blob: 42e019dc057ceaf60735c09e2e44b456152a1773 [file] [log] [blame]
/*
* QEMU model of the Xilinx Zynq SPI controller
*
* Copyright (c) 2012 Peter A. G. Crosthwaite
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "sysbus.h"
#include "sysemu/sysemu.h"
#include "ptimer.h"
#include "qemu/log.h"
#include "fifo.h"
#include "ssi.h"
#include "qemu/bitops.h"
#ifdef XILINX_SPIPS_ERR_DEBUG
#define DB_PRINT(...) do { \
fprintf(stderr, ": %s: ", __func__); \
fprintf(stderr, ## __VA_ARGS__); \
} while (0);
#else
#define DB_PRINT(...)
#endif
/* config register */
#define R_CONFIG (0x00 / 4)
#define IFMODE (1 << 31)
#define ENDIAN (1 << 26)
#define MODEFAIL_GEN_EN (1 << 17)
#define MAN_START_COM (1 << 16)
#define MAN_START_EN (1 << 15)
#define MANUAL_CS (1 << 14)
#define CS (0xF << 10)
#define CS_SHIFT (10)
#define PERI_SEL (1 << 9)
#define REF_CLK (1 << 8)
#define FIFO_WIDTH (3 << 6)
#define BAUD_RATE_DIV (7 << 3)
#define CLK_PH (1 << 2)
#define CLK_POL (1 << 1)
#define MODE_SEL (1 << 0)
/* interrupt mechanism */
#define R_INTR_STATUS (0x04 / 4)
#define R_INTR_EN (0x08 / 4)
#define R_INTR_DIS (0x0C / 4)
#define R_INTR_MASK (0x10 / 4)
#define IXR_TX_FIFO_UNDERFLOW (1 << 6)
#define IXR_RX_FIFO_FULL (1 << 5)
#define IXR_RX_FIFO_NOT_EMPTY (1 << 4)
#define IXR_TX_FIFO_FULL (1 << 3)
#define IXR_TX_FIFO_NOT_FULL (1 << 2)
#define IXR_TX_FIFO_MODE_FAIL (1 << 1)
#define IXR_RX_FIFO_OVERFLOW (1 << 0)
#define IXR_ALL ((IXR_TX_FIFO_UNDERFLOW<<1)-1)
#define R_EN (0x14 / 4)
#define R_DELAY (0x18 / 4)
#define R_TX_DATA (0x1C / 4)
#define R_RX_DATA (0x20 / 4)
#define R_SLAVE_IDLE_COUNT (0x24 / 4)
#define R_TX_THRES (0x28 / 4)
#define R_RX_THRES (0x2C / 4)
#define R_TXD1 (0x80 / 4)
#define R_TXD2 (0x84 / 4)
#define R_TXD3 (0x88 / 4)
#define R_LQSPI_CFG (0xa0 / 4)
#define R_LQSPI_CFG_RESET 0x03A002EB
#define LQSPI_CFG_LQ_MODE (1 << 31)
#define LQSPI_CFG_TWO_MEM (1 << 30)
#define LQSPI_CFG_SEP_BUS (1 << 30)
#define LQSPI_CFG_U_PAGE (1 << 28)
#define LQSPI_CFG_MODE_EN (1 << 25)
#define LQSPI_CFG_MODE_WIDTH 8
#define LQSPI_CFG_MODE_SHIFT 16
#define LQSPI_CFG_DUMMY_WIDTH 3
#define LQSPI_CFG_DUMMY_SHIFT 8
#define LQSPI_CFG_INST_CODE 0xFF
#define R_LQSPI_STS (0xA4 / 4)
#define LQSPI_STS_WR_RECVD (1 << 1)
#define R_MOD_ID (0xFC / 4)
#define R_MAX (R_MOD_ID+1)
/* size of TXRX FIFOs */
#define RXFF_A 32
#define TXFF_A 32
/* 16MB per linear region */
#define LQSPI_ADDRESS_BITS 24
/* Bite off 4k chunks at a time */
#define LQSPI_CACHE_SIZE 1024
#define SNOOP_CHECKING 0xFF
#define SNOOP_NONE 0xFE
#define SNOOP_STRIPING 0
typedef struct {
SysBusDevice busdev;
MemoryRegion iomem;
MemoryRegion mmlqspi;
qemu_irq irq;
int irqline;
uint8_t num_cs;
uint8_t num_busses;
uint8_t snoop_state;
qemu_irq *cs_lines;
SSIBus **spi;
Fifo8 rx_fifo;
Fifo8 tx_fifo;
uint8_t num_txrx_bytes;
uint32_t regs[R_MAX];
uint32_t lqspi_buf[LQSPI_CACHE_SIZE];
hwaddr lqspi_cached_addr;
} XilinxSPIPS;
static inline int num_effective_busses(XilinxSPIPS *s)
{
return (s->regs[R_LQSPI_STS] & LQSPI_CFG_SEP_BUS &&
s->regs[R_LQSPI_STS] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1;
}
static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
{
int i, j;
bool found = false;
int field = s->regs[R_CONFIG] >> CS_SHIFT;
for (i = 0; i < s->num_cs; i++) {
for (j = 0; j < num_effective_busses(s); j++) {
