| /* |
| * Multifd common code |
| * |
| * Copyright (c) 2019-2020 Red Hat Inc |
| * |
| * Authors: |
| * Juan Quintela <quintela@redhat.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/cutils.h" |
| #include "qemu/rcu.h" |
| #include "exec/target_page.h" |
| #include "sysemu/sysemu.h" |
| #include "exec/ramblock.h" |
| #include "qemu/error-report.h" |
| #include "qapi/error.h" |
| #include "file.h" |
| #include "migration.h" |
| #include "migration-stats.h" |
| #include "socket.h" |
| #include "tls.h" |
| #include "qemu-file.h" |
| #include "trace.h" |
| #include "multifd.h" |
| #include "threadinfo.h" |
| #include "options.h" |
| #include "qemu/yank.h" |
| #include "io/channel-file.h" |
| #include "io/channel-socket.h" |
| #include "yank_functions.h" |
| |
| /* Multiple fd's */ |
| |
| #define MULTIFD_MAGIC 0x11223344U |
| #define MULTIFD_VERSION 1 |
| |
| typedef struct { |
| uint32_t magic; |
| uint32_t version; |
| unsigned char uuid[16]; /* QemuUUID */ |
| uint8_t id; |
| uint8_t unused1[7]; /* Reserved for future use */ |
| uint64_t unused2[4]; /* Reserved for future use */ |
| } __attribute__((packed)) MultiFDInit_t; |
| |
| struct { |
| MultiFDSendParams *params; |
| /* |
| * Global number of generated multifd packets. |
| * |
| * Note that we used 'uintptr_t' because it'll naturally support atomic |
| * operations on both 32bit / 64 bits hosts. It means on 32bit systems |
| * multifd will overflow the packet_num easier, but that should be |
| * fine. |
| * |
| * Another option is to use QEMU's Stat64 then it'll be 64 bits on all |
| * hosts, however so far it does not support atomic fetch_add() yet. |
| * Make it easy for now. |
| */ |
| uintptr_t packet_num; |
| /* |
| * Synchronization point past which no more channels will be |
| * created. |
| */ |
| QemuSemaphore channels_created; |
| /* send channels ready */ |
| QemuSemaphore channels_ready; |
| /* |
| * Have we already run terminate threads. There is a race when it |
| * happens that we got one error while we are exiting. |
| * We will use atomic operations. Only valid values are 0 and 1. |
| */ |
| int exiting; |
| /* multifd ops */ |
| const MultiFDMethods *ops; |
| } *multifd_send_state; |
| |
| struct { |
| MultiFDRecvParams *params; |
| MultiFDRecvData *data; |
| /* number of created threads */ |
| int count; |
| /* |
| * This is always posted by the recv threads, the migration thread |
| * uses it to wait for recv threads to finish assigned tasks. |
| */ |
| QemuSemaphore sem_sync; |
| /* global number of generated multifd packets */ |
| uint64_t packet_num; |
| int exiting; |
| /* multifd ops */ |
| const MultiFDMethods *ops; |
| } *multifd_recv_state; |
| |
| MultiFDSendData *multifd_send_data_alloc(void) |
| { |
| size_t max_payload_size, size_minus_payload; |
| |
| /* |
| * MultiFDPages_t has a flexible array at the end, account for it |
| * when allocating MultiFDSendData. Use max() in case other types |
| * added to the union in the future are larger than |
| * (MultiFDPages_t + flex array). |
| */ |
| max_payload_size = MAX(multifd_ram_payload_size(), sizeof(MultiFDPayload)); |
| |
| /* |
| * Account for any holes the compiler might insert. We can't pack |
| * the structure because that misaligns the members and triggers |
| * Waddress-of-packed-member. |
| */ |
| size_minus_payload = sizeof(MultiFDSendData) - sizeof(MultiFDPayload); |
| |
| return g_malloc0(size_minus_payload + max_payload_size); |
| } |
| |
| static bool multifd_use_packets(void) |
| { |
| return !migrate_mapped_ram(); |
| } |
| |
| void multifd_send_channel_created(void) |
| { |
| qemu_sem_post(&multifd_send_state->channels_created); |
