
| int err = 0; |
| uint16_t magic; |
| |
| /* already locked in setup_frame() */ |
| err |= __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs); |
| err |= __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs); |
| err |= __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es); |
| err |= __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds); |
| err |= __put_user(env->regs[R_EDI], &sc->edi); |
| err |= __put_user(env->regs[R_ESI], &sc->esi); |
| err |= __put_user(env->regs[R_EBP], &sc->ebp); |
| err |= __put_user(env->regs[R_ESP], &sc->esp); |
| err |= __put_user(env->regs[R_EBX], &sc->ebx); |
| err |= __put_user(env->regs[R_EDX], &sc->edx); |
| err |= __put_user(env->regs[R_ECX], &sc->ecx); |
| err |= __put_user(env->regs[R_EAX], &sc->eax); |
| err |= __put_user(env->exception_index, &sc->trapno); |
| err |= __put_user(env->error_code, &sc->err); |
| err |= __put_user(env->eip, &sc->eip); |
| err |= __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs); |
| err |= __put_user(env->eflags, &sc->eflags); |
| err |= __put_user(env->regs[R_ESP], &sc->esp_at_signal); |
| err |= __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss); |
| |
| cpu_x86_fsave(env, fpstate_addr, 1); |
| fpstate->status = fpstate->sw; |
| magic = 0xffff; |
| err |= __put_user(magic, &fpstate->magic); |
| err |= __put_user(fpstate_addr, &sc->fpstate); |
| |
| /* non-iBCS2 extensions.. */ |
| err |= __put_user(mask, &sc->oldmask); |
| err |= __put_user(env->cr[2], &sc->cr2); |
| return err; |
| } |
| |
| /* |
| * Determine which stack to use.. |
| */ |
| |
| static inline abi_ulong |
| get_sigframe(struct target_sigaction *ka, CPUX86State *env, size_t frame_size) |
| { |
| unsigned long esp; |
| |
| /* Default to using normal stack */ |
| esp = env->regs[R_ESP]; |
| /* This is the X/Open sanctioned signal stack switching. */ |
| if (ka->sa_flags & TARGET_SA_ONSTACK) { |
| if (sas_ss_flags(esp) == 0) |
| esp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| |
| /* This is the legacy signal stack switching. */ |
| else |
| if ((env->segs[R_SS].selector & 0xffff) != __USER_DS && |
| !(ka->sa_flags & TARGET_SA_RESTORER) && |
| ka->sa_restorer) { |
| esp = (unsigned long) ka->sa_restorer; |
| } |
| return (esp - frame_size) & -8ul; |
| } |
| |
| /* compare linux/arch/i386/kernel/signal.c:setup_frame() */ |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUX86State *env) |
| { |
| abi_ulong frame_addr; |
| struct sigframe *frame; |
| int i, err = 0; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| goto give_sigsegv; |
| |
| err |= __put_user(current_exec_domain_sig(sig), |
| &frame->sig); |
| if (err) |
| goto give_sigsegv; |
| |
| setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0], |
| frame_addr + offsetof(struct sigframe, fpstate)); |
| if (err) |
| goto give_sigsegv; |
| |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| if (__put_user(set->sig[i], &frame->extramask[i - 1])) |
| goto give_sigsegv; |
| } |
| |
| /* Set up to return from userspace. If provided, use a stub |
| already in userspace. */ |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| err |= __put_user(ka->sa_restorer, &frame->pretcode); |
| } else { |
| uint16_t val16; |
| abi_ulong retcode_addr; |
| retcode_addr = frame_addr + offsetof(struct sigframe, retcode); |
| err |= __put_user(retcode_addr, &frame->pretcode); |
| /* This is popl %eax ; movl $,%eax ; int $0x80 */ |
| val16 = 0xb858; |
| err |= __put_user(val16, (uint16_t *)(frame->retcode+0)); |
| err |= __put_user(TARGET_NR_sigreturn, (int *)(frame->retcode+2)); |
| val16 = 0x80cd; |
| err |= __put_user(val16, (uint16_t *)(frame->retcode+6)); |
| } |
| |
| if (err) |
| goto give_sigsegv; |
| |
| /* Set up registers for signal handler */ |
| env->regs[R_ESP] = frame_addr; |
| env->eip = ka->_sa_handler; |
| |
| cpu_x86_load_seg(env, R_DS, __USER_DS); |
| cpu_x86_load_seg(env, R_ES, __USER_DS); |
| cpu_x86_load_seg(env, R_SS, __USER_DS); |
| cpu_x86_load_seg(env, R_CS, __USER_CS); |
| env->eflags &= ~TF_MASK; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| |
| return; |
| |
| give_sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| if (sig == TARGET_SIGSEGV) |
| ka->_sa_handler = TARGET_SIG_DFL; |
| force_sig(TARGET_SIGSEGV /* , current */); |
| } |
| |
| /* compare linux/arch/i386/kernel/signal.c:setup_rt_frame() */ |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUX86State *env) |
| { |
| abi_ulong frame_addr, addr; |
| struct rt_sigframe *frame; |
| int i, err = 0; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| goto give_sigsegv; |
| |
| err |= __put_user(current_exec_domain_sig(sig), |
| &frame->sig); |
| addr = frame_addr + offsetof(struct rt_sigframe, info); |
| err |= __put_user(addr, &frame->pinfo); |
| addr = frame_addr + offsetof(struct rt_sigframe, uc); |
| err |= __put_user(addr, &frame->puc); |
| err |= copy_siginfo_to_user(&frame->info, info); |
| if (err) |
| goto give_sigsegv; |
| |
| /* Create the ucontext. */ |
| err |= __put_user(0, &frame->uc.tuc_flags); |
| err |= __put_user(0, &frame->uc.tuc_link); |
| err |= __put_user(target_sigaltstack_used.ss_sp, |
| &frame->uc.tuc_stack.ss_sp); |
| err |= __put_user(sas_ss_flags(get_sp_from_cpustate(env)), |
| &frame->uc.tuc_stack.ss_flags); |
| err |= __put_user(target_sigaltstack_used.ss_size, |
| &frame->uc.tuc_stack.ss_size); |
| err |= setup_sigcontext(&frame->uc.tuc_mcontext, &frame->fpstate, |
| env, set->sig[0], |
| frame_addr + offsetof(struct rt_sigframe, fpstate)); |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| if (__put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i])) |
| goto give_sigsegv; |
| } |
| |
| /* Set up to return from userspace. If provided, use a stub |
| already in userspace. */ |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| err |= __put_user(ka->sa_restorer, &frame->pretcode); |
| } else { |
| uint16_t val16; |
| addr = frame_addr + offsetof(struct rt_sigframe, retcode); |
| err |= __put_user(addr, &frame->pretcode); |
| /* This is movl $,%eax ; int $0x80 */ |
| err |= __put_user(0xb8, (char *)(frame->retcode+0)); |
| err |= __put_user(TARGET_NR_rt_sigreturn, (int *)(frame->retcode+1)); |
| val16 = 0x80cd; |
| err |= __put_user(val16, (uint16_t *)(frame->retcode+5)); |
| } |
| |
| if (err) |
| goto give_sigsegv; |
| |
| /* Set up registers for signal handler */ |
| env->regs[R_ESP] = frame_addr; |
| env->eip = ka->_sa_handler; |
| |
| cpu_x86_load_seg(env, R_DS, __USER_DS); |
| cpu_x86_load_seg(env, R_ES, __USER_DS); |
| cpu_x86_load_seg(env, R_SS, __USER_DS); |
| cpu_x86_load_seg(env, R_CS, __USER_CS); |
| env->eflags &= ~TF_MASK; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| |
| return; |
| |
| give_sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| if (sig == TARGET_SIGSEGV) |
| ka->_sa_handler = TARGET_SIG_DFL; |
| force_sig(TARGET_SIGSEGV /* , current */); |
| } |
| |
| static int |
| restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc, int *peax) |
| { |
| unsigned int err = 0; |
| abi_ulong fpstate_addr; |
| unsigned int tmpflags; |
| |
| cpu_x86_load_seg(env, R_GS, tswap16(sc->gs)); |
| cpu_x86_load_seg(env, R_FS, tswap16(sc->fs)); |
| cpu_x86_load_seg(env, R_ES, tswap16(sc->es)); |
| cpu_x86_load_seg(env, R_DS, tswap16(sc->ds)); |
| |
| env->regs[R_EDI] = tswapl(sc->edi); |
| env->regs[R_ESI] = tswapl(sc->esi); |
| env->regs[R_EBP] = tswapl(sc->ebp); |
| env->regs[R_ESP] = tswapl(sc->esp); |
| env->regs[R_EBX] = tswapl(sc->ebx); |
| env->regs[R_EDX] = tswapl(sc->edx); |
| env->regs[R_ECX] = tswapl(sc->ecx); |
| env->eip = tswapl(sc->eip); |
| |
| cpu_x86_load_seg(env, R_CS, lduw(&sc->cs) | 3); |
| cpu_x86_load_seg(env, R_SS, lduw(&sc->ss) | 3); |
| |
| tmpflags = tswapl(sc->eflags); |
| env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5); |
| // regs->orig_eax = -1; /* disable syscall checks */ |
| |
| fpstate_addr = tswapl(sc->fpstate); |
| if (fpstate_addr != 0) { |
| if (!access_ok(VERIFY_READ, fpstate_addr, |
| sizeof(struct target_fpstate))) |
| goto badframe; |
| cpu_x86_frstor(env, fpstate_addr, 1); |
| } |
| |
| *peax = tswapl(sc->eax); |
| return err; |
| badframe: |
| return 1; |
| } |
| |
| long do_sigreturn(CPUX86State *env) |
| { |
| struct sigframe *frame; |
| abi_ulong frame_addr = env->regs[R_ESP] - 8; |
| target_sigset_t target_set; |
| sigset_t set; |
| int eax, i; |
| |
| #if defined(DEBUG_SIGNAL) |
| fprintf(stderr, "do_sigreturn\n"); |
| #endif |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| /* set blocked signals */ |
| if (__get_user(target_set.sig[0], &frame->sc.oldmask)) |
| goto badframe; |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| if (__get_user(target_set.sig[i], &frame->extramask[i - 1])) |
| goto badframe; |
| } |
| |
| target_to_host_sigset_internal(&set, &target_set); |
| sigprocmask(SIG_SETMASK, &set, NULL); |
| |
| /* restore registers */ |
| if (restore_sigcontext(env, &frame->sc, &eax)) |
| goto badframe; |
| unlock_user_struct(frame, frame_addr, 0); |
| return eax; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return 0; |
| } |
| |
| long do_rt_sigreturn(CPUX86State *env) |
| { |
| abi_ulong frame_addr; |
| struct rt_sigframe *frame; |
| sigset_t set; |
| int eax; |
| |
| frame_addr = env->regs[R_ESP] - 4; |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| target_to_host_sigset(&set, &frame->uc.tuc_sigmask); |
| sigprocmask(SIG_SETMASK, &set, NULL); |
| |
| if (restore_sigcontext(env, &frame->uc.tuc_mcontext, &eax)) |
| goto badframe; |
| |
| if (do_sigaltstack(frame_addr + offsetof(struct rt_sigframe, uc.tuc_stack), 0, |
| get_sp_from_cpustate(env)) == -EFAULT) |
| goto badframe; |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return eax; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return 0; |
| } |
| |
| #elif defined(TARGET_ARM) |
| |
| struct target_sigcontext { |
| abi_ulong trap_no; |
| abi_ulong error_code; |
| abi_ulong oldmask; |
| abi_ulong arm_r0; |
| abi_ulong arm_r1; |
| abi_ulong arm_r2; |
| abi_ulong arm_r3; |
| abi_ulong arm_r4; |
| abi_ulong arm_r5; |
| abi_ulong arm_r6; |
| abi_ulong arm_r7; |
| abi_ulong arm_r8; |
| abi_ulong arm_r9; |
| abi_ulong arm_r10; |
| abi_ulong arm_fp; |
| abi_ulong arm_ip; |
| abi_ulong arm_sp; |
| abi_ulong arm_lr; |
| abi_ulong arm_pc; |
| abi_ulong arm_cpsr; |
| abi_ulong fault_address; |
| }; |
| |
| struct target_ucontext_v1 { |
| abi_ulong tuc_flags; |
| abi_ulong tuc_link; |
| target_stack_t tuc_stack; |
| struct target_sigcontext tuc_mcontext; |
| target_sigset_t tuc_sigmask; /* mask last for extensibility */ |
| }; |
| |
| struct target_ucontext_v2 { |
| abi_ulong tuc_flags; |
| abi_ulong tuc_link; |
| target_stack_t tuc_stack; |
| struct target_sigcontext tuc_mcontext; |
| target_sigset_t tuc_sigmask; /* mask last for extensibility */ |
| char __unused[128 - sizeof(sigset_t)]; |
| abi_ulong tuc_regspace[128] __attribute__((__aligned__(8))); |
| }; |
| |
| struct sigframe_v1 |
| { |
| struct target_sigcontext sc; |
| abi_ulong extramask[TARGET_NSIG_WORDS-1]; |
| abi_ulong retcode; |
| }; |
| |
| struct sigframe_v2 |
| { |
| struct target_ucontext_v2 uc; |
| abi_ulong retcode; |
| }; |
| |
| struct rt_sigframe_v1 |
| { |
| abi_ulong pinfo; |
| abi_ulong puc; |
| struct target_siginfo info; |
| struct target_ucontext_v1 uc; |
| abi_ulong retcode; |
| }; |
| |
| struct rt_sigframe_v2 |
| { |
| struct target_siginfo info; |
| struct target_ucontext_v2 uc; |
| abi_ulong retcode; |
| }; |
| |
| #define TARGET_CONFIG_CPU_32 1 |
| |
| /* |
| * For ARM syscalls, we encode the syscall number into the instruction. |
| */ |
| #define SWI_SYS_SIGRETURN (0xef000000|(TARGET_NR_sigreturn + ARM_SYSCALL_BASE)) |
| #define SWI_SYS_RT_SIGRETURN (0xef000000|(TARGET_NR_rt_sigreturn + ARM_SYSCALL_BASE)) |
| |
| /* |
| * For Thumb syscalls, we pass the syscall number via r7. We therefore |
| * need two 16-bit instructions. |
| */ |
| #define SWI_THUMB_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_sigreturn)) |
| #define SWI_THUMB_RT_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_rt_sigreturn)) |
| |
| static const abi_ulong retcodes[4] = { |
| SWI_SYS_SIGRETURN, SWI_THUMB_SIGRETURN, |
| SWI_SYS_RT_SIGRETURN, SWI_THUMB_RT_SIGRETURN |
| }; |
| |
| |
| #define __get_user_error(x,p,e) __get_user(x, p) |
| |
| static inline int valid_user_regs(CPUState *regs) |
| { |
| return 1; |
| } |
| |
| static void |
| setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ |
| CPUState *env, abi_ulong mask) |
| { |
| __put_user(env->regs[0], &sc->arm_r0); |
| __put_user(env->regs[1], &sc->arm_r1); |
| __put_user(env->regs[2], &sc->arm_r2); |
| __put_user(env->regs[3], &sc->arm_r3); |
| __put_user(env->regs[4], &sc->arm_r4); |
| __put_user(env->regs[5], &sc->arm_r5); |
| __put_user(env->regs[6], &sc->arm_r6); |
| __put_user(env->regs[7], &sc->arm_r7); |
| __put_user(env->regs[8], &sc->arm_r8); |
| __put_user(env->regs[9], &sc->arm_r9); |
| __put_user(env->regs[10], &sc->arm_r10); |
| __put_user(env->regs[11], &sc->arm_fp); |
| __put_user(env->regs[12], &sc->arm_ip); |
| __put_user(env->regs[13], &sc->arm_sp); |
| __put_user(env->regs[14], &sc->arm_lr); |
| __put_user(env->regs[15], &sc->arm_pc); |
| #ifdef TARGET_CONFIG_CPU_32 |
| __put_user(cpsr_read(env), &sc->arm_cpsr); |
| #endif |
| |
| __put_user(/* current->thread.trap_no */ 0, &sc->trap_no); |
| __put_user(/* current->thread.error_code */ 0, &sc->error_code); |
| __put_user(/* current->thread.address */ 0, &sc->fault_address); |
| __put_user(mask, &sc->oldmask); |
| } |
| |
| static inline abi_ulong |
| get_sigframe(struct target_sigaction *ka, CPUState *regs, int framesize) |
| { |
| unsigned long sp = regs->regs[13]; |
| |
| /* |
| * This is the X/Open sanctioned signal stack switching. |
| */ |
| if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| /* |
| * ATPCS B01 mandates 8-byte alignment |
| */ |
| return (sp - framesize) & ~7; |
| } |
| |
| static int |
| setup_return(CPUState *env, struct target_sigaction *ka, |
| abi_ulong *rc, abi_ulong frame_addr, int usig, abi_ulong rc_addr) |
| { |
| abi_ulong handler = ka->_sa_handler; |
| abi_ulong retcode; |
| int thumb = handler & 1; |
| |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| retcode = ka->sa_restorer; |
| } else { |
| unsigned int idx = thumb; |
| |
| if (ka->sa_flags & TARGET_SA_SIGINFO) |
| idx += 2; |
| |
| if (__put_user(retcodes[idx], rc)) |
| return 1; |
| #if 0 |
| flush_icache_range((abi_ulong)rc, |
| (abi_ulong)(rc + 1)); |
| #endif |
| retcode = rc_addr + thumb; |
| } |
| |
| env->regs[0] = usig; |
| env->regs[13] = frame_addr; |
| env->regs[14] = retcode; |
| env->regs[15] = handler & (thumb ? ~1 : ~3); |
| env->thumb = thumb; |
| |
| #if 0 |
| #ifdef TARGET_CONFIG_CPU_32 |
| env->cpsr = cpsr; |
| #endif |
| #endif |
| |
| return 0; |
| } |
| |
| static void setup_sigframe_v2(struct target_ucontext_v2 *uc, |
| target_sigset_t *set, CPUState *env) |
| { |
| struct target_sigaltstack stack; |
| int i; |
| |
| /* Clear all the bits of the ucontext we don't use. */ |
| memset(uc, 0, offsetof(struct target_ucontext_v2, tuc_mcontext)); |
| |
| memset(&stack, 0, sizeof(stack)); |
| __put_user(target_sigaltstack_used.ss_sp, &stack.ss_sp); |
| __put_user(target_sigaltstack_used.ss_size, &stack.ss_size); |
| __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &stack.ss_flags); |
| memcpy(&uc->tuc_stack, &stack, sizeof(stack)); |
| |
| setup_sigcontext(&uc->tuc_mcontext, env, set->sig[0]); |
| /* FIXME: Save coprocessor signal frame. */ |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &uc->tuc_sigmask.sig[i]); |
| } |
| } |
| |
| /* compare linux/arch/arm/kernel/signal.c:setup_frame() */ |
| static void setup_frame_v1(int usig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUState *regs) |
| { |
| struct sigframe_v1 *frame; |
| abi_ulong frame_addr = get_sigframe(ka, regs, sizeof(*frame)); |
| int i; |
| |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| return; |
| |
| setup_sigcontext(&frame->sc, regs, set->sig[0]); |
| |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| if (__put_user(set->sig[i], &frame->extramask[i - 1])) |
| goto end; |
| } |
| |
| setup_return(regs, ka, &frame->retcode, frame_addr, usig, |
| frame_addr + offsetof(struct sigframe_v1, retcode)); |
| |
| end: |
| unlock_user_struct(frame, frame_addr, 1); |
| } |
| |
| static void setup_frame_v2(int usig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUState *regs) |
| { |
| struct sigframe_v2 *frame; |
| abi_ulong frame_addr = get_sigframe(ka, regs, sizeof(*frame)); |
| |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| return; |
| |
| setup_sigframe_v2(&frame->uc, set, regs); |
| |
| setup_return(regs, ka, &frame->retcode, frame_addr, usig, |
| frame_addr + offsetof(struct sigframe_v2, retcode)); |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| } |
| |
| static void setup_frame(int usig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUState *regs) |
| { |
| if (get_osversion() >= 0x020612) { |
| setup_frame_v2(usig, ka, set, regs); |
| } else { |
| setup_frame_v1(usig, ka, set, regs); |
| } |
| } |
| |
| /* compare linux/arch/arm/kernel/signal.c:setup_rt_frame() */ |
| static void setup_rt_frame_v1(int usig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUState *env) |
| { |
| struct rt_sigframe_v1 *frame; |
| abi_ulong frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| struct target_sigaltstack stack; |
| int i; |
| abi_ulong info_addr, uc_addr; |
| |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| return /* 1 */; |
| |
| info_addr = frame_addr + offsetof(struct rt_sigframe_v1, info); |
| __put_user(info_addr, &frame->pinfo); |
| uc_addr = frame_addr + offsetof(struct rt_sigframe_v1, uc); |
| __put_user(uc_addr, &frame->puc); |
| copy_siginfo_to_user(&frame->info, info); |
| |
| /* Clear all the bits of the ucontext we don't use. */ |
| memset(&frame->uc, 0, offsetof(struct target_ucontext_v1, tuc_mcontext)); |
| |
| memset(&stack, 0, sizeof(stack)); |
| __put_user(target_sigaltstack_used.ss_sp, &stack.ss_sp); |
| __put_user(target_sigaltstack_used.ss_size, &stack.ss_size); |
| __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &stack.ss_flags); |
| memcpy(&frame->uc.tuc_stack, &stack, sizeof(stack)); |
| |
| setup_sigcontext(&frame->uc.tuc_mcontext, env, set->sig[0]); |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| if (__put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i])) |
| goto end; |
| } |
| |
| setup_return(env, ka, &frame->retcode, frame_addr, usig, |
| frame_addr + offsetof(struct rt_sigframe_v1, retcode)); |
| |
| env->regs[1] = info_addr; |
| env->regs[2] = uc_addr; |
| |
| end: |
| unlock_user_struct(frame, frame_addr, 1); |
| } |
| |
| static void setup_rt_frame_v2(int usig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUState *env) |
| { |
| struct rt_sigframe_v2 *frame; |
| abi_ulong frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| abi_ulong info_addr, uc_addr; |
| |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| return /* 1 */; |
| |
| info_addr = frame_addr + offsetof(struct rt_sigframe_v2, info); |
| uc_addr = frame_addr + offsetof(struct rt_sigframe_v2, uc); |
| copy_siginfo_to_user(&frame->info, info); |
| |
| setup_sigframe_v2(&frame->uc, set, env); |
| |
| setup_return(env, ka, &frame->retcode, frame_addr, usig, |
| frame_addr + offsetof(struct rt_sigframe_v2, retcode)); |
| |
| env->regs[1] = info_addr; |
| env->regs[2] = uc_addr; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| } |
| |
| static void setup_rt_frame(int usig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUState *env) |
| { |
| if (get_osversion() >= 0x020612) { |
| setup_rt_frame_v2(usig, ka, info, set, env); |
| } else { |
| setup_rt_frame_v1(usig, ka, info, set, env); |
| } |
| } |
| |
| static int |
| restore_sigcontext(CPUState *env, struct target_sigcontext *sc) |
| { |
| int err = 0; |
| uint32_t cpsr; |
| |
| __get_user_error(env->regs[0], &sc->arm_r0, err); |
| __get_user_error(env->regs[1], &sc->arm_r1, err); |
| __get_user_error(env->regs[2], &sc->arm_r2, err); |
| __get_user_error(env->regs[3], &sc->arm_r3, err); |
| __get_user_error(env->regs[4], &sc->arm_r4, err); |
| __get_user_error(env->regs[5], &sc->arm_r5, err); |
| __get_user_error(env->regs[6], &sc->arm_r6, err); |
| __get_user_error(env->regs[7], &sc->arm_r7, err); |
| __get_user_error(env->regs[8], &sc->arm_r8, err); |
| __get_user_error(env->regs[9], &sc->arm_r9, err); |
| __get_user_error(env->regs[10], &sc->arm_r10, err); |
| __get_user_error(env->regs[11], &sc->arm_fp, err); |
| __get_user_error(env->regs[12], &sc->arm_ip, err); |
| __get_user_error(env->regs[13], &sc->arm_sp, err); |
| __get_user_error(env->regs[14], &sc->arm_lr, err); |
| __get_user_error(env->regs[15], &sc->arm_pc, err); |
| #ifdef TARGET_CONFIG_CPU_32 |
| __get_user_error(cpsr, &sc->arm_cpsr, err); |
| cpsr_write(env, cpsr, CPSR_USER | CPSR_EXEC); |
| #endif |
| |
| err |= !valid_user_regs(env); |
| |
| return err; |
| } |
| |
| static long do_sigreturn_v1(CPUState *env) |
| { |
| abi_ulong frame_addr; |
| struct sigframe_v1 *frame; |
| target_sigset_t set; |
| sigset_t host_set; |
| int i; |
| |
| /* |
| * Since we stacked the signal on a 64-bit boundary, |
| * then 'sp' should be word aligned here. If it's |
| * not, then the user is trying to mess with us. |
| */ |
| if (env->regs[13] & 7) |
| goto badframe; |
| |
| frame_addr = env->regs[13]; |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| |
| if (__get_user(set.sig[0], &frame->sc.oldmask)) |
| goto badframe; |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| if (__get_user(set.sig[i], &frame->extramask[i - 1])) |
| goto badframe; |
| } |
| |
| target_to_host_sigset_internal(&host_set, &set); |
| sigprocmask(SIG_SETMASK, &host_set, NULL); |
| |
| if (restore_sigcontext(env, &frame->sc)) |
| goto badframe; |
| |
| #if 0 |
| /* Send SIGTRAP if we're single-stepping */ |
| if (ptrace_cancel_bpt(current)) |
| send_sig(SIGTRAP, current, 1); |
| #endif |
| unlock_user_struct(frame, frame_addr, 0); |
| return env->regs[0]; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(SIGSEGV /* , current */); |
| return 0; |
| } |
| |
| static int do_sigframe_return_v2(CPUState *env, target_ulong frame_addr, |
| struct target_ucontext_v2 *uc) |
| { |
| sigset_t host_set; |
| |
| target_to_host_sigset(&host_set, &uc->tuc_sigmask); |
| sigprocmask(SIG_SETMASK, &host_set, NULL); |
| |
| if (restore_sigcontext(env, &uc->tuc_mcontext)) |
| return 1; |
| |
| if (do_sigaltstack(frame_addr + offsetof(struct target_ucontext_v2, tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) |
| return 1; |
| |
| #if 0 |
| /* Send SIGTRAP if we're single-stepping */ |
| if (ptrace_cancel_bpt(current)) |
| send_sig(SIGTRAP, current, 1); |
| #endif |
| |
| return 0; |
| } |
| |
| static long do_sigreturn_v2(CPUState *env) |
| { |
| abi_ulong frame_addr; |
| struct sigframe_v2 *frame; |
| |
| /* |
| * Since we stacked the signal on a 64-bit boundary, |
| * then 'sp' should be word aligned here. If it's |
| * not, then the user is trying to mess with us. |
| */ |
| if (env->regs[13] & 7) |
| goto badframe; |
| |
| frame_addr = env->regs[13]; |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| |
| if (do_sigframe_return_v2(env, frame_addr, &frame->uc)) |
| goto badframe; |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return env->regs[0]; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(SIGSEGV /* , current */); |
| return 0; |
| } |
| |
| long do_sigreturn(CPUState *env) |
| { |
| if (get_osversion() >= 0x020612) { |
| return do_sigreturn_v2(env); |
| } else { |
| return do_sigreturn_v1(env); |
| } |
| } |
| |
| static long do_rt_sigreturn_v1(CPUState *env) |
| { |
| abi_ulong frame_addr; |
| struct rt_sigframe_v1 *frame; |
| sigset_t host_set; |
| |
| /* |
| * Since we stacked the signal on a 64-bit boundary, |
| * then 'sp' should be word aligned here. If it's |
| * not, then the user is trying to mess with us. |
| */ |
| if (env->regs[13] & 7) |
| goto badframe; |
| |
| frame_addr = env->regs[13]; |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| |
| target_to_host_sigset(&host_set, &frame->uc.tuc_sigmask); |
| sigprocmask(SIG_SETMASK, &host_set, NULL); |
| |
| if (restore_sigcontext(env, &frame->uc.tuc_mcontext)) |
| goto badframe; |
| |
| if (do_sigaltstack(frame_addr + offsetof(struct rt_sigframe_v1, uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) |
| goto badframe; |
| |
| #if 0 |
| /* Send SIGTRAP if we're single-stepping */ |
| if (ptrace_cancel_bpt(current)) |
| send_sig(SIGTRAP, current, 1); |
| #endif |
| unlock_user_struct(frame, frame_addr, 0); |
| return env->regs[0]; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(SIGSEGV /* , current */); |
| return 0; |
| } |
| |
| static long do_rt_sigreturn_v2(CPUState *env) |
| { |
| abi_ulong frame_addr; |
| struct rt_sigframe_v2 *frame; |