int upage = !!(s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE);
int cs_to_set = (j * s->num_cs + i + upage) %
(s->num_cs * s->num_busses);
if (~field & (1 << i) && !found) {
DB_PRINT("selecting slave %d\n", i);
qemu_set_irq(s->cs_lines[cs_to_set], 0);
} else {
qemu_set_irq(s->cs_lines[cs_to_set], 1);
}
}
if (~field & (1 << i)) {
found = true;
}
}
if (!found) {
s->snoop_state = SNOOP_CHECKING;
}
}
static void xilinx_spips_update_ixr(XilinxSPIPS *s)
{
/* These are set/cleared as they occur */
s->regs[R_INTR_STATUS] &= (IXR_TX_FIFO_UNDERFLOW | IXR_RX_FIFO_OVERFLOW |
IXR_TX_FIFO_MODE_FAIL);
/* these are pure functions of fifo state, set them here */
s->regs[R_INTR_STATUS] |=
(fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) |
(s->rx_fifo.num >= s->regs[R_RX_THRES] ? IXR_RX_FIFO_NOT_EMPTY : 0) |
(fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) |
(s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0);
/* drive external interrupt pin */
int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] &
IXR_ALL);
if (new_irqline != s->irqline) {
s->irqline = new_irqline;
qemu_set_irq(s->irq, s->irqline);
}
}
static void xilinx_spips_reset(DeviceState *d)
{
XilinxSPIPS *s = DO_UPCAST(XilinxSPIPS, busdev.qdev, d);
int i;
for (i = 0; i < R_MAX; i++) {
s->regs[i] = 0;
}
fifo8_reset(&s->rx_fifo);
fifo8_reset(&s->rx_fifo);
/* non zero resets */
s->regs[R_CONFIG] |= MODEFAIL_GEN_EN;
s->regs[R_SLAVE_IDLE_COUNT] = 0xFF;
s->regs[R_TX_THRES] = 1;
s->regs[R_RX_THRES] = 1;
/* FIXME: move magic number definition somewhere sensible */
s->regs[R_MOD_ID] = 0x01090106;
s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET;
s->snoop_state = SNOOP_CHECKING;
xilinx_spips_update_ixr(s);
xilinx_spips_update_cs_lines(s);
}
static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
{
for (;;) {
int i;
uint8_t rx;
uint8_t tx = 0;
for (i = 0; i < num_effective_busses(s); ++i) {
if (!i || s->snoop_state == SNOOP_STRIPING) {
if (fifo8_is_empty(&s->tx_fifo)) {
s->regs[R_INTR_STATUS] |= IXR_TX_FIFO_UNDERFLOW;
xilinx_spips_update_ixr(s);
return;
} else {
tx = fifo8_pop(&s->tx_fifo);
}
}
rx = ssi_transfer(s->spi[i], (uint32_t)tx);
DB_PRINT("tx = %02x rx = %02x\n", tx, rx);
if (!i || s->snoop_state == SNOOP_STRIPING) {
if (fifo8_is_full(&s->rx_fifo)) {
s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW;
DB_PRINT("rx FIFO overflow");
} else {
fifo8_push(&s->rx_fifo, (uint8_t)rx);
}
}
}
switch (s->snoop_state) {
case (SNOOP_CHECKING):
switch (tx) { /* new instruction code */
case 0x0b: /* dual/quad output read DOR/QOR */
case 0x6b:
s->snoop_state = 4;
break;
/* FIXME: these vary between vendor - set to spansion */
case 0xbb: /* high performance dual read DIOR */
s->snoop_state = 4;
break;
case 0xeb: /* high performance quad read QIOR */
s->snoop_state = 6;
break;
default:
s->snoop_state = SNOOP_NONE;
}
break;
case (SNOOP_STRIPING):
case (SNOOP_NONE):
break;
default:
s->snoop_state--;
}
}
}
static inline void rx_data_bytes(XilinxSPIPS *s, uint32_t *value, int max)
{
int i;
*value = 0;
for (i = 0; i < max && !fifo8_is_empty(&s->rx_fifo); ++i) {
uint32_t next = fifo8_pop(&s->rx_fifo) & 0xFF;
*value |= next << 8 * (s->regs[R_CONFIG] & ENDIAN ? 3-i : i);
}
}
static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
unsigned size)
{
XilinxSPIPS *s = opaque;
uint32_t mask = ~0;