| } |
| |
| static const MultiFDMethods *multifd_ops[MULTIFD_COMPRESSION__MAX] = {}; |
| |
| void multifd_register_ops(int method, const MultiFDMethods *ops) |
| { |
| assert(0 <= method && method < MULTIFD_COMPRESSION__MAX); |
| assert(!multifd_ops[method]); |
| multifd_ops[method] = ops; |
| } |
| |
| static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) |
| { |
| MultiFDInit_t msg = {}; |
| size_t size = sizeof(msg); |
| int ret; |
| |
| msg.magic = cpu_to_be32(MULTIFD_MAGIC); |
| msg.version = cpu_to_be32(MULTIFD_VERSION); |
| msg.id = p->id; |
| memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); |
| |
| ret = qio_channel_write_all(p->c, (char *)&msg, size, errp); |
| if (ret != 0) { |
| return -1; |
| } |
| stat64_add(&mig_stats.multifd_bytes, size); |
| return 0; |
| } |
| |
| static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) |
| { |
| MultiFDInit_t msg; |
| int ret; |
| |
| ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); |
| if (ret != 0) { |
| return -1; |
| } |
| |
| msg.magic = be32_to_cpu(msg.magic); |
| msg.version = be32_to_cpu(msg.version); |
| |
| if (msg.magic != MULTIFD_MAGIC) { |
| error_setg(errp, "multifd: received packet magic %x " |
| "expected %x", msg.magic, MULTIFD_MAGIC); |
| return -1; |
| } |
| |
| if (msg.version != MULTIFD_VERSION) { |
| error_setg(errp, "multifd: received packet version %u " |
| "expected %u", msg.version, MULTIFD_VERSION); |
| return -1; |
| } |
| |
| if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { |
| char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); |
| char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); |
| |
| error_setg(errp, "multifd: received uuid '%s' and expected " |
| "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); |
| g_free(uuid); |
| g_free(msg_uuid); |
| return -1; |
| } |
| |
| if (msg.id > migrate_multifd_channels()) { |
| error_setg(errp, "multifd: received channel id %u is greater than " |
| "number of channels %u", msg.id, migrate_multifd_channels()); |
| return -1; |
| } |
| |
| return msg.id; |
| } |
| |
| void multifd_send_fill_packet(MultiFDSendParams *p) |
| { |
| MultiFDPacket_t *packet = p->packet; |
| uint64_t packet_num; |
| bool sync_packet = p->flags & MULTIFD_FLAG_SYNC; |
| |
| memset(packet, 0, p->packet_len); |
| |
| packet->magic = cpu_to_be32(MULTIFD_MAGIC); |
| packet->version = cpu_to_be32(MULTIFD_VERSION); |
| |
| packet->flags = cpu_to_be32(p->flags); |
| packet->next_packet_size = cpu_to_be32(p->next_packet_size); |
| |
| packet_num = qatomic_fetch_inc(&multifd_send_state->packet_num); |
| packet->packet_num = cpu_to_be64(packet_num); |
| |
| p->packets_sent++; |
| |
| if (!sync_packet) { |
| multifd_ram_fill_packet(p); |
| } |
| |
| trace_multifd_send_fill(p->id, packet_num, |
| p->flags, p->next_packet_size); |
| } |
| |
| static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) |
| { |
| const MultiFDPacket_t *packet = p->packet; |
| uint32_t magic = be32_to_cpu(packet->magic); |
| uint32_t version = be32_to_cpu(packet->version); |
| int ret = 0; |
| |
| if (magic != MULTIFD_MAGIC) { |
| error_setg(errp, "multifd: received packet magic %x, expected %x", |
| magic, MULTIFD_MAGIC); |
| return -1; |
| } |
| |
| if (version != MULTIFD_VERSION) { |
| error_setg(errp, "multifd: received packet version %u, expected %u", |
| version, MULTIFD_VERSION); |
| return -1; |
| } |
| |
| p->flags = be32_to_cpu(packet->flags); |
| p->next_packet_size = be32_to_cpu(packet->next_packet_size); |
| p->packet_num = be64_to_cpu(packet->packet_num); |
| p->packets_recved++; |
| |
| if (!(p->flags & MULTIFD_FLAG_SYNC)) { |
| ret = multifd_ram_unfill_packet(p, errp); |