| |
| /* |
| * Since we stacked the signal on a 64-bit boundary, |
| * then 'sp' should be word aligned here. If it's |
| * not, then the user is trying to mess with us. |
| */ |
| if (env->regs[13] & 7) |
| goto badframe; |
| |
| frame_addr = env->regs[13]; |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| |
| if (do_sigframe_return_v2(env, frame_addr, &frame->uc)) |
| goto badframe; |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return env->regs[0]; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(SIGSEGV /* , current */); |
| return 0; |
| } |
| |
| long do_rt_sigreturn(CPUState *env) |
| { |
| if (get_osversion() >= 0x020612) { |
| return do_rt_sigreturn_v2(env); |
| } else { |
| return do_rt_sigreturn_v1(env); |
| } |
| } |
| |
| #elif defined(TARGET_SPARC) |
| |
| #define __SUNOS_MAXWIN 31 |
| |
| /* This is what SunOS does, so shall I. */ |
| struct target_sigcontext { |
| abi_ulong sigc_onstack; /* state to restore */ |
| |
| abi_ulong sigc_mask; /* sigmask to restore */ |
| abi_ulong sigc_sp; /* stack pointer */ |
| abi_ulong sigc_pc; /* program counter */ |
| abi_ulong sigc_npc; /* next program counter */ |
| abi_ulong sigc_psr; /* for condition codes etc */ |
| abi_ulong sigc_g1; /* User uses these two registers */ |
| abi_ulong sigc_o0; /* within the trampoline code. */ |
| |
| /* Now comes information regarding the users window set |
| * at the time of the signal. |
| */ |
| abi_ulong sigc_oswins; /* outstanding windows */ |
| |
| /* stack ptrs for each regwin buf */ |
| char *sigc_spbuf[__SUNOS_MAXWIN]; |
| |
| /* Windows to restore after signal */ |
| struct { |
| abi_ulong locals[8]; |
| abi_ulong ins[8]; |
| } sigc_wbuf[__SUNOS_MAXWIN]; |
| }; |
| /* A Sparc stack frame */ |
| struct sparc_stackf { |
| abi_ulong locals[8]; |
| abi_ulong ins[6]; |
| struct sparc_stackf *fp; |
| abi_ulong callers_pc; |
| char *structptr; |
| abi_ulong xargs[6]; |
| abi_ulong xxargs[1]; |
| }; |
| |
| typedef struct { |
| struct { |
| abi_ulong psr; |
| abi_ulong pc; |
| abi_ulong npc; |
| abi_ulong y; |
| abi_ulong u_regs[16]; /* globals and ins */ |
| } si_regs; |
| int si_mask; |
| } __siginfo_t; |
| |
| typedef struct { |
| unsigned long si_float_regs [32]; |
| unsigned long si_fsr; |
| unsigned long si_fpqdepth; |
| struct { |
| unsigned long *insn_addr; |
| unsigned long insn; |
| } si_fpqueue [16]; |
| } qemu_siginfo_fpu_t; |
| |
| |
| struct target_signal_frame { |
| struct sparc_stackf ss; |
| __siginfo_t info; |
| abi_ulong fpu_save; |
| abi_ulong insns[2] __attribute__ ((aligned (8))); |
| abi_ulong extramask[TARGET_NSIG_WORDS - 1]; |
| abi_ulong extra_size; /* Should be 0 */ |
| qemu_siginfo_fpu_t fpu_state; |
| }; |
| struct target_rt_signal_frame { |
| struct sparc_stackf ss; |
| siginfo_t info; |
| abi_ulong regs[20]; |
| sigset_t mask; |
| abi_ulong fpu_save; |
| unsigned int insns[2]; |
| stack_t stack; |
| unsigned int extra_size; /* Should be 0 */ |
| qemu_siginfo_fpu_t fpu_state; |
| }; |
| |
| #define UREG_O0 16 |
| #define UREG_O6 22 |
| #define UREG_I0 0 |
| #define UREG_I1 1 |
| #define UREG_I2 2 |
| #define UREG_I3 3 |
| #define UREG_I4 4 |
| #define UREG_I5 5 |
| #define UREG_I6 6 |
| #define UREG_I7 7 |
| #define UREG_L0 8 |
| #define UREG_FP UREG_I6 |
| #define UREG_SP UREG_O6 |
| |
| static inline abi_ulong get_sigframe(struct target_sigaction *sa, |
| CPUState *env, unsigned long framesize) |
| { |
| abi_ulong sp; |
| |
| sp = env->regwptr[UREG_FP]; |
| |
| /* This is the X/Open sanctioned signal stack switching. */ |
| if (sa->sa_flags & TARGET_SA_ONSTACK) { |
| if (!on_sig_stack(sp) |
| && !((target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size) & 7)) |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| return sp - framesize; |
| } |
| |
| static int |
| setup___siginfo(__siginfo_t *si, CPUState *env, abi_ulong mask) |
| { |
| int err = 0, i; |
| |
| err |= __put_user(env->psr, &si->si_regs.psr); |
| err |= __put_user(env->pc, &si->si_regs.pc); |
| err |= __put_user(env->npc, &si->si_regs.npc); |
| err |= __put_user(env->y, &si->si_regs.y); |
| for (i=0; i < 8; i++) { |
| err |= __put_user(env->gregs[i], &si->si_regs.u_regs[i]); |
| } |
| for (i=0; i < 8; i++) { |
| err |= __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]); |
| } |
| err |= __put_user(mask, &si->si_mask); |
| return err; |
| } |
| |
| #if 0 |
| static int |
| setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ |
| CPUState *env, unsigned long mask) |
| { |
| int err = 0; |
| |
| err |= __put_user(mask, &sc->sigc_mask); |
| err |= __put_user(env->regwptr[UREG_SP], &sc->sigc_sp); |
| err |= __put_user(env->pc, &sc->sigc_pc); |
| err |= __put_user(env->npc, &sc->sigc_npc); |
| err |= __put_user(env->psr, &sc->sigc_psr); |
| err |= __put_user(env->gregs[1], &sc->sigc_g1); |
| err |= __put_user(env->regwptr[UREG_O0], &sc->sigc_o0); |
| |
| return err; |
| } |
| #endif |
| #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7))) |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUState *env) |
| { |
| abi_ulong sf_addr; |
| struct target_signal_frame *sf; |
| int sigframe_size, err, i; |
| |
| /* 1. Make sure everything is clean */ |
| //synchronize_user_stack(); |
| |
| sigframe_size = NF_ALIGNEDSZ; |
| sf_addr = get_sigframe(ka, env, sigframe_size); |
| |
| sf = lock_user(VERIFY_WRITE, sf_addr, |
| sizeof(struct target_signal_frame), 0); |
| if (!sf) |
| goto sigsegv; |
| |
| //fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]); |
| #if 0 |
| if (invalid_frame_pointer(sf, sigframe_size)) |
| goto sigill_and_return; |
| #endif |
| /* 2. Save the current process state */ |
| err = setup___siginfo(&sf->info, env, set->sig[0]); |
| err |= __put_user(0, &sf->extra_size); |
| |
| //err |= save_fpu_state(regs, &sf->fpu_state); |
| //err |= __put_user(&sf->fpu_state, &sf->fpu_save); |
| |
| err |= __put_user(set->sig[0], &sf->info.si_mask); |
| for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { |
| err |= __put_user(set->sig[i + 1], &sf->extramask[i]); |
| } |
| |
| for (i = 0; i < 8; i++) { |
| err |= __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]); |
| } |
| for (i = 0; i < 8; i++) { |
| err |= __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]); |
| } |
| if (err) |
| goto sigsegv; |
| |
| /* 3. signal handler back-trampoline and parameters */ |
| env->regwptr[UREG_FP] = sf_addr; |
| env->regwptr[UREG_I0] = sig; |
| env->regwptr[UREG_I1] = sf_addr + |
| offsetof(struct target_signal_frame, info); |
| env->regwptr[UREG_I2] = sf_addr + |
| offsetof(struct target_signal_frame, info); |
| |
| /* 4. signal handler */ |
| env->pc = ka->_sa_handler; |
| env->npc = (env->pc + 4); |
| /* 5. return to kernel instructions */ |
| if (ka->sa_restorer) |
| env->regwptr[UREG_I7] = ka->sa_restorer; |
| else { |
| uint32_t val32; |
| |
| env->regwptr[UREG_I7] = sf_addr + |
| offsetof(struct target_signal_frame, insns) - 2 * 4; |
| |
| /* mov __NR_sigreturn, %g1 */ |
| val32 = 0x821020d8; |
| err |= __put_user(val32, &sf->insns[0]); |
| |
| /* t 0x10 */ |
| val32 = 0x91d02010; |
| err |= __put_user(val32, &sf->insns[1]); |
| if (err) |
| goto sigsegv; |
| |
| /* Flush instruction space. */ |
| //flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0])); |
| // tb_flush(env); |
| } |
| unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); |
| return; |
| #if 0 |
| sigill_and_return: |
| force_sig(TARGET_SIGILL); |
| #endif |
| sigsegv: |
| //fprintf(stderr, "force_sig\n"); |
| unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); |
| force_sig(TARGET_SIGSEGV); |
| } |
| static inline int |
| restore_fpu_state(CPUState *env, qemu_siginfo_fpu_t *fpu) |
| { |
| int err; |
| #if 0 |
| #ifdef CONFIG_SMP |
| if (current->flags & PF_USEDFPU) |
| regs->psr &= ~PSR_EF; |
| #else |
| if (current == last_task_used_math) { |
| last_task_used_math = 0; |
| regs->psr &= ~PSR_EF; |
| } |
| #endif |
| current->used_math = 1; |
| current->flags &= ~PF_USEDFPU; |
| #endif |
| #if 0 |
| if (verify_area (VERIFY_READ, fpu, sizeof(*fpu))) |
| return -EFAULT; |
| #endif |
| |
| #if 0 |
| /* XXX: incorrect */ |
| err = __copy_from_user(&env->fpr[0], &fpu->si_float_regs[0], |
| (sizeof(unsigned long) * 32)); |
| #endif |
| err |= __get_user(env->fsr, &fpu->si_fsr); |
| #if 0 |
| err |= __get_user(current->thread.fpqdepth, &fpu->si_fpqdepth); |
| if (current->thread.fpqdepth != 0) |
| err |= __copy_from_user(¤t->thread.fpqueue[0], |
| &fpu->si_fpqueue[0], |
| ((sizeof(unsigned long) + |
| (sizeof(unsigned long *)))*16)); |
| #endif |
| return err; |
| } |
| |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUState *env) |
| { |
| fprintf(stderr, "setup_rt_frame: not implemented\n"); |
| } |
| |
| long do_sigreturn(CPUState *env) |
| { |
| abi_ulong sf_addr; |
| struct target_signal_frame *sf; |
| uint32_t up_psr, pc, npc; |
| target_sigset_t set; |
| sigset_t host_set; |
| abi_ulong fpu_save_addr; |
| int err, i; |
| |
| sf_addr = env->regwptr[UREG_FP]; |
| if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) |
| goto segv_and_exit; |
| #if 0 |
| fprintf(stderr, "sigreturn\n"); |
| fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]); |
| #endif |
| //cpu_dump_state(env, stderr, fprintf, 0); |
| |
| /* 1. Make sure we are not getting garbage from the user */ |
| |
| if (sf_addr & 3) |
| goto segv_and_exit; |
| |
| err = __get_user(pc, &sf->info.si_regs.pc); |
| err |= __get_user(npc, &sf->info.si_regs.npc); |
| |
| if ((pc | npc) & 3) |
| goto segv_and_exit; |
| |
| /* 2. Restore the state */ |
| err |= __get_user(up_psr, &sf->info.si_regs.psr); |
| |
| /* User can only change condition codes and FPU enabling in %psr. */ |
| env->psr = (up_psr & (PSR_ICC /* | PSR_EF */)) |
| | (env->psr & ~(PSR_ICC /* | PSR_EF */)); |
| |
| env->pc = pc; |
| env->npc = npc; |
| err |= __get_user(env->y, &sf->info.si_regs.y); |
| for (i=0; i < 8; i++) { |
| err |= __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]); |
| } |
| for (i=0; i < 8; i++) { |
| err |= __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]); |
| } |
| |
| err |= __get_user(fpu_save_addr, &sf->fpu_save); |
| |
| //if (fpu_save) |
| // err |= restore_fpu_state(env, fpu_save); |
| |
| /* This is pretty much atomic, no amount locking would prevent |
| * the races which exist anyways. |
| */ |
| err |= __get_user(set.sig[0], &sf->info.si_mask); |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| err |= (__get_user(set.sig[i], &sf->extramask[i - 1])); |
| } |
| |
| target_to_host_sigset_internal(&host_set, &set); |
| sigprocmask(SIG_SETMASK, &host_set, NULL); |
| |
| if (err) |
| goto segv_and_exit; |
| unlock_user_struct(sf, sf_addr, 0); |
| return env->regwptr[0]; |
| |
| segv_and_exit: |
| unlock_user_struct(sf, sf_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| } |
| |
| long do_rt_sigreturn(CPUState *env) |
| { |
| fprintf(stderr, "do_rt_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) |
| #define MC_TSTATE 0 |
| #define MC_PC 1 |
| #define MC_NPC 2 |
| #define MC_Y 3 |
| #define MC_G1 4 |
| #define MC_G2 5 |
| #define MC_G3 6 |
| #define MC_G4 7 |
| #define MC_G5 8 |
| #define MC_G6 9 |
| #define MC_G7 10 |
| #define MC_O0 11 |
| #define MC_O1 12 |
| #define MC_O2 13 |
| #define MC_O3 14 |
| #define MC_O4 15 |
| #define MC_O5 16 |
| #define MC_O6 17 |
| #define MC_O7 18 |
| #define MC_NGREG 19 |
| |
| typedef abi_ulong target_mc_greg_t; |
| typedef target_mc_greg_t target_mc_gregset_t[MC_NGREG]; |
| |
| struct target_mc_fq { |
| abi_ulong *mcfq_addr; |
| uint32_t mcfq_insn; |
| }; |
| |
| struct target_mc_fpu { |
| union { |
| uint32_t sregs[32]; |
| uint64_t dregs[32]; |
| //uint128_t qregs[16]; |
| } mcfpu_fregs; |
| abi_ulong mcfpu_fsr; |
| abi_ulong mcfpu_fprs; |
| abi_ulong mcfpu_gsr; |
| struct target_mc_fq *mcfpu_fq; |
| unsigned char mcfpu_qcnt; |
| unsigned char mcfpu_qentsz; |
| unsigned char mcfpu_enab; |
| }; |
| typedef struct target_mc_fpu target_mc_fpu_t; |
| |
| typedef struct { |
| target_mc_gregset_t mc_gregs; |
| target_mc_greg_t mc_fp; |
| target_mc_greg_t mc_i7; |
| target_mc_fpu_t mc_fpregs; |
| } target_mcontext_t; |
| |
| struct target_ucontext { |
| struct target_ucontext *uc_link; |
| abi_ulong uc_flags; |
| target_sigset_t uc_sigmask; |
| target_mcontext_t uc_mcontext; |
| }; |
| |
| /* A V9 register window */ |
| struct target_reg_window { |
| abi_ulong locals[8]; |
| abi_ulong ins[8]; |
| }; |
| |
| #define TARGET_STACK_BIAS 2047 |
| |