uint32_t ret;
addr >>= 2;
switch (addr) {
case R_CONFIG:
mask = 0x0002FFFF;
break;
case R_INTR_STATUS:
case R_INTR_MASK:
mask = IXR_ALL;
break;
case R_EN:
mask = 0x1;
break;
case R_SLAVE_IDLE_COUNT:
mask = 0xFF;
break;
case R_MOD_ID:
mask = 0x01FFFFFF;
break;
case R_INTR_EN:
case R_INTR_DIS:
case R_TX_DATA:
mask = 0;
break;
case R_RX_DATA:
rx_data_bytes(s, &ret, s->num_txrx_bytes);
DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
xilinx_spips_update_ixr(s);
return ret;
}
DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, s->regs[addr] & mask);
return s->regs[addr] & mask;
}
static inline void tx_data_bytes(XilinxSPIPS *s, uint32_t value, int num)
{
int i;
for (i = 0; i < num && !fifo8_is_full(&s->tx_fifo); ++i) {
if (s->regs[R_CONFIG] & ENDIAN) {
fifo8_push(&s->tx_fifo, (uint8_t)(value >> 24));
value <<= 8;
} else {
fifo8_push(&s->tx_fifo, (uint8_t)value);
value >>= 8;
}
}
}
static void xilinx_spips_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
int mask = ~0;
int man_start_com = 0;
XilinxSPIPS *s = opaque;
DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value);
addr >>= 2;
switch (addr) {
case R_CONFIG:
mask = 0x0002FFFF;
if (value & MAN_START_COM) {
man_start_com = 1;
}
break;
case R_INTR_STATUS:
mask = IXR_ALL;
s->regs[R_INTR_STATUS] &= ~(mask & value);
goto no_reg_update;
case R_INTR_DIS:
mask = IXR_ALL;
s->regs[R_INTR_MASK] &= ~(mask & value);
goto no_reg_update;
case R_INTR_EN:
mask = IXR_ALL;
s->regs[R_INTR_MASK] |= mask & value;
goto no_reg_update;
case R_EN:
mask = 0x1;
break;
case R_SLAVE_IDLE_COUNT:
mask = 0xFF;
break;
case R_RX_DATA:
case R_INTR_MASK:
case R_MOD_ID:
mask = 0;
break;
case R_TX_DATA:
tx_data_bytes(s, (uint32_t)value, s->num_txrx_bytes);
goto no_reg_update;
case R_TXD1:
tx_data_bytes(s, (uint32_t)value, 1);
goto no_reg_update;
case R_TXD2:
tx_data_bytes(s, (uint32_t)value, 2);
goto no_reg_update;
case R_TXD3:
tx_data_bytes(s, (uint32_t)value, 3);
goto no_reg_update;
}
s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask);
no_reg_update:
if (man_start_com) {
xilinx_spips_flush_txfifo(s);
}
xilinx_spips_update_ixr(s);
xilinx_spips_update_cs_lines(s);
}
static const MemoryRegionOps spips_ops = {
.read = xilinx_spips_read,
.write = xilinx_spips_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
#define LQSPI_CACHE_SIZE 1024
static uint64_t
lqspi_read(void *opaque, hwaddr addr, unsigned int size)
{
int i;
XilinxSPIPS *s = opaque;
if (addr >= s->lqspi_cached_addr &&
addr <= s->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
return s->lqspi_buf[(addr - s->lqspi_cached_addr) >> 2];
} else {
int flash_addr = (addr / num_effective_busses(s));
int slave = flash_addr >> LQSPI_ADDRESS_BITS;
int cache_entry = 0;
DB_PRINT("config reg status: %08x\n", s->regs[R_LQSPI_CFG]);
fifo8_reset(&s->tx_fifo);
fifo8_reset(&s->rx_fifo);
s->regs[R_CONFIG] &= ~CS;
s->regs[R_CONFIG] |= (~(1 << slave) << CS_SHIFT) & CS;
xilinx_spips_update_cs_lines(s);
/* instruction */
DB_PRINT("pushing read instruction: %02x\n",
(uint8_t)(s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE));
fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE);
/* read address */
DB_PRINT("pushing read address %06x\n", flash_addr);
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16));
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8));