| } |
| |
| trace_multifd_recv_unfill(p->id, p->packet_num, p->flags, |
| p->next_packet_size); |
| |
| return ret; |
| } |
| |
| static bool multifd_send_should_exit(void) |
| { |
| return qatomic_read(&multifd_send_state->exiting); |
| } |
| |
| static bool multifd_recv_should_exit(void) |
| { |
| return qatomic_read(&multifd_recv_state->exiting); |
| } |
| |
| /* |
| * The migration thread can wait on either of the two semaphores. This |
| * function can be used to kick the main thread out of waiting on either of |
| * them. Should mostly only be called when something wrong happened with |
| * the current multifd send thread. |
| */ |
| static void multifd_send_kick_main(MultiFDSendParams *p) |
| { |
| qemu_sem_post(&p->sem_sync); |
| qemu_sem_post(&multifd_send_state->channels_ready); |
| } |
| |
| /* |
| * multifd_send() works by exchanging the MultiFDSendData object |
| * provided by the caller with an unused MultiFDSendData object from |
| * the next channel that is found to be idle. |
| * |
| * The channel owns the data until it finishes transmitting and the |
| * caller owns the empty object until it fills it with data and calls |
| * this function again. No locking necessary. |
| * |
| * Switching is safe because both the migration thread and the channel |
| * thread have barriers in place to serialize access. |
| * |
| * Returns true if succeed, false otherwise. |
| */ |
| bool multifd_send(MultiFDSendData **send_data) |
| { |
| int i; |
| static int next_channel; |
| MultiFDSendParams *p = NULL; /* make happy gcc */ |
| MultiFDSendData *tmp; |
| |
| if (multifd_send_should_exit()) { |
| return false; |
| } |
| |
| /* We wait here, until at least one channel is ready */ |
| qemu_sem_wait(&multifd_send_state->channels_ready); |
| |
| /* |
| * next_channel can remain from a previous migration that was |
| * using more channels, so ensure it doesn't overflow if the |
| * limit is lower now. |
| */ |
| next_channel %= migrate_multifd_channels(); |
| for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { |
| if (multifd_send_should_exit()) { |
| return false; |
| } |
| p = &multifd_send_state->params[i]; |
| /* |
| * Lockless read to p->pending_job is safe, because only multifd |
| * sender thread can clear it. |
| */ |
| if (qatomic_read(&p->pending_job) == false) { |
| next_channel = (i + 1) % migrate_multifd_channels(); |
| break; |
| } |
| } |
| |
| /* |
| * Make sure we read p->pending_job before all the rest. Pairs with |
| * qatomic_store_release() in multifd_send_thread(). |
| */ |
| smp_mb_acquire(); |
| |
| assert(multifd_payload_empty(p->data)); |
| |
| /* |
| * Swap the pointers. The channel gets the client data for |
| * transferring and the client gets back an unused data slot. |
| */ |
| tmp = *send_data; |
| *send_data = p->data; |
| p->data = tmp; |
| |
| /* |
| * Making sure p->data is setup before marking pending_job=true. Pairs |
| * with the qatomic_load_acquire() in multifd_send_thread(). |
| */ |
| qatomic_store_release(&p->pending_job, true); |
| qemu_sem_post(&p->sem); |
| |
| return true; |
| } |
| |
| /* Multifd send side hit an error; remember it and prepare to quit */ |
| static void multifd_send_set_error(Error *err) |
| { |
| /* |
| * We don't want to exit each threads twice. Depending on where |
| * we get the error, or if there are two independent errors in two |
| * threads at the same time, we can end calling this function |
| * twice. |
| */ |
| if (qatomic_xchg(&multifd_send_state->exiting, 1)) { |
| return; |
| } |
| |
| if (err) { |
| MigrationState *s = migrate_get_current(); |
| migrate_set_error(s, err); |
| if (s->state == MIGRATION_STATUS_SETUP || |