| /* {set, get}context() needed for 64-bit SparcLinux userland. */ |
| void sparc64_set_context(CPUSPARCState *env) |
| { |
| abi_ulong ucp_addr; |
| struct target_ucontext *ucp; |
| target_mc_gregset_t *grp; |
| abi_ulong pc, npc, tstate; |
| abi_ulong fp, i7, w_addr; |
| unsigned char fenab; |
| int err; |
| unsigned int i; |
| |
| ucp_addr = env->regwptr[UREG_I0]; |
| if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) |
| goto do_sigsegv; |
| grp = &ucp->uc_mcontext.mc_gregs; |
| err = __get_user(pc, &((*grp)[MC_PC])); |
| err |= __get_user(npc, &((*grp)[MC_NPC])); |
| if (err || ((pc | npc) & 3)) |
| goto do_sigsegv; |
| if (env->regwptr[UREG_I1]) { |
| target_sigset_t target_set; |
| sigset_t set; |
| |
| if (TARGET_NSIG_WORDS == 1) { |
| if (__get_user(target_set.sig[0], &ucp->uc_sigmask.sig[0])) |
| goto do_sigsegv; |
| } else { |
| abi_ulong *src, *dst; |
| src = ucp->uc_sigmask.sig; |
| dst = target_set.sig; |
| for (i = 0; i < sizeof(target_sigset_t) / sizeof(abi_ulong); |
| i++, dst++, src++) |
| err |= __get_user(*dst, src); |
| if (err) |
| goto do_sigsegv; |
| } |
| target_to_host_sigset_internal(&set, &target_set); |
| sigprocmask(SIG_SETMASK, &set, NULL); |
| } |
| env->pc = pc; |
| env->npc = npc; |
| err |= __get_user(env->y, &((*grp)[MC_Y])); |
| err |= __get_user(tstate, &((*grp)[MC_TSTATE])); |
| env->asi = (tstate >> 24) & 0xff; |
| PUT_CCR(env, tstate >> 32); |
| PUT_CWP64(env, tstate & 0x1f); |
| err |= __get_user(env->gregs[1], (&(*grp)[MC_G1])); |
| err |= __get_user(env->gregs[2], (&(*grp)[MC_G2])); |
| err |= __get_user(env->gregs[3], (&(*grp)[MC_G3])); |
| err |= __get_user(env->gregs[4], (&(*grp)[MC_G4])); |
| err |= __get_user(env->gregs[5], (&(*grp)[MC_G5])); |
| err |= __get_user(env->gregs[6], (&(*grp)[MC_G6])); |
| err |= __get_user(env->gregs[7], (&(*grp)[MC_G7])); |
| err |= __get_user(env->regwptr[UREG_I0], (&(*grp)[MC_O0])); |
| err |= __get_user(env->regwptr[UREG_I1], (&(*grp)[MC_O1])); |
| err |= __get_user(env->regwptr[UREG_I2], (&(*grp)[MC_O2])); |
| err |= __get_user(env->regwptr[UREG_I3], (&(*grp)[MC_O3])); |
| err |= __get_user(env->regwptr[UREG_I4], (&(*grp)[MC_O4])); |
| err |= __get_user(env->regwptr[UREG_I5], (&(*grp)[MC_O5])); |
| err |= __get_user(env->regwptr[UREG_I6], (&(*grp)[MC_O6])); |
| err |= __get_user(env->regwptr[UREG_I7], (&(*grp)[MC_O7])); |
| |
| err |= __get_user(fp, &(ucp->uc_mcontext.mc_fp)); |
| err |= __get_user(i7, &(ucp->uc_mcontext.mc_i7)); |
| |
| w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6]; |
| if (put_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), |
| abi_ulong) != 0) |
| goto do_sigsegv; |
| if (put_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), |
| abi_ulong) != 0) |
| goto do_sigsegv; |
| err |= __get_user(fenab, &(ucp->uc_mcontext.mc_fpregs.mcfpu_enab)); |
| err |= __get_user(env->fprs, &(ucp->uc_mcontext.mc_fpregs.mcfpu_fprs)); |
| { |
| uint32_t *src, *dst; |
| src = ucp->uc_mcontext.mc_fpregs.mcfpu_fregs.sregs; |
| dst = env->fpr; |
| /* XXX: check that the CPU storage is the same as user context */ |
| for (i = 0; i < 64; i++, dst++, src++) |
| err |= __get_user(*dst, src); |
| } |
| err |= __get_user(env->fsr, |
| &(ucp->uc_mcontext.mc_fpregs.mcfpu_fsr)); |
| err |= __get_user(env->gsr, |
| &(ucp->uc_mcontext.mc_fpregs.mcfpu_gsr)); |
| if (err) |
| goto do_sigsegv; |
| unlock_user_struct(ucp, ucp_addr, 0); |
| return; |
| do_sigsegv: |
| unlock_user_struct(ucp, ucp_addr, 0); |
| force_sig(SIGSEGV); |
| } |
| |
| void sparc64_get_context(CPUSPARCState *env) |
| { |
| abi_ulong ucp_addr; |
| struct target_ucontext *ucp; |
| target_mc_gregset_t *grp; |
| target_mcontext_t *mcp; |
| abi_ulong fp, i7, w_addr; |
| int err; |
| unsigned int i; |
| target_sigset_t target_set; |
| sigset_t set; |
| |
| ucp_addr = env->regwptr[UREG_I0]; |
| if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) |
| goto do_sigsegv; |
| |
| mcp = &ucp->uc_mcontext; |
| grp = &mcp->mc_gregs; |
| |
| /* Skip over the trap instruction, first. */ |
| env->pc = env->npc; |
| env->npc += 4; |
| |
| err = 0; |
| |
| sigprocmask(0, NULL, &set); |
| host_to_target_sigset_internal(&target_set, &set); |
| if (TARGET_NSIG_WORDS == 1) { |
| err |= __put_user(target_set.sig[0], |
| (abi_ulong *)&ucp->uc_sigmask); |
| } else { |
| abi_ulong *src, *dst; |
| src = target_set.sig; |
| dst = ucp->uc_sigmask.sig; |
| for (i = 0; i < sizeof(target_sigset_t) / sizeof(abi_ulong); |
| i++, dst++, src++) |
| err |= __put_user(*src, dst); |
| if (err) |
| goto do_sigsegv; |
| } |
| |
| /* XXX: tstate must be saved properly */ |
| // err |= __put_user(env->tstate, &((*grp)[MC_TSTATE])); |
| err |= __put_user(env->pc, &((*grp)[MC_PC])); |
| err |= __put_user(env->npc, &((*grp)[MC_NPC])); |
| err |= __put_user(env->y, &((*grp)[MC_Y])); |
| err |= __put_user(env->gregs[1], &((*grp)[MC_G1])); |
| err |= __put_user(env->gregs[2], &((*grp)[MC_G2])); |
| err |= __put_user(env->gregs[3], &((*grp)[MC_G3])); |
| err |= __put_user(env->gregs[4], &((*grp)[MC_G4])); |
| err |= __put_user(env->gregs[5], &((*grp)[MC_G5])); |
| err |= __put_user(env->gregs[6], &((*grp)[MC_G6])); |
| err |= __put_user(env->gregs[7], &((*grp)[MC_G7])); |
| err |= __put_user(env->regwptr[UREG_I0], &((*grp)[MC_O0])); |
| err |= __put_user(env->regwptr[UREG_I1], &((*grp)[MC_O1])); |
| err |= __put_user(env->regwptr[UREG_I2], &((*grp)[MC_O2])); |
| err |= __put_user(env->regwptr[UREG_I3], &((*grp)[MC_O3])); |
| err |= __put_user(env->regwptr[UREG_I4], &((*grp)[MC_O4])); |
| err |= __put_user(env->regwptr[UREG_I5], &((*grp)[MC_O5])); |
| err |= __put_user(env->regwptr[UREG_I6], &((*grp)[MC_O6])); |
| err |= __put_user(env->regwptr[UREG_I7], &((*grp)[MC_O7])); |
| |
| w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6]; |
| fp = i7 = 0; |
| if (get_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), |
| abi_ulong) != 0) |
| goto do_sigsegv; |
| if (get_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), |
| abi_ulong) != 0) |
| goto do_sigsegv; |
| err |= __put_user(fp, &(mcp->mc_fp)); |
| err |= __put_user(i7, &(mcp->mc_i7)); |
| |
| { |
| uint32_t *src, *dst; |
| src = env->fpr; |
| dst = ucp->uc_mcontext.mc_fpregs.mcfpu_fregs.sregs; |
| /* XXX: check that the CPU storage is the same as user context */ |
| for (i = 0; i < 64; i++, dst++, src++) |
| err |= __put_user(*src, dst); |
| } |
| err |= __put_user(env->fsr, &(mcp->mc_fpregs.mcfpu_fsr)); |
| err |= __put_user(env->gsr, &(mcp->mc_fpregs.mcfpu_gsr)); |
| err |= __put_user(env->fprs, &(mcp->mc_fpregs.mcfpu_fprs)); |
| |
| if (err) |
| goto do_sigsegv; |
| unlock_user_struct(ucp, ucp_addr, 1); |
| return; |
| do_sigsegv: |
| unlock_user_struct(ucp, ucp_addr, 1); |
| force_sig(SIGSEGV); |
| } |
| #endif |
| #elif defined(TARGET_ABI_MIPSN64) |
| |
| # warning signal handling not implemented |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUState *env) |
| { |
| fprintf(stderr, "setup_frame: not implemented\n"); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUState *env) |
| { |
| fprintf(stderr, "setup_rt_frame: not implemented\n"); |
| } |
| |
| long do_sigreturn(CPUState *env) |
| { |
| fprintf(stderr, "do_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| long do_rt_sigreturn(CPUState *env) |
| { |
| fprintf(stderr, "do_rt_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| #elif defined(TARGET_ABI_MIPSN32) |
| |
| # warning signal handling not implemented |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUState *env) |
| { |
| fprintf(stderr, "setup_frame: not implemented\n"); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUState *env) |
| { |
| fprintf(stderr, "setup_rt_frame: not implemented\n"); |
| } |
| |
| long do_sigreturn(CPUState *env) |
| { |
| fprintf(stderr, "do_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| long do_rt_sigreturn(CPUState *env) |
| { |
| fprintf(stderr, "do_rt_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| #elif defined(TARGET_ABI_MIPSO32) |
| |
| struct target_sigcontext { |
| uint32_t sc_regmask; /* Unused */ |
| uint32_t sc_status; |
| uint64_t sc_pc; |
| uint64_t sc_regs[32]; |
| uint64_t sc_fpregs[32]; |
| uint32_t sc_ownedfp; /* Unused */ |
| uint32_t sc_fpc_csr; |
| uint32_t sc_fpc_eir; /* Unused */ |
| uint32_t sc_used_math; |
| uint32_t sc_dsp; /* dsp status, was sc_ssflags */ |
| uint32_t pad0; |
| uint64_t sc_mdhi; |
| uint64_t sc_mdlo; |
| target_ulong sc_hi1; /* Was sc_cause */ |
| target_ulong sc_lo1; /* Was sc_badvaddr */ |
| target_ulong sc_hi2; /* Was sc_sigset[4] */ |
| target_ulong sc_lo2; |
| target_ulong sc_hi3; |
| target_ulong sc_lo3; |
| }; |
| |
| struct sigframe { |
| uint32_t sf_ass[4]; /* argument save space for o32 */ |
| uint32_t sf_code[2]; /* signal trampoline */ |
| struct target_sigcontext sf_sc; |
| target_sigset_t sf_mask; |
| }; |
| |
| struct target_ucontext { |
| target_ulong uc_flags; |
| target_ulong uc_link; |
| target_stack_t uc_stack; |
| target_ulong pad0; |
| struct target_sigcontext uc_mcontext; |
| target_sigset_t uc_sigmask; |
| }; |
| |
| struct target_rt_sigframe { |
| uint32_t rs_ass[4]; /* argument save space for o32 */ |
| uint32_t rs_code[2]; /* signal trampoline */ |
| struct target_siginfo rs_info; |
| struct target_ucontext rs_uc; |
| }; |
| |
| /* Install trampoline to jump back from signal handler */ |
| static inline int install_sigtramp(unsigned int *tramp, unsigned int syscall) |
| { |
| int err; |
| |
| /* |
| * Set up the return code ... |
| * |
| * li v0, __NR__foo_sigreturn |
| * syscall |
| */ |
| |
| err = __put_user(0x24020000 + syscall, tramp + 0); |
| err |= __put_user(0x0000000c , tramp + 1); |
| /* flush_cache_sigtramp((unsigned long) tramp); */ |
| return err; |
| } |
| |
| static inline int |
| setup_sigcontext(CPUState *regs, struct target_sigcontext *sc) |
| { |
| int err = 0; |
| |
| err |= __put_user(regs->active_tc.PC, &sc->sc_pc); |
| |
| #define save_gp_reg(i) do { \ |
| err |= __put_user(regs->active_tc.gpr[i], &sc->sc_regs[i]); \ |
| } while(0) |
| __put_user(0, &sc->sc_regs[0]); save_gp_reg(1); save_gp_reg(2); |
| save_gp_reg(3); save_gp_reg(4); save_gp_reg(5); save_gp_reg(6); |
| save_gp_reg(7); save_gp_reg(8); save_gp_reg(9); save_gp_reg(10); |
| save_gp_reg(11); save_gp_reg(12); save_gp_reg(13); save_gp_reg(14); |
| save_gp_reg(15); save_gp_reg(16); save_gp_reg(17); save_gp_reg(18); |
| save_gp_reg(19); save_gp_reg(20); save_gp_reg(21); save_gp_reg(22); |
| save_gp_reg(23); save_gp_reg(24); save_gp_reg(25); save_gp_reg(26); |
| save_gp_reg(27); save_gp_reg(28); save_gp_reg(29); save_gp_reg(30); |
| save_gp_reg(31); |
| #undef save_gp_reg |
| |
| err |= __put_user(regs->active_tc.HI[0], &sc->sc_mdhi); |
| err |= __put_user(regs->active_tc.LO[0], &sc->sc_mdlo); |
| |
| /* Not used yet, but might be useful if we ever have DSP suppport */ |
| #if 0 |
| if (cpu_has_dsp) { |
| err |= __put_user(mfhi1(), &sc->sc_hi1); |
| err |= __put_user(mflo1(), &sc->sc_lo1); |
| err |= __put_user(mfhi2(), &sc->sc_hi2); |
| err |= __put_user(mflo2(), &sc->sc_lo2); |
| err |= __put_user(mfhi3(), &sc->sc_hi3); |
| err |= __put_user(mflo3(), &sc->sc_lo3); |
| err |= __put_user(rddsp(DSP_MASK), &sc->sc_dsp); |
| } |
| /* same with 64 bit */ |
| #ifdef CONFIG_64BIT |
| err |= __put_user(regs->hi, &sc->sc_hi[0]); |
| err |= __put_user(regs->lo, &sc->sc_lo[0]); |
| if (cpu_has_dsp) { |
| err |= __put_user(mfhi1(), &sc->sc_hi[1]); |
| err |= __put_user(mflo1(), &sc->sc_lo[1]); |
| err |= __put_user(mfhi2(), &sc->sc_hi[2]); |
| err |= __put_user(mflo2(), &sc->sc_lo[2]); |
| err |= __put_user(mfhi3(), &sc->sc_hi[3]); |
| err |= __put_user(mflo3(), &sc->sc_lo[3]); |
| err |= __put_user(rddsp(DSP_MASK), &sc->sc_dsp); |
| } |
| #endif |
| #endif |
| |
| #if 0 |
| err |= __put_user(!!used_math(), &sc->sc_used_math); |
| |
| if (!used_math()) |
| goto out; |
| |
| /* |
| * Save FPU state to signal context. Signal handler will "inherit" |
| * current FPU state. |
| */ |
| preempt_disable(); |
| |
| if (!is_fpu_owner()) { |
| own_fpu(); |
| restore_fp(current); |
| } |
| err |= save_fp_context(sc); |
| |
| preempt_enable(); |
| out: |
| #endif |
| return err; |
| } |
| |
| static inline int |
| restore_sigcontext(CPUState *regs, struct target_sigcontext *sc) |
| { |
| int err = 0; |
| |
| err |= __get_user(regs->CP0_EPC, &sc->sc_pc); |
| |
| err |= __get_user(regs->active_tc.HI[0], &sc->sc_mdhi); |
| err |= __get_user(regs->active_tc.LO[0], &sc->sc_mdlo); |
| |
| #define restore_gp_reg(i) do { \ |