fifo8_push(&s->tx_fifo, (uint8_t)flash_addr);
/* mode bits */
if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) {
fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG],
LQSPI_CFG_MODE_SHIFT,
LQSPI_CFG_MODE_WIDTH));
}
/* dummy bytes */
for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT,
LQSPI_CFG_DUMMY_WIDTH)); ++i) {
DB_PRINT("pushing dummy byte\n");
fifo8_push(&s->tx_fifo, 0);
}
xilinx_spips_flush_txfifo(s);
fifo8_reset(&s->rx_fifo);
DB_PRINT("starting QSPI data read\n");
for (i = 0; i < LQSPI_CACHE_SIZE / 4; ++i) {
tx_data_bytes(s, 0, 4);
xilinx_spips_flush_txfifo(s);
rx_data_bytes(s, &s->lqspi_buf[cache_entry], 4);
cache_entry++;
}
s->regs[R_CONFIG] |= CS;
xilinx_spips_update_cs_lines(s);
s->lqspi_cached_addr = addr;
return lqspi_read(opaque, addr, size);
}
}
static const MemoryRegionOps lqspi_ops = {
.read = lqspi_read,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4
}
};
static int xilinx_spips_init(SysBusDevice *dev)
{
XilinxSPIPS *s = FROM_SYSBUS(typeof(*s), dev);
int i;
DB_PRINT("inited device model\n");
s->spi = g_new(SSIBus *, s->num_busses);
for (i = 0; i < s->num_busses; ++i) {
char bus_name[16];
snprintf(bus_name, 16, "spi%d", i);
s->spi[i] = ssi_create_bus(&dev->qdev, bus_name);
}
s->cs_lines = g_new(qemu_irq, s->num_cs * s->num_busses);
ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[0]);
ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[1]);
sysbus_init_irq(dev, &s->irq);
for (i = 0; i < s->num_cs * s->num_busses; ++i) {
sysbus_init_irq(dev, &s->cs_lines[i]);
}
memory_region_init_io(&s->iomem, &spips_ops, s, "spi", R_MAX*4);
sysbus_init_mmio(dev, &s->iomem);
memory_region_init_io(&s->mmlqspi, &lqspi_ops, s, "lqspi",
(1 << LQSPI_ADDRESS_BITS) * 2);
sysbus_init_mmio(dev, &s->mmlqspi);
s->irqline = -1;
s->lqspi_cached_addr = ~0ULL;
fifo8_create(&s->rx_fifo, RXFF_A);
fifo8_create(&s->tx_fifo, TXFF_A);
return 0;
}
static int xilinx_spips_post_load(void *opaque, int version_id)
{
xilinx_spips_update_ixr((XilinxSPIPS *)opaque);
xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque);
return 0;
}
static const VMStateDescription vmstate_xilinx_spips = {
.name = "xilinx_spips",
.version_id = 2,
.minimum_version_id = 2,
.minimum_version_id_old = 2,
.post_load = xilinx_spips_post_load,
.fields = (VMStateField[]) {
VMSTATE_FIFO8(tx_fifo, XilinxSPIPS),
VMSTATE_FIFO8(rx_fifo, XilinxSPIPS),
VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, R_MAX),
VMSTATE_UINT8(snoop_state, XilinxSPIPS),
VMSTATE_END_OF_LIST()
}
};
static Property xilinx_spips_properties[] = {
DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1),
DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4),
DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1),
DEFINE_PROP_END_OF_LIST(),
};
static void xilinx_spips_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
sdc->init = xilinx_spips_init;
dc->reset = xilinx_spips_reset;
dc->props = xilinx_spips_properties;
dc->vmsd = &vmstate_xilinx_spips;
}
static const TypeInfo xilinx_spips_info = {
.name = "xilinx,spips",
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XilinxSPIPS),
.class_init = xilinx_spips_class_init,
};
static void xilinx_spips_register_types(void)
{
type_register_static(&xilinx_spips_info);
}
type_init(xilinx_spips_register_types)