| s->state == MIGRATION_STATUS_PRE_SWITCHOVER || |
| s->state == MIGRATION_STATUS_DEVICE || |
| s->state == MIGRATION_STATUS_ACTIVE) { |
| migrate_set_state(&s->state, s->state, |
| MIGRATION_STATUS_FAILED); |
| } |
| } |
| } |
| |
| static void multifd_send_terminate_threads(void) |
| { |
| int i; |
| |
| trace_multifd_send_terminate_threads(); |
| |
| /* |
| * Tell everyone we're quitting. No xchg() needed here; we simply |
| * always set it. |
| */ |
| qatomic_set(&multifd_send_state->exiting, 1); |
| |
| /* |
| * Firstly, kick all threads out; no matter whether they are just idle, |
| * or blocked in an IO system call. |
| */ |
| for (i = 0; i < migrate_multifd_channels(); i++) { |
| MultiFDSendParams *p = &multifd_send_state->params[i]; |
| |
| qemu_sem_post(&p->sem); |
| if (p->c) { |
| qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); |
| } |
| } |
| |
| /* |
| * Finally recycle all the threads. |
| */ |
| for (i = 0; i < migrate_multifd_channels(); i++) { |
| MultiFDSendParams *p = &multifd_send_state->params[i]; |
| |
| if (p->tls_thread_created) { |
| qemu_thread_join(&p->tls_thread); |
| } |
| |
| if (p->thread_created) { |
| qemu_thread_join(&p->thread); |
| } |
| } |
| } |
| |
| static bool multifd_send_cleanup_channel(MultiFDSendParams *p, Error **errp) |
| { |
| if (p->c) { |
| migration_ioc_unregister_yank(p->c); |
| /* |
| * The object_unref() cannot guarantee the fd will always be |
| * released because finalize() of the iochannel is only |
| * triggered on the last reference and it's not guaranteed |
| * that we always hold the last refcount when reaching here. |
| * |
| * Closing the fd explicitly has the benefit that if there is any |
| * registered I/O handler callbacks on such fd, that will get a |
| * POLLNVAL event and will further trigger the cleanup to finally |
| * release the IOC. |
| * |
| * FIXME: It should logically be guaranteed that all multifd |
| * channels have no I/O handler callback registered when reaching |
| * here, because migration thread will wait for all multifd channel |
| * establishments to complete during setup. Since |
| * migrate_fd_cleanup() will be scheduled in main thread too, all |
| * previous callbacks should guarantee to be completed when |
| * reaching here. See multifd_send_state.channels_created and its |
| * usage. In the future, we could replace this with an assert |
| * making sure we're the last reference, or simply drop it if above |
| * is more clear to be justified. |
| */ |
| qio_channel_close(p->c, &error_abort); |
| object_unref(OBJECT(p->c)); |
| p->c = NULL; |
| } |
| qemu_sem_destroy(&p->sem); |
| qemu_sem_destroy(&p->sem_sync); |
| g_free(p->name); |
| p->name = NULL; |
| g_free(p->data); |
| p->data = NULL; |
| p->packet_len = 0; |
| g_free(p->packet); |
| p->packet = NULL; |
| multifd_send_state->ops->send_cleanup(p, errp); |
| assert(!p->iov); |
| |
| return *errp == NULL; |
| } |
| |
| static void multifd_send_cleanup_state(void) |
| { |
| file_cleanup_outgoing_migration(); |
| socket_cleanup_outgoing_migration(); |
| qemu_sem_destroy(&multifd_send_state->channels_created); |
| qemu_sem_destroy(&multifd_send_state->channels_ready); |
| g_free(multifd_send_state->params); |
| multifd_send_state->params = NULL; |
| g_free(multifd_send_state); |
| multifd_send_state = NULL; |
| } |
| |
| void multifd_send_shutdown(void) |
| { |
| int i; |
| |
| if (!migrate_multifd()) { |
| return; |
| } |
| |
| multifd_send_terminate_threads(); |
| |
| for (i = 0; i < migrate_multifd_channels(); i++) { |
| MultiFDSendParams *p = &multifd_send_state->params[i]; |
| Error *local_err = NULL; |
| |