| err |= __get_user(regs->active_tc.gpr[i], &sc->sc_regs[i]); \ |
| } while(0) |
| restore_gp_reg( 1); restore_gp_reg( 2); restore_gp_reg( 3); |
| restore_gp_reg( 4); restore_gp_reg( 5); restore_gp_reg( 6); |
| restore_gp_reg( 7); restore_gp_reg( 8); restore_gp_reg( 9); |
| restore_gp_reg(10); restore_gp_reg(11); restore_gp_reg(12); |
| restore_gp_reg(13); restore_gp_reg(14); restore_gp_reg(15); |
| restore_gp_reg(16); restore_gp_reg(17); restore_gp_reg(18); |
| restore_gp_reg(19); restore_gp_reg(20); restore_gp_reg(21); |
| restore_gp_reg(22); restore_gp_reg(23); restore_gp_reg(24); |
| restore_gp_reg(25); restore_gp_reg(26); restore_gp_reg(27); |
| restore_gp_reg(28); restore_gp_reg(29); restore_gp_reg(30); |
| restore_gp_reg(31); |
| #undef restore_gp_reg |
| |
| #if 0 |
| if (cpu_has_dsp) { |
| err |= __get_user(treg, &sc->sc_hi1); mthi1(treg); |
| err |= __get_user(treg, &sc->sc_lo1); mtlo1(treg); |
| err |= __get_user(treg, &sc->sc_hi2); mthi2(treg); |
| err |= __get_user(treg, &sc->sc_lo2); mtlo2(treg); |
| err |= __get_user(treg, &sc->sc_hi3); mthi3(treg); |
| err |= __get_user(treg, &sc->sc_lo3); mtlo3(treg); |
| err |= __get_user(treg, &sc->sc_dsp); wrdsp(treg, DSP_MASK); |
| } |
| #ifdef CONFIG_64BIT |
| err |= __get_user(regs->hi, &sc->sc_hi[0]); |
| err |= __get_user(regs->lo, &sc->sc_lo[0]); |
| if (cpu_has_dsp) { |
| err |= __get_user(treg, &sc->sc_hi[1]); mthi1(treg); |
| err |= __get_user(treg, &sc->sc_lo[1]); mthi1(treg); |
| err |= __get_user(treg, &sc->sc_hi[2]); mthi2(treg); |
| err |= __get_user(treg, &sc->sc_lo[2]); mthi2(treg); |
| err |= __get_user(treg, &sc->sc_hi[3]); mthi3(treg); |
| err |= __get_user(treg, &sc->sc_lo[3]); mthi3(treg); |
| err |= __get_user(treg, &sc->sc_dsp); wrdsp(treg, DSP_MASK); |
| } |
| #endif |
| |
| err |= __get_user(used_math, &sc->sc_used_math); |
| conditional_used_math(used_math); |
| |
| preempt_disable(); |
| |
| if (used_math()) { |
| /* restore fpu context if we have used it before */ |
| own_fpu(); |
| err |= restore_fp_context(sc); |
| } else { |
| /* signal handler may have used FPU. Give it up. */ |
| lose_fpu(); |
| } |
| |
| preempt_enable(); |
| #endif |
| return err; |
| } |
| /* |
| * Determine which stack to use.. |
| */ |
| static inline abi_ulong |
| get_sigframe(struct target_sigaction *ka, CPUState *regs, size_t frame_size) |
| { |
| unsigned long sp; |
| |
| /* Default to using normal stack */ |
| sp = regs->active_tc.gpr[29]; |
| |
| /* |
| * FPU emulator may have it's own trampoline active just |
| * above the user stack, 16-bytes before the next lowest |
| * 16 byte boundary. Try to avoid trashing it. |
| */ |
| sp -= 32; |
| |
| /* This is the X/Open sanctioned signal stack switching. */ |
| if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags (sp) == 0)) { |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| |
| return (sp - frame_size) & ~7; |
| } |
| |
| /* compare linux/arch/mips/kernel/signal.c:setup_frame() */ |
| static void setup_frame(int sig, struct target_sigaction * ka, |
| target_sigset_t *set, CPUState *regs) |
| { |
| struct sigframe *frame; |
| abi_ulong frame_addr; |
| int i; |
| |
| frame_addr = get_sigframe(ka, regs, sizeof(*frame)); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| goto give_sigsegv; |
| |
| install_sigtramp(frame->sf_code, TARGET_NR_sigreturn); |
| |
| if(setup_sigcontext(regs, &frame->sf_sc)) |
| goto give_sigsegv; |
| |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| if(__put_user(set->sig[i], &frame->sf_mask.sig[i])) |
| goto give_sigsegv; |
| } |
| |
| /* |
| * Arguments to signal handler: |
| * |
| * a0 = signal number |
| * a1 = 0 (should be cause) |
| * a2 = pointer to struct sigcontext |
| * |
| * $25 and PC point to the signal handler, $29 points to the |
| * struct sigframe. |
| */ |
| regs->active_tc.gpr[ 4] = sig; |
| regs->active_tc.gpr[ 5] = 0; |
| regs->active_tc.gpr[ 6] = frame_addr + offsetof(struct sigframe, sf_sc); |
| regs->active_tc.gpr[29] = frame_addr; |
| regs->active_tc.gpr[31] = frame_addr + offsetof(struct sigframe, sf_code); |
| /* The original kernel code sets CP0_EPC to the handler |
| * since it returns to userland using eret |
| * we cannot do this here, and we must set PC directly */ |
| regs->active_tc.PC = regs->active_tc.gpr[25] = ka->_sa_handler; |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| give_sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| force_sig(TARGET_SIGSEGV/*, current*/); |
| return; |
| } |
| |
| long do_sigreturn(CPUState *regs) |
| { |
| struct sigframe *frame; |
| abi_ulong frame_addr; |
| sigset_t blocked; |
| target_sigset_t target_set; |
| int i; |
| |
| #if defined(DEBUG_SIGNAL) |
| fprintf(stderr, "do_sigreturn\n"); |
| #endif |
| frame_addr = regs->active_tc.gpr[29]; |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| if(__get_user(target_set.sig[i], &frame->sf_mask.sig[i])) |
| goto badframe; |
| } |
| |
| target_to_host_sigset_internal(&blocked, &target_set); |
| sigprocmask(SIG_SETMASK, &blocked, NULL); |
| |
| if (restore_sigcontext(regs, &frame->sf_sc)) |
| goto badframe; |
| |
| #if 0 |
| /* |
| * Don't let your children do this ... |
| */ |
| __asm__ __volatile__( |
| "move\t$29, %0\n\t" |
| "j\tsyscall_exit" |
| :/* no outputs */ |
| :"r" (®s)); |
| /* Unreached */ |
| #endif |
| |
| regs->active_tc.PC = regs->CP0_EPC; |
| /* I am not sure this is right, but it seems to work |
| * maybe a problem with nested signals ? */ |
| regs->CP0_EPC = 0; |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| force_sig(TARGET_SIGSEGV/*, current*/); |
| return 0; |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUState *env) |
| { |
| struct target_rt_sigframe *frame; |
| abi_ulong frame_addr; |
| int i; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| goto give_sigsegv; |
| |
| install_sigtramp(frame->rs_code, TARGET_NR_rt_sigreturn); |
| |
| copy_siginfo_to_user(&frame->rs_info, info); |
| |
| __put_user(0, &frame->rs_uc.uc_flags); |
| __put_user(0, &frame->rs_uc.uc_link); |
| __put_user(target_sigaltstack_used.ss_sp, &frame->rs_uc.uc_stack.ss_sp); |
| __put_user(target_sigaltstack_used.ss_size, &frame->rs_uc.uc_stack.ss_size); |
| __put_user(sas_ss_flags(get_sp_from_cpustate(env)), |
| &frame->rs_uc.uc_stack.ss_flags); |
| |
| setup_sigcontext(env, &frame->rs_uc.uc_mcontext); |
| |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| __put_user(set->sig[i], &frame->rs_uc.uc_sigmask.sig[i]); |
| } |
| |
| /* |
| * Arguments to signal handler: |
| * |
| * a0 = signal number |
| * a1 = pointer to struct siginfo |
| * a2 = pointer to struct ucontext |
| * |
| * $25 and PC point to the signal handler, $29 points to the |
| * struct sigframe. |
| */ |
| env->active_tc.gpr[ 4] = sig; |
| env->active_tc.gpr[ 5] = frame_addr |
| + offsetof(struct target_rt_sigframe, rs_info); |
| env->active_tc.gpr[ 6] = frame_addr |
| + offsetof(struct target_rt_sigframe, rs_uc); |
| env->active_tc.gpr[29] = frame_addr; |
| env->active_tc.gpr[31] = frame_addr |
| + offsetof(struct target_rt_sigframe, rs_code); |
| /* The original kernel code sets CP0_EPC to the handler |
| * since it returns to userland using eret |
| * we cannot do this here, and we must set PC directly */ |
| env->active_tc.PC = env->active_tc.gpr[25] = ka->_sa_handler; |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| give_sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| force_sig(TARGET_SIGSEGV/*, current*/); |
| return; |
| } |
| |
| long do_rt_sigreturn(CPUState *env) |
| { |
| struct target_rt_sigframe *frame; |
| abi_ulong frame_addr; |
| sigset_t blocked; |
| |
| #if defined(DEBUG_SIGNAL) |
| fprintf(stderr, "do_rt_sigreturn\n"); |
| #endif |
| frame_addr = env->active_tc.gpr[29]; |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| |
| target_to_host_sigset(&blocked, &frame->rs_uc.uc_sigmask); |
| sigprocmask(SIG_SETMASK, &blocked, NULL); |
| |
| if (restore_sigcontext(env, &frame->rs_uc.uc_mcontext)) |
| goto badframe; |
| |
| if (do_sigaltstack(frame_addr + |
| offsetof(struct target_rt_sigframe, rs_uc.uc_stack), |
| 0, get_sp_from_cpustate(env)) == -EFAULT) |
| goto badframe; |
| |
| env->active_tc.PC = env->CP0_EPC; |
| /* I am not sure this is right, but it seems to work |
| * maybe a problem with nested signals ? */ |
| env->CP0_EPC = 0; |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| badframe: |
| force_sig(TARGET_SIGSEGV/*, current*/); |
| return 0; |
| } |
| |
| #elif defined(TARGET_SH4) |
| |
| /* |
| * code and data structures from linux kernel: |
| * include/asm-sh/sigcontext.h |
| * arch/sh/kernel/signal.c |
| */ |
| |
| struct target_sigcontext { |
| target_ulong oldmask; |
| |
| /* CPU registers */ |
| target_ulong sc_gregs[16]; |
| target_ulong sc_pc; |
| target_ulong sc_pr; |
| target_ulong sc_sr; |
| target_ulong sc_gbr; |
| target_ulong sc_mach; |
| target_ulong sc_macl; |
| |
| /* FPU registers */ |
| target_ulong sc_fpregs[16]; |
| target_ulong sc_xfpregs[16]; |
| unsigned int sc_fpscr; |
| unsigned int sc_fpul; |
| unsigned int sc_ownedfp; |
| }; |
| |
| struct target_sigframe |
| { |
| struct target_sigcontext sc; |
| target_ulong extramask[TARGET_NSIG_WORDS-1]; |
| uint16_t retcode[3]; |
| }; |
| |
| |
| struct target_ucontext { |
| target_ulong uc_flags; |
| struct target_ucontext *uc_link; |
| target_stack_t uc_stack; |
| struct target_sigcontext uc_mcontext; |
| target_sigset_t uc_sigmask; /* mask last for extensibility */ |
| }; |
| |
| struct target_rt_sigframe |
| { |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| uint16_t retcode[3]; |
| }; |
| |
| |
| #define MOVW(n) (0x9300|((n)-2)) /* Move mem word at PC+n to R3 */ |
| #define TRAP_NOARG 0xc310 /* Syscall w/no args (NR in R3) SH3/4 */ |
| |
| static abi_ulong get_sigframe(struct target_sigaction *ka, |
| unsigned long sp, size_t frame_size) |
| { |
| if ((ka->sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags(sp) == 0)) { |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| } |
| |
| return (sp - frame_size) & -8ul; |
| } |
| |
| static int setup_sigcontext(struct target_sigcontext *sc, |
| CPUState *regs, unsigned long mask) |
| { |
| int err = 0; |
| |
| #define COPY(x) err |= __put_user(regs->x, &sc->sc_##x) |
| COPY(gregs[0]); COPY(gregs[1]); |
| COPY(gregs[2]); COPY(gregs[3]); |
| COPY(gregs[4]); COPY(gregs[5]); |
| COPY(gregs[6]); COPY(gregs[7]); |
| COPY(gregs[8]); COPY(gregs[9]); |
| COPY(gregs[10]); COPY(gregs[11]); |
| COPY(gregs[12]); COPY(gregs[13]); |
| COPY(gregs[14]); COPY(gregs[15]); |
| COPY(gbr); COPY(mach); |
| COPY(macl); COPY(pr); |
| COPY(sr); COPY(pc); |
| #undef COPY |
| |
| /* todo: save FPU registers here */ |
| |
| /* non-iBCS2 extensions.. */ |
| err |= __put_user(mask, &sc->oldmask); |
| |
| return err; |
| } |
| |
| static int restore_sigcontext(CPUState *regs, |
| struct target_sigcontext *sc) |
| { |
| unsigned int err = 0; |
| |
| #define COPY(x) err |= __get_user(regs->x, &sc->sc_##x) |
| COPY(gregs[1]); |
| COPY(gregs[2]); COPY(gregs[3]); |
| COPY(gregs[4]); COPY(gregs[5]); |
| COPY(gregs[6]); COPY(gregs[7]); |
| COPY(gregs[8]); COPY(gregs[9]); |
| COPY(gregs[10]); COPY(gregs[11]); |
| COPY(gregs[12]); COPY(gregs[13]); |
| COPY(gregs[14]); COPY(gregs[15]); |
| COPY(gbr); COPY(mach); |
| COPY(macl); COPY(pr); |
| COPY(sr); COPY(pc); |
| #undef COPY |
| |
| /* todo: restore FPU registers here */ |
| |
| regs->tra = -1; /* disable syscall checks */ |
| return err; |
| } |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUState *regs) |
| { |
| struct target_sigframe *frame; |
| abi_ulong frame_addr; |
| int i; |
| int err = 0; |
| int signal; |
| |
| frame_addr = get_sigframe(ka, regs->gregs[15], sizeof(*frame)); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| goto give_sigsegv; |
| |
| signal = current_exec_domain_sig(sig); |
| |
| err |= setup_sigcontext(&frame->sc, regs, set->sig[0]); |
| |
| for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { |
| err |= __put_user(set->sig[i + 1], &frame->extramask[i]); |
| } |
| |
| /* Set up to return from userspace. If provided, use a stub |
| already in userspace. */ |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| regs->pr = (unsigned long) ka->sa_restorer; |
| } else { |
| /* Generate return code (system call to sigreturn) */ |
| err |= __put_user(MOVW(2), &frame->retcode[0]); |
| err |= __put_user(TRAP_NOARG, &frame->retcode[1]); |
| err |= __put_user((TARGET_NR_sigreturn), &frame->retcode[2]); |
| regs->pr = (unsigned long) frame->retcode; |
| } |
| |
| if (err) |
| goto give_sigsegv; |
| |
| /* Set up registers for signal handler */ |
| regs->gregs[15] = (unsigned long) frame; |
| regs->gregs[4] = signal; /* Arg for signal handler */ |
| regs->gregs[5] = 0; |
| regs->gregs[6] = (unsigned long) &frame->sc; |
| regs->pc = (unsigned long) ka->_sa_handler; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| give_sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| force_sig(SIGSEGV); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUState *regs) |
| { |
| struct target_rt_sigframe *frame; |
| abi_ulong frame_addr; |
| int i; |
| int err = 0; |
| int signal; |
| |
| frame_addr = get_sigframe(ka, regs->gregs[15], sizeof(*frame)); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| goto give_sigsegv; |
| |
| signal = current_exec_domain_sig(sig); |
| |
| err |= copy_siginfo_to_user(&frame->info, info); |
| |
| /* Create the ucontext. */ |
| err |= __put_user(0, &frame->uc.uc_flags); |
| err |= __put_user(0, (unsigned long *)&frame->uc.uc_link); |
| err |= __put_user((unsigned long)target_sigaltstack_used.ss_sp, |
| &frame->uc.uc_stack.ss_sp); |
| err |= __put_user(sas_ss_flags(regs->gregs[15]), |
| &frame->uc.uc_stack.ss_flags); |
| err |= __put_user(target_sigaltstack_used.ss_size, |
| &frame->uc.uc_stack.ss_size); |
| err |= setup_sigcontext(&frame->uc.uc_mcontext, |
| regs, set->sig[0]); |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| err |= __put_user(set->sig[i], &frame->uc.uc_sigmask.sig[i]); |
| } |
| |
| /* Set up to return from userspace. If provided, use a stub |
| already in userspace. */ |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| regs->pr = (unsigned long) ka->sa_restorer; |
| } else { |
| /* Generate return code (system call to sigreturn) */ |
| err |= __put_user(MOVW(2), &frame->retcode[0]); |
| err |= __put_user(TRAP_NOARG, &frame->retcode[1]); |
| err |= __put_user((TARGET_NR_rt_sigreturn), &frame->retcode[2]); |
| regs->pr = (unsigned long) frame->retcode; |
| } |
| |
| if (err) |
| goto give_sigsegv; |
| |
| /* Set up registers for signal handler */ |
| regs->gregs[15] = (unsigned long) frame; |
| regs->gregs[4] = signal; /* Arg for signal handler */ |
| regs->gregs[5] = (unsigned long) &frame->info; |
| regs->gregs[6] = (unsigned long) &frame->uc; |
| regs->pc = (unsigned long) ka->_sa_handler; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| give_sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| force_sig(SIGSEGV); |
| } |
| |
| long do_sigreturn(CPUState *regs) |
| { |
| struct target_sigframe *frame; |
| abi_ulong frame_addr; |
| sigset_t blocked; |
| target_sigset_t target_set; |
| int i; |
| int err = 0; |
| |
| #if defined(DEBUG_SIGNAL) |
| fprintf(stderr, "do_sigreturn\n"); |
| #endif |
| frame_addr = regs->gregs[15]; |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| |
| err |= __get_user(target_set.sig[0], &frame->sc.oldmask); |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| err |= (__get_user(target_set.sig[i], &frame->extramask[i - 1])); |
| } |
| |
| if (err) |
| goto badframe; |
| |
| target_to_host_sigset_internal(&blocked, &target_set); |
| sigprocmask(SIG_SETMASK, &blocked, NULL); |
| |
| if (restore_sigcontext(regs, &frame->sc)) |
| goto badframe; |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return regs->gregs[0]; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return 0; |
| } |
| |
| long do_rt_sigreturn(CPUState *regs) |
| { |
| struct target_rt_sigframe *frame; |
| abi_ulong frame_addr; |
| sigset_t blocked; |
| |
| #if defined(DEBUG_SIGNAL) |
| fprintf(stderr, "do_rt_sigreturn\n"); |
| #endif |
| frame_addr = regs->gregs[15]; |
| if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) |
| goto badframe; |
| |
| target_to_host_sigset(&blocked, &frame->uc.uc_sigmask); |
| sigprocmask(SIG_SETMASK, &blocked, NULL); |
| |
| if (restore_sigcontext(regs, &frame->uc.uc_mcontext)) |
| goto badframe; |
| |
| if (do_sigaltstack(frame_addr + |
| offsetof(struct target_rt_sigframe, uc.uc_stack), |
| 0, get_sp_from_cpustate(regs)) == -EFAULT) |
| goto badframe; |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return regs->gregs[0]; |
| |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return 0; |
| } |
| #elif defined(TARGET_MICROBLAZE) |
| |
| struct target_sigcontext { |
| struct target_pt_regs regs; /* needs to be first */ |
| uint32_t oldmask; |
| }; |
| |
| /* Signal frames. */ |
| struct target_signal_frame { |
| struct target_sigcontext sc; |
| uint32_t extramask[TARGET_NSIG_WORDS - 1]; |
| uint32_t tramp[2]; |
| }; |
| |
| struct rt_signal_frame { |
| struct siginfo info; |
| struct ucontext uc; |
| uint32_t tramp[2]; |
| }; |
| |
| static void setup_sigcontext(struct target_sigcontext *sc, CPUState *env) |
| { |
| __put_user(env->regs[0], &sc->regs.r0); |
| __put_user(env->regs[1], &sc->regs.r1); |
| __put_user(env->regs[2], &sc->regs.r2); |
| __put_user(env->regs[3], &sc->regs.r3); |
| __put_user(env->regs[4], &sc->regs.r4); |
| __put_user(env->regs[5], &sc->regs.r5); |
| __put_user(env->regs[6], &sc->regs.r6); |
| __put_user(env->regs[7], &sc->regs.r7); |
| __put_user(env->regs[8], &sc->regs.r8); |
| __put_user(env->regs[9], &sc->regs.r9); |
| __put_user(env->regs[10], &sc->regs.r10); |
| __put_user(env->regs[11], &sc->regs.r11); |
| __put_user(env->regs[12], &sc->regs.r12); |
| __put_user(env->regs[13], &sc->regs.r13); |
| __put_user(env->regs[14], &sc->regs.r14); |
| __put_user(env->regs[15], &sc->regs.r15); |
| __put_user(env->regs[16], &sc->regs.r16); |
| __put_user(env->regs[17], &sc->regs.r17); |
| __put_user(env->regs[18], &sc->regs.r18); |
| __put_user(env->regs[19], &sc->regs.r19); |
| __put_user(env->regs[20], &sc->regs.r20); |
| __put_user(env->regs[21], &sc->regs.r21); |
| __put_user(env->regs[22], &sc->regs.r22); |
| __put_user(env->regs[23], &sc->regs.r23); |
| __put_user(env->regs[24], &sc->regs.r24); |
| __put_user(env->regs[25], &sc->regs.r25); |
| __put_user(env->regs[26], &sc->regs.r26); |
| __put_user(env->regs[27], &sc->regs.r27); |
| __put_user(env->regs[28], &sc->regs.r28); |
| __put_user(env->regs[29], &sc->regs.r29); |
| __put_user(env->regs[30], &sc->regs.r30); |
| __put_user(env->regs[31], &sc->regs.r31); |
| __put_user(env->sregs[SR_PC], &sc->regs.pc); |
| } |
| |
| static void restore_sigcontext(struct target_sigcontext *sc, CPUState *env) |
| { |
| __get_user(env->regs[0], &sc->regs.r0); |
| __get_user(env->regs[1], &sc->regs.r1); |
| __get_user(env->regs[2], &sc->regs.r2); |
| __get_user(env->regs[3], &sc->regs.r3); |
| __get_user(env->regs[4], &sc->regs.r4); |
| __get_user(env->regs[5], &sc->regs.r5); |
| __get_user(env->regs[6], &sc->regs.r6); |
| __get_user(env->regs[7], &sc->regs.r7); |
| __get_user(env->regs[8], &sc->regs.r8); |
| __get_user(env->regs[9], &sc->regs.r9); |
| __get_user(env->regs[10], &sc->regs.r10); |
| __get_user(env->regs[11], &sc->regs.r11); |
| __get_user(env->regs[12], &sc->regs.r12); |
| __get_user(env->regs[13], &sc->regs.r13); |
| __get_user(env->regs[14], &sc->regs.r14); |
| __get_user(env->regs[15], &sc->regs.r15); |
| __get_user(env->regs[16], &sc->regs.r16); |
| __get_user(env->regs[17], &sc->regs.r17); |
| __get_user(env->regs[18], &sc->regs.r18); |
| __get_user(env->regs[19], &sc->regs.r19); |
| __get_user(env->regs[20], &sc->regs.r20); |
| __get_user(env->regs[21], &sc->regs.r21); |
| __get_user(env->regs[22], &sc->regs.r22); |
| __get_user(env->regs[23], &sc->regs.r23); |
| __get_user(env->regs[24], &sc->regs.r24); |
| __get_user(env->regs[25], &sc->regs.r25); |
| __get_user(env->regs[26], &sc->regs.r26); |
| __get_user(env->regs[27], &sc->regs.r27); |
| __get_user(env->regs[28], &sc->regs.r28); |
| __get_user(env->regs[29], &sc->regs.r29); |
| __get_user(env->regs[30], &sc->regs.r30); |
| __get_user(env->regs[31], &sc->regs.r31); |
| __get_user(env->sregs[SR_PC], &sc->regs.pc); |
| } |
| |
| static abi_ulong get_sigframe(struct target_sigaction *ka, |
| CPUState *env, int frame_size) |
| { |
| abi_ulong sp = env->regs[1]; |
| |
| if ((ka->sa_flags & SA_ONSTACK) != 0 && !on_sig_stack(sp)) |
| sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; |
| |
| return ((sp - frame_size) & -8UL); |
| } |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUState *env) |
| { |
| struct target_signal_frame *frame; |
| abi_ulong frame_addr; |
| int err = 0; |
| int i; |
| |
| frame_addr = get_sigframe(ka, env, sizeof *frame); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| goto badframe; |
| |
| /* Save the mask. */ |
| err |= __put_user(set->sig[0], &frame->sc.oldmask); |
| if (err) |
| goto badframe; |
| |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| if (__put_user(set->sig[i], &frame->extramask[i - 1])) |
| goto badframe; |
| } |
| |
| setup_sigcontext(&frame->sc, env); |
| |
| /* Set up to return from userspace. If provided, use a stub |
| already in userspace. */ |
| /* minus 8 is offset to cater for "rtsd r15,8" offset */ |
| if (ka->sa_flags & TARGET_SA_RESTORER) { |
| env->regs[15] = ((unsigned long)ka->sa_restorer)-8; |
| } else { |
| uint32_t t; |
| /* Note, these encodings are _big endian_! */ |
| /* addi r12, r0, __NR_sigreturn */ |
| t = 0x31800000UL | TARGET_NR_sigreturn; |
| err |= __put_user(t, frame->tramp + 0); |
| /* brki r14, 0x8 */ |
| t = 0xb9cc0008UL; |
| err |= __put_user(t, frame->tramp + 1); |
| |
| /* Return from sighandler will jump to the tramp. |
| Negative 8 offset because return is rtsd r15, 8 */ |
| env->regs[15] = ((unsigned long)frame->tramp) - 8; |
| } |
| |
| if (err) |
| goto badframe; |
| |
| /* Set up registers for signal handler */ |
| env->regs[1] = (unsigned long) frame; |
| /* Signal handler args: */ |
| env->regs[5] = sig; /* Arg 0: signum */ |
| env->regs[6] = (unsigned long) &frame->sc; /* arg 1: sigcontext */ |
| |
| /* Offset of 4 to handle microblaze rtid r14, 0 */ |
| env->sregs[SR_PC] = (unsigned long)ka->_sa_handler; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| badframe: |
| unlock_user_struct(frame, frame_addr, 1); |
| force_sig(TARGET_SIGSEGV); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUState *env) |
| { |
| fprintf(stderr, "Microblaze setup_rt_frame: not implemented\n"); |
| } |
| |
| long do_sigreturn(CPUState *env) |
| { |
| struct target_signal_frame *frame; |
| abi_ulong frame_addr; |
| target_sigset_t target_set; |
| sigset_t set; |
| int i; |
| |
| frame_addr = env->regs[R_SP]; |
| /* Make sure the guest isn't playing games. */ |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) |
| goto badframe; |
| |
| /* Restore blocked signals */ |
| if (__get_user(target_set.sig[0], &frame->sc.oldmask)) |
| goto badframe; |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| if (__get_user(target_set.sig[i], &frame->extramask[i - 1])) |
| goto badframe; |
| } |
| target_to_host_sigset_internal(&set, &target_set); |
| sigprocmask(SIG_SETMASK, &set, NULL); |
| |
| restore_sigcontext(&frame->sc, env); |
| /* We got here through a sigreturn syscall, our path back is via an |
| rtb insn so setup r14 for that. */ |
| env->regs[14] = env->sregs[SR_PC]; |
| |
| unlock_user_struct(frame, frame_addr, 0); |
| return env->regs[10]; |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| } |
| |
| long do_rt_sigreturn(CPUState *env) |
| { |
| fprintf(stderr, "Microblaze do_rt_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| #elif defined(TARGET_CRIS) |
| |
| struct target_sigcontext { |
| struct target_pt_regs regs; /* needs to be first */ |
| uint32_t oldmask; |
| uint32_t usp; /* usp before stacking this gunk on it */ |
| }; |
| |
| /* Signal frames. */ |
| struct target_signal_frame { |
| struct target_sigcontext sc; |
| uint32_t extramask[TARGET_NSIG_WORDS - 1]; |
| uint8_t retcode[8]; /* Trampoline code. */ |
| }; |
| |
| struct rt_signal_frame { |
| struct siginfo *pinfo; |
| void *puc; |
| struct siginfo info; |
| struct ucontext uc; |
| uint8_t retcode[8]; /* Trampoline code. */ |
| }; |
| |
| static void setup_sigcontext(struct target_sigcontext *sc, CPUState *env) |
| { |
| __put_user(env->regs[0], &sc->regs.r0); |
| __put_user(env->regs[1], &sc->regs.r1); |
| __put_user(env->regs[2], &sc->regs.r2); |
| __put_user(env->regs[3], &sc->regs.r3); |
| __put_user(env->regs[4], &sc->regs.r4); |
| __put_user(env->regs[5], &sc->regs.r5); |
| __put_user(env->regs[6], &sc->regs.r6); |
| __put_user(env->regs[7], &sc->regs.r7); |
| __put_user(env->regs[8], &sc->regs.r8); |
| __put_user(env->regs[9], &sc->regs.r9); |
| __put_user(env->regs[10], &sc->regs.r10); |
| __put_user(env->regs[11], &sc->regs.r11); |
| __put_user(env->regs[12], &sc->regs.r12); |
| __put_user(env->regs[13], &sc->regs.r13); |
| __put_user(env->regs[14], &sc->usp); |
| __put_user(env->regs[15], &sc->regs.acr); |
| __put_user(env->pregs[PR_MOF], &sc->regs.mof); |
| __put_user(env->pregs[PR_SRP], &sc->regs.srp); |
| __put_user(env->pc, &sc->regs.erp); |
| } |
| |
| static void restore_sigcontext(struct target_sigcontext *sc, CPUState *env) |
| { |
| __get_user(env->regs[0], &sc->regs.r0); |
| __get_user(env->regs[1], &sc->regs.r1); |
| __get_user(env->regs[2], &sc->regs.r2); |
| __get_user(env->regs[3], &sc->regs.r3); |
| __get_user(env->regs[4], &sc->regs.r4); |
| __get_user(env->regs[5], &sc->regs.r5); |
| __get_user(env->regs[6], &sc->regs.r6); |
| __get_user(env->regs[7], &sc->regs.r7); |
| __get_user(env->regs[8], &sc->regs.r8); |
| __get_user(env->regs[9], &sc->regs.r9); |
| __get_user(env->regs[10], &sc->regs.r10); |
| __get_user(env->regs[11], &sc->regs.r11); |
| __get_user(env->regs[12], &sc->regs.r12); |
| __get_user(env->regs[13], &sc->regs.r13); |
| __get_user(env->regs[14], &sc->usp); |
| __get_user(env->regs[15], &sc->regs.acr); |
| __get_user(env->pregs[PR_MOF], &sc->regs.mof); |
| __get_user(env->pregs[PR_SRP], &sc->regs.srp); |
| __get_user(env->pc, &sc->regs.erp); |
| } |
| |
| static abi_ulong get_sigframe(CPUState *env, int framesize) |
| { |
| abi_ulong sp; |
| /* Align the stack downwards to 4. */ |
| sp = (env->regs[R_SP] & ~3); |
| return sp - framesize; |
| } |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUState *env) |
| { |
| struct target_signal_frame *frame; |
| abi_ulong frame_addr; |
| int err = 0; |
| int i; |
| |
| frame_addr = get_sigframe(env, sizeof *frame); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) |
| goto badframe; |
| |
| /* |
| * The CRIS signal return trampoline. A real linux/CRIS kernel doesn't |
| * use this trampoline anymore but it sets it up for GDB. |
| * In QEMU, using the trampoline simplifies things a bit so we use it. |
| * |
| * This is movu.w __NR_sigreturn, r9; break 13; |
| */ |
| err |= __put_user(0x9c5f, frame->retcode+0); |
| err |= __put_user(TARGET_NR_sigreturn, |
| frame->retcode+2); |
| err |= __put_user(0xe93d, frame->retcode+4); |
| |
| /* Save the mask. */ |
| err |= __put_user(set->sig[0], &frame->sc.oldmask); |
| if (err) |
| goto badframe; |
| |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| if (__put_user(set->sig[i], &frame->extramask[i - 1])) |
| goto badframe; |
| } |
| |
| setup_sigcontext(&frame->sc, env); |
| |
| /* Move the stack and setup the arguments for the handler. */ |
| env->regs[R_SP] = (uint32_t) (unsigned long) frame; |
| env->regs[10] = sig; |
| env->pc = (unsigned long) ka->_sa_handler; |
| /* Link SRP so the guest returns through the trampoline. */ |
| env->pregs[PR_SRP] = (uint32_t) (unsigned long) &frame->retcode[0]; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| badframe: |
| unlock_user_struct(frame, frame_addr, 1); |
| force_sig(TARGET_SIGSEGV); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUState *env) |
| { |
| fprintf(stderr, "CRIS setup_rt_frame: not implemented\n"); |
| } |
| |
| long do_sigreturn(CPUState *env) |
| { |
| struct target_signal_frame *frame; |
| abi_ulong frame_addr; |
| target_sigset_t target_set; |
| sigset_t set; |
| int i; |
| |
| frame_addr = env->regs[R_SP]; |
| /* Make sure the guest isn't playing games. */ |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) |
| goto badframe; |
| |
| /* Restore blocked signals */ |
| if (__get_user(target_set.sig[0], &frame->sc.oldmask)) |
| goto badframe; |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| if (__get_user(target_set.sig[i], &frame->extramask[i - 1])) |
| goto badframe; |
| } |
| target_to_host_sigset_internal(&set, &target_set); |
| sigprocmask(SIG_SETMASK, &set, NULL); |
| |
| restore_sigcontext(&frame->sc, env); |
| unlock_user_struct(frame, frame_addr, 0); |
| return env->regs[10]; |
| badframe: |
| unlock_user_struct(frame, frame_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| } |
| |
| long do_rt_sigreturn(CPUState *env) |
| { |
| fprintf(stderr, "CRIS do_rt_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| #elif defined(TARGET_PPC) && !defined(TARGET_PPC64) |
| |
| /* FIXME: Many of the structures are defined for both PPC and PPC64, but |
| the signal handling is different enough that we haven't implemented |
| support for PPC64 yet. Hence the restriction above. |
| |
| There are various #if'd blocks for code for TARGET_PPC64. These |
| blocks should go away so that we can successfully run 32-bit and |
| 64-bit binaries on a QEMU configured for PPC64. */ |
| |
| /* Size of dummy stack frame allocated when calling signal handler. |
| See arch/powerpc/include/asm/ptrace.h. */ |
| #if defined(TARGET_PPC64) |
| #define SIGNAL_FRAMESIZE 128 |
| #else |
| #define SIGNAL_FRAMESIZE 64 |
| #endif |
| |
| /* See arch/powerpc/include/asm/sigcontext.h. */ |
| struct target_sigcontext { |
| target_ulong _unused[4]; |
| int32_t signal; |
| #if defined(TARGET_PPC64) |
| int32_t pad0; |
| #endif |
| target_ulong handler; |
| target_ulong oldmask; |
| target_ulong regs; /* struct pt_regs __user * */ |
| /* TODO: PPC64 includes extra bits here. */ |
| }; |
| |
| /* Indices for target_mcontext.mc_gregs, below. |
| See arch/powerpc/include/asm/ptrace.h for details. */ |
| enum { |
| TARGET_PT_R0 = 0, |
| TARGET_PT_R1 = 1, |
| TARGET_PT_R2 = 2, |
| TARGET_PT_R3 = 3, |
| TARGET_PT_R4 = 4, |
| TARGET_PT_R5 = 5, |
| TARGET_PT_R6 = 6, |
| TARGET_PT_R7 = 7, |
| TARGET_PT_R8 = 8, |
| TARGET_PT_R9 = 9, |
| TARGET_PT_R10 = 10, |
| TARGET_PT_R11 = 11, |
| TARGET_PT_R12 = 12, |
| TARGET_PT_R13 = 13, |
| TARGET_PT_R14 = 14, |
| TARGET_PT_R15 = 15, |
| TARGET_PT_R16 = 16, |
| TARGET_PT_R17 = 17, |
| TARGET_PT_R18 = 18, |
| TARGET_PT_R19 = 19, |
| TARGET_PT_R20 = 20, |
| TARGET_PT_R21 = 21, |
| TARGET_PT_R22 = 22, |
| TARGET_PT_R23 = 23, |
| TARGET_PT_R24 = 24, |
| TARGET_PT_R25 = 25, |
| TARGET_PT_R26 = 26, |
| TARGET_PT_R27 = 27, |
| TARGET_PT_R28 = 28, |
| TARGET_PT_R29 = 29, |
| TARGET_PT_R30 = 30, |
| TARGET_PT_R31 = 31, |
| TARGET_PT_NIP = 32, |
| TARGET_PT_MSR = 33, |
| TARGET_PT_ORIG_R3 = 34, |
| TARGET_PT_CTR = 35, |
| TARGET_PT_LNK = 36, |
| TARGET_PT_XER = 37, |
| TARGET_PT_CCR = 38, |
| /* Yes, there are two registers with #39. One is 64-bit only. */ |
| TARGET_PT_MQ = 39, |
| TARGET_PT_SOFTE = 39, |
| TARGET_PT_TRAP = 40, |
| TARGET_PT_DAR = 41, |
| TARGET_PT_DSISR = 42, |
| TARGET_PT_RESULT = 43, |
| TARGET_PT_REGS_COUNT = 44 |
| }; |
| |
| /* See arch/powerpc/include/asm/ucontext.h. Only used for 32-bit PPC; |
| on 64-bit PPC, sigcontext and mcontext are one and the same. */ |
| struct target_mcontext { |
| target_ulong mc_gregs[48]; |
| /* Includes fpscr. */ |
| uint64_t mc_fregs[33]; |
| target_ulong mc_pad[2]; |
| /* We need to handle Altivec and SPE at the same time, which no |
| kernel needs to do. Fortunately, the kernel defines this bit to |
| be Altivec-register-large all the time, rather than trying to |
| twiddle it based on the specific platform. */ |
| union { |
| /* SPE vector registers. One extra for SPEFSCR. */ |
| uint32_t spe[33]; |
| /* Altivec vector registers. The packing of VSCR and VRSAVE |
| varies depending on whether we're PPC64 or not: PPC64 splits |
| them apart; PPC32 stuffs them together. */ |
| #if defined(TARGET_PPC64) |
| #define NVRREG 34 |
| #else |
| #define NVRREG 33 |
| #endif |
| ppc_avr_t altivec[NVRREG]; |
| #undef NVRREG |
| } mc_vregs __attribute__((__aligned__(16))); |
| }; |
| |
| struct target_ucontext { |
| target_ulong uc_flags; |
| target_ulong uc_link; /* struct ucontext __user * */ |
| struct target_sigaltstack uc_stack; |
| #if !defined(TARGET_PPC64) |
| int32_t uc_pad[7]; |
| target_ulong uc_regs; /* struct mcontext __user * |
| points to uc_mcontext field */ |
| #endif |
| target_sigset_t uc_sigmask; |
| #if defined(TARGET_PPC64) |
| target_sigset_t unused[15]; /* Allow for uc_sigmask growth */ |
| struct target_sigcontext uc_mcontext; |
| #else |
| int32_t uc_maskext[30]; |
| int32_t uc_pad2[3]; |
| struct target_mcontext uc_mcontext; |
| #endif |
| }; |
| |
| /* See arch/powerpc/kernel/signal_32.c. */ |
| struct target_sigframe { |
| struct target_sigcontext sctx; |
| struct target_mcontext mctx; |
| int32_t abigap[56]; |
| }; |
| |
| struct target_rt_sigframe { |
| struct target_siginfo info; |
| struct target_ucontext uc; |
| int32_t abigap[56]; |
| }; |
| |
| /* We use the mc_pad field for the signal return trampoline. */ |
| #define tramp mc_pad |
| |
| /* See arch/powerpc/kernel/signal.c. */ |
| static target_ulong get_sigframe(struct target_sigaction *ka, |
| CPUState *env, |
| int frame_size) |
| { |
| target_ulong oldsp, newsp; |
| |
| oldsp = env->gpr[1]; |
| |
| if ((ka->sa_flags & TARGET_SA_ONSTACK) && |
| (sas_ss_flags(oldsp))) { |
| oldsp = (target_sigaltstack_used.ss_sp |
| + target_sigaltstack_used.ss_size); |
| } |
| |
| newsp = (oldsp - frame_size) & ~0xFUL; |
| |
| return newsp; |
| } |
| |
| static int save_user_regs(CPUState *env, struct target_mcontext *frame, |
| int sigret) |
| { |
| target_ulong msr = env->msr; |
| int i; |
| target_ulong ccr = 0; |
| |
| /* In general, the kernel attempts to be intelligent about what it |
| needs to save for Altivec/FP/SPE registers. We don't care that |
| much, so we just go ahead and save everything. */ |
| |
| /* Save general registers. */ |
| for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { |
| if (__put_user(env->gpr[i], &frame->mc_gregs[i])) { |
| return 1; |
| } |
| } |
| if (__put_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]) |
| || __put_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]) |
| || __put_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]) |
| || __put_user(env->xer, &frame->mc_gregs[TARGET_PT_XER])) |
| return 1; |
| |
| for (i = 0; i < ARRAY_SIZE(env->crf); i++) { |
| ccr |= env->crf[i] << (32 - ((i + 1) * 4)); |
| } |
| if (__put_user(ccr, &frame->mc_gregs[TARGET_PT_CCR])) |
| return 1; |
| |
| /* Save Altivec registers if necessary. */ |
| if (env->insns_flags & PPC_ALTIVEC) { |
| for (i = 0; i < ARRAY_SIZE(env->avr); i++) { |
| ppc_avr_t *avr = &env->avr[i]; |
| ppc_avr_t *vreg = &frame->mc_vregs.altivec[i]; |
| |
| if (__put_user(avr->u64[0], &vreg->u64[0]) || |
| __put_user(avr->u64[1], &vreg->u64[1])) { |
| return 1; |
| } |
| } |
| /* Set MSR_VR in the saved MSR value to indicate that |
| frame->mc_vregs contains valid data. */ |
| msr |= MSR_VR; |
| if (__put_user((uint32_t)env->spr[SPR_VRSAVE], |
| &frame->mc_vregs.altivec[32].u32[3])) |
| return 1; |
| } |
| |
| /* Save floating point registers. */ |
| if (env->insns_flags & PPC_FLOAT) { |
| for (i = 0; i < ARRAY_SIZE(env->fpr); i++) { |
| if (__put_user(env->fpr[i], &frame->mc_fregs[i])) { |
| return 1; |
| } |
| } |
| if (__put_user((uint64_t) env->fpscr, &frame->mc_fregs[32])) |
| return 1; |
| } |
| |
| /* Save SPE registers. The kernel only saves the high half. */ |
| if (env->insns_flags & PPC_SPE) { |
| #if defined(TARGET_PPC64) |
| for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { |
| if (__put_user(env->gpr[i] >> 32, &frame->mc_vregs.spe[i])) { |
| return 1; |
| } |
| } |
| #else |
| for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { |
| if (__put_user(env->gprh[i], &frame->mc_vregs.spe[i])) { |
| return 1; |
| } |
| } |
| #endif |
| /* Set MSR_SPE in the saved MSR value to indicate that |
| frame->mc_vregs contains valid data. */ |
| msr |= MSR_SPE; |
| if (__put_user(env->spe_fscr, &frame->mc_vregs.spe[32])) |
| return 1; |
| } |
| |
| /* Store MSR. */ |
| if (__put_user(msr, &frame->mc_gregs[TARGET_PT_MSR])) |
| return 1; |
| |
| /* Set up the sigreturn trampoline: li r0,sigret; sc. */ |
| if (sigret) { |
| if (__put_user(0x38000000UL | sigret, &frame->tramp[0]) || |
| __put_user(0x44000002UL, &frame->tramp[1])) { |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int restore_user_regs(CPUState *env, |
| struct target_mcontext *frame, int sig) |
| { |
| target_ulong save_r2 = 0; |
| target_ulong msr; |
| target_ulong ccr; |
| |
| int i; |
| |
| if (!sig) { |
| save_r2 = env->gpr[2]; |
| } |
| |
| /* Restore general registers. */ |
| for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { |
| if (__get_user(env->gpr[i], &frame->mc_gregs[i])) { |
| return 1; |
| } |
| } |
| if (__get_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]) |
| || __get_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]) |
| || __get_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]) |
| || __get_user(env->xer, &frame->mc_gregs[TARGET_PT_XER])) |
| return 1; |
| if (__get_user(ccr, &frame->mc_gregs[TARGET_PT_CCR])) |
| return 1; |
| |
| for (i = 0; i < ARRAY_SIZE(env->crf); i++) { |
| env->crf[i] = (ccr >> (32 - ((i + 1) * 4))) & 0xf; |
| } |
| |
| if (!sig) { |
| env->gpr[2] = save_r2; |
| } |
| /* Restore MSR. */ |
| if (__get_user(msr, &frame->mc_gregs[TARGET_PT_MSR])) |
| return 1; |
| |
| /* If doing signal return, restore the previous little-endian mode. */ |
| if (sig) |
| env->msr = (env->msr & ~MSR_LE) | (msr & MSR_LE); |
| |
| /* Restore Altivec registers if necessary. */ |
| if (env->insns_flags & PPC_ALTIVEC) { |
| for (i = 0; i < ARRAY_SIZE(env->avr); i++) { |
| ppc_avr_t *avr = &env->avr[i]; |
| ppc_avr_t *vreg = &frame->mc_vregs.altivec[i]; |
| |
| if (__get_user(avr->u64[0], &vreg->u64[0]) || |
| __get_user(avr->u64[1], &vreg->u64[1])) { |
| return 1; |
| } |
| } |
| /* Set MSR_VEC in the saved MSR value to indicate that |
| frame->mc_vregs contains valid data. */ |
| if (__get_user(env->spr[SPR_VRSAVE], |
| (target_ulong *)(&frame->mc_vregs.altivec[32].u32[3]))) |
| return 1; |
| } |
| |
| /* Restore floating point registers. */ |
| if (env->insns_flags & PPC_FLOAT) { |
| uint64_t fpscr; |
| for (i = 0; i < ARRAY_SIZE(env->fpr); i++) { |
| if (__get_user(env->fpr[i], &frame->mc_fregs[i])) { |
| return 1; |
| } |
| } |
| if (__get_user(fpscr, &frame->mc_fregs[32])) |
| return 1; |
| env->fpscr = (uint32_t) fpscr; |
| } |
| |
| /* Save SPE registers. The kernel only saves the high half. */ |
| if (env->insns_flags & PPC_SPE) { |
| #if defined(TARGET_PPC64) |
| for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { |
| uint32_t hi; |
| |
| if (__get_user(hi, &frame->mc_vregs.spe[i])) { |
| return 1; |
| } |
| env->gpr[i] = ((uint64_t)hi << 32) | ((uint32_t) env->gpr[i]); |
| } |
| #else |
| for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { |
| if (__get_user(env->gprh[i], &frame->mc_vregs.spe[i])) { |
| return 1; |
| } |
| } |
| #endif |
| if (__get_user(env->spe_fscr, &frame->mc_vregs.spe[32])) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUState *env) |
| { |
| struct target_sigframe *frame; |
| struct target_sigcontext *sc; |
| target_ulong frame_addr, newsp; |
| int err = 0; |
| int signal; |
| |
| frame_addr = get_sigframe(ka, env, sizeof(*frame)); |
| if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) |
| goto sigsegv; |
| sc = &frame->sctx; |
| |
| signal = current_exec_domain_sig(sig); |
| |
| err |= __put_user(h2g(ka->_sa_handler), &sc->handler); |
| err |= __put_user(set->sig[0], &sc->oldmask); |
| #if defined(TARGET_PPC64) |
| err |= __put_user(set->sig[0] >> 32, &sc->_unused[3]); |
| #else |
| err |= __put_user(set->sig[1], &sc->_unused[3]); |
| #endif |
| err |= __put_user(h2g(&frame->mctx), &sc->regs); |
| err |= __put_user(sig, &sc->signal); |
| |
| /* Save user regs. */ |
| err |= save_user_regs(env, &frame->mctx, TARGET_NR_sigreturn); |
| |
| /* The kernel checks for the presence of a VDSO here. We don't |
| emulate a vdso, so use a sigreturn system call. */ |
| env->lr = (target_ulong) h2g(frame->mctx.tramp); |
| |
| /* Turn off all fp exceptions. */ |
| env->fpscr = 0; |
| |
| /* Create a stack frame for the caller of the handler. */ |
| newsp = frame_addr - SIGNAL_FRAMESIZE; |
| err |= __put_user(env->gpr[1], (target_ulong *)(uintptr_t) newsp); |
| |
| if (err) |
| goto sigsegv; |
| |
| /* Set up registers for signal handler. */ |
| env->gpr[1] = newsp; |
| env->gpr[3] = signal; |
| env->gpr[4] = (target_ulong) h2g(sc); |
| env->nip = (target_ulong) ka->_sa_handler; |
| /* Signal handlers are entered in big-endian mode. */ |
| env->msr &= ~MSR_LE; |
| |
| unlock_user_struct(frame, frame_addr, 1); |
| return; |
| |
| sigsegv: |
| unlock_user_struct(frame, frame_addr, 1); |
| if (logfile) |
| fprintf (logfile, "segfaulting from setup_frame\n"); |
| force_sig(SIGSEGV); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUState *env) |
| { |
| struct target_rt_sigframe *rt_sf; |
| struct target_mcontext *frame; |
| target_ulong rt_sf_addr, newsp = 0; |
| int i, err = 0; |
| int signal; |
| |
| rt_sf_addr = get_sigframe(ka, env, sizeof(*rt_sf)); |
| if (!lock_user_struct(VERIFY_WRITE, rt_sf, rt_sf_addr, 1)) |
| goto sigsegv; |
| |
| signal = current_exec_domain_sig(sig); |
| |
| err |= copy_siginfo_to_user(&rt_sf->info, info); |
| |
| err |= __put_user(0, &rt_sf->uc.uc_flags); |
| err |= __put_user(0, &rt_sf->uc.uc_link); |
| err |= __put_user((target_ulong)target_sigaltstack_used.ss_sp, |
| &rt_sf->uc.uc_stack.ss_sp); |
| err |= __put_user(sas_ss_flags(env->gpr[1]), |
| &rt_sf->uc.uc_stack.ss_flags); |
| err |= __put_user(target_sigaltstack_used.ss_size, |
| &rt_sf->uc.uc_stack.ss_size); |
| err |= __put_user(h2g (&rt_sf->uc.uc_mcontext), |
| &rt_sf->uc.uc_regs); |
| for(i = 0; i < TARGET_NSIG_WORDS; i++) { |
| err |= __put_user(set->sig[i], &rt_sf->uc.uc_sigmask.sig[i]); |
| } |
| |
| frame = &rt_sf->uc.uc_mcontext; |
| err |= save_user_regs(env, frame, TARGET_NR_rt_sigreturn); |
| |
| /* The kernel checks for the presence of a VDSO here. We don't |
| emulate a vdso, so use a sigreturn system call. */ |
| env->lr = (target_ulong) h2g(frame->tramp); |
| |
| /* Turn off all fp exceptions. */ |
| env->fpscr = 0; |
| |
| /* Create a stack frame for the caller of the handler. */ |
| newsp = rt_sf_addr - (SIGNAL_FRAMESIZE + 16); |
| err |= __put_user(env->gpr[1], (target_ulong *)(uintptr_t) newsp); |
| |
| if (err) |
| goto sigsegv; |
| |
| /* Set up registers for signal handler. */ |
| env->gpr[1] = newsp; |
| env->gpr[3] = (target_ulong) signal; |
| env->gpr[4] = (target_ulong) h2g(&rt_sf->info); |
| env->gpr[5] = (target_ulong) h2g(&rt_sf->uc); |
| env->gpr[6] = (target_ulong) h2g(rt_sf); |
| env->nip = (target_ulong) ka->_sa_handler; |
| /* Signal handlers are entered in big-endian mode. */ |
| env->msr &= ~MSR_LE; |
| |
| unlock_user_struct(rt_sf, rt_sf_addr, 1); |
| return; |
| |
| sigsegv: |
| unlock_user_struct(rt_sf, rt_sf_addr, 1); |
| if (logfile) |
| fprintf (logfile, "segfaulting from setup_rt_frame\n"); |
| force_sig(SIGSEGV); |
| |
| } |
| |
| long do_sigreturn(CPUState *env) |
| { |
| struct target_sigcontext *sc = NULL; |
| struct target_mcontext *sr = NULL; |
| target_ulong sr_addr, sc_addr; |
| sigset_t blocked; |
| target_sigset_t set; |
| |
| sc_addr = env->gpr[1] + SIGNAL_FRAMESIZE; |
| if (!lock_user_struct(VERIFY_READ, sc, sc_addr, 1)) |
| goto sigsegv; |
| |
| #if defined(TARGET_PPC64) |
| set.sig[0] = sc->oldmask + ((long)(sc->_unused[3]) << 32); |
| #else |
| if(__get_user(set.sig[0], &sc->oldmask) || |
| __get_user(set.sig[1], &sc->_unused[3])) |
| goto sigsegv; |
| #endif |
| target_to_host_sigset_internal(&blocked, &set); |
| sigprocmask(SIG_SETMASK, &blocked, NULL); |
| |
| if (__get_user(sr_addr, &sc->regs)) |
| goto sigsegv; |
| if (!lock_user_struct(VERIFY_READ, sr, sr_addr, 1)) |
| goto sigsegv; |
| if (restore_user_regs(env, sr, 1)) |
| goto sigsegv; |
| |
| unlock_user_struct(sr, sr_addr, 1); |
| unlock_user_struct(sc, sc_addr, 1); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| sigsegv: |
| unlock_user_struct(sr, sr_addr, 1); |
| unlock_user_struct(sc, sc_addr, 1); |
| if (logfile) |
| fprintf (logfile, "segfaulting from do_sigreturn\n"); |
| force_sig(SIGSEGV); |
| return 0; |
| } |
| |
| /* See arch/powerpc/kernel/signal_32.c. */ |
| static int do_setcontext(struct target_ucontext *ucp, CPUState *env, int sig) |
| { |
| struct target_mcontext *mcp; |
| target_ulong mcp_addr; |
| sigset_t blocked; |
| target_sigset_t set; |
| |
| if (copy_from_user(&set, h2g(ucp) + offsetof(struct target_ucontext, uc_sigmask), |
| sizeof (set))) |
| return 1; |
| |
| #if defined(TARGET_PPC64) |
| fprintf (stderr, "do_setcontext: not implemented\n"); |
| return 0; |
| #else |
| if (__get_user(mcp_addr, &ucp->uc_regs)) |
| return 1; |
| |
| if (!lock_user_struct(VERIFY_READ, mcp, mcp_addr, 1)) |
| return 1; |
| |
| target_to_host_sigset_internal(&blocked, &set); |
| sigprocmask(SIG_SETMASK, &blocked, NULL); |
| if (restore_user_regs(env, mcp, sig)) |
| goto sigsegv; |
| |
| unlock_user_struct(mcp, mcp_addr, 1); |
| return 0; |
| |
| sigsegv: |
| unlock_user_struct(mcp, mcp_addr, 1); |
| return 1; |
| #endif |
| } |
| |
| long do_rt_sigreturn(CPUState *env) |
| { |
| struct target_rt_sigframe *rt_sf = NULL; |
| target_ulong rt_sf_addr; |
| |
| rt_sf_addr = env->gpr[1] + SIGNAL_FRAMESIZE + 16; |
| if (!lock_user_struct(VERIFY_READ, rt_sf, rt_sf_addr, 1)) |
| goto sigsegv; |
| |
| if (do_setcontext(&rt_sf->uc, env, 1)) |
| goto sigsegv; |
| |
| do_sigaltstack(rt_sf_addr |
| + offsetof(struct target_rt_sigframe, uc.uc_stack), |
| 0, env->gpr[1]); |
| |
| unlock_user_struct(rt_sf, rt_sf_addr, 1); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| sigsegv: |
| unlock_user_struct(rt_sf, rt_sf_addr, 1); |
| if (logfile) |
| fprintf (logfile, "segfaulting from do_rt_sigreturn\n"); |
| force_sig(SIGSEGV); |
| return 0; |
| } |
| |
| #else |
| |
| static void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUState *env) |
| { |
| fprintf(stderr, "setup_frame: not implemented\n"); |
| } |
| |
| static void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUState *env) |
| { |
| fprintf(stderr, "setup_rt_frame: not implemented\n"); |
| } |
| |
| long do_sigreturn(CPUState *env) |
| { |
| fprintf(stderr, "do_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| long do_rt_sigreturn(CPUState *env) |
| { |
| fprintf(stderr, "do_rt_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| #endif |
| |
| void process_pending_signals(CPUState *cpu_env) |
| { |
| int sig; |
| abi_ulong handler; |
| sigset_t set, old_set; |
| target_sigset_t target_old_set; |
| struct emulated_sigtable *k; |
| struct target_sigaction *sa; |
| struct sigqueue *q; |
| TaskState *ts = cpu_env->opaque; |
| |
| if (!ts->signal_pending) |
| return; |
| |
| /* FIXME: This is not threadsafe. */ |
| k = ts->sigtab; |
| for(sig = 1; sig <= TARGET_NSIG; sig++) { |
| if (k->pending) |
| goto handle_signal; |
| k++; |
| } |
| /* if no signal is pending, just return */ |
| ts->signal_pending = 0; |
| return; |
| |
| handle_signal: |
| #ifdef DEBUG_SIGNAL |
| fprintf(stderr, "qemu: process signal %d\n", sig); |
| #endif |
| /* dequeue signal */ |
| q = k->first; |
| k->first = q->next; |
| if (!k->first) |
| k->pending = 0; |
| |
| sig = gdb_handlesig (cpu_env, sig); |
| if (!sig) { |
| sa = NULL; |
| handler = TARGET_SIG_IGN; |
| } else { |
| sa = &sigact_table[sig - 1]; |
| handler = sa->_sa_handler; |
| } |
| |
| if (handler == TARGET_SIG_DFL) { |
| /* default handler : ignore some signal. The other are job control or fatal */ |
| if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { |
| kill(getpid(),SIGSTOP); |
| } else if (sig != TARGET_SIGCHLD && |
| sig != TARGET_SIGURG && |
| sig != TARGET_SIGWINCH && |
| sig != TARGET_SIGCONT) { |
| force_sig(sig); |
| } |
| } else if (handler == TARGET_SIG_IGN) { |
| /* ignore sig */ |
| } else if (handler == TARGET_SIG_ERR) { |
| force_sig(sig); |
| } else { |
| /* compute the blocked signals during the handler execution */ |
| target_to_host_sigset(&set, &sa->sa_mask); |
| /* SA_NODEFER indicates that the current signal should not be |
| blocked during the handler */ |
| if (!(sa->sa_flags & TARGET_SA_NODEFER)) |
| sigaddset(&set, target_to_host_signal(sig)); |
| |
| /* block signals in the handler using Linux */ |
| sigprocmask(SIG_BLOCK, &set, &old_set); |
| /* save the previous blocked signal state to restore it at the |
| end of the signal execution (see do_sigreturn) */ |
| host_to_target_sigset_internal(&target_old_set, &old_set); |
| |
| /* if the CPU is in VM86 mode, we restore the 32 bit values */ |
| #if defined(TARGET_I386) && !defined(TARGET_X86_64) |
| { |
| CPUX86State *env = cpu_env; |
| if (env->eflags & VM_MASK) |
| save_v86_state(env); |
| } |
| #endif |
| /* prepare the stack frame of the virtual CPU */ |
| if (sa->sa_flags & TARGET_SA_SIGINFO) |
| setup_rt_frame(sig, sa, &q->info, &target_old_set, cpu_env); |
| else |
| setup_frame(sig, sa, &target_old_set, cpu_env); |
| if (sa->sa_flags & TARGET_SA_RESETHAND) |
| sa->_sa_handler = TARGET_SIG_DFL; |
| } |
| if (q != &k->info) |
| free_sigqueue(cpu_env, q); |
| } |