| if (!multifd_send_cleanup_channel(p, &local_err)) { |
| migrate_set_error(migrate_get_current(), local_err); |
| error_free(local_err); |
| } |
| } |
| |
| multifd_send_cleanup_state(); |
| } |
| |
| static int multifd_zero_copy_flush(QIOChannel *c) |
| { |
| int ret; |
| Error *err = NULL; |
| |
| ret = qio_channel_flush(c, &err); |
| if (ret < 0) { |
| error_report_err(err); |
| return -1; |
| } |
| if (ret == 1) { |
| stat64_add(&mig_stats.dirty_sync_missed_zero_copy, 1); |
| } |
| |
| return ret; |
| } |
| |
| int multifd_send_sync_main(void) |
| { |
| int i; |
| bool flush_zero_copy; |
| |
| flush_zero_copy = migrate_zero_copy_send(); |
| |
| for (i = 0; i < migrate_multifd_channels(); i++) { |
| MultiFDSendParams *p = &multifd_send_state->params[i]; |
| |
| if (multifd_send_should_exit()) { |
| return -1; |
| } |
| |
| trace_multifd_send_sync_main_signal(p->id); |
| |
| /* |
| * We should be the only user so far, so not possible to be set by |
| * others concurrently. |
| */ |
| assert(qatomic_read(&p->pending_sync) == false); |
| qatomic_set(&p->pending_sync, true); |
| qemu_sem_post(&p->sem); |
| } |
| for (i = 0; i < migrate_multifd_channels(); i++) { |
| MultiFDSendParams *p = &multifd_send_state->params[i]; |
| |
| if (multifd_send_should_exit()) { |
| return -1; |
| } |
| |
| qemu_sem_wait(&multifd_send_state->channels_ready); |
| trace_multifd_send_sync_main_wait(p->id); |
| qemu_sem_wait(&p->sem_sync); |
| |
| if (flush_zero_copy && p->c && (multifd_zero_copy_flush(p->c) < 0)) { |
| return -1; |
| } |
| } |
| trace_multifd_send_sync_main(multifd_send_state->packet_num); |
| |
| return 0; |
| } |
| |
| static void *multifd_send_thread(void *opaque) |
| { |
| MultiFDSendParams *p = opaque; |
| MigrationThread *thread = NULL; |
| Error *local_err = NULL; |
| int ret = 0; |
| bool use_packets = multifd_use_packets(); |
| |
| thread = migration_threads_add(p->name, qemu_get_thread_id()); |
| |
| trace_multifd_send_thread_start(p->id); |
| rcu_register_thread(); |
| |
| if (use_packets) { |
| if (multifd_send_initial_packet(p, &local_err) < 0) { |
| ret = -1; |
| goto out; |
| } |
| } |
| |
| while (true) { |
| qemu_sem_post(&multifd_send_state->channels_ready); |
| qemu_sem_wait(&p->sem); |
| |
| if (multifd_send_should_exit()) { |
| break; |
| } |
| |
| /* |
| * Read pending_job flag before p->data. Pairs with the |
| * qatomic_store_release() in multifd_send(). |
| */ |
| if (qatomic_load_acquire(&p->pending_job)) { |
| p->flags = 0; |
| p->iovs_num = 0; |
| assert(!multifd_payload_empty(p->data)); |
| |
| ret = multifd_send_state->ops->send_prepare(p, &local_err); |
| if (ret != 0) { |
| break; |
| } |
| |
| if (migrate_mapped_ram()) { |
| ret = file_write_ramblock_iov(p->c, p->iov, p->iovs_num, |
| &p->data->u.ram, &local_err); |
| } else { |
| ret = qio_channel_writev_full_all(p->c, p->iov, p->iovs_num, |
| NULL, 0, p->write_flags, |
| &local_err); |
| } |
| |
| if (ret != 0) { |
| break; |
| } |
| |
| stat64_add(&mig_stats.multifd_bytes, |
| p->next_packet_size + p->packet_len); |
| |
| p->next_packet_size = 0; |
| multifd_set_payload_type(p->data, MULTIFD_PAYLOAD_NONE); |
| |
| /* |
| * Making sure p->data is published before saying "we're |
| * free". Pairs with the smp_mb_acquire() in |
| * multifd_send(). |
| */ |
| qatomic_store_release(&p->pending_job, false); |
| } else { |
| /* |
| * If not a normal job, must be a sync request. Note that |
| * pending_sync is a standalone flag (unlike pending_job), so |
| * it doesn't require explicit memory barriers. |
| */ |
| assert(qatomic_read(&p->pending_sync)); |
| |
| if (use_packets) { |
| p->flags = MULTIFD_FLAG_SYNC; |
| multifd_send_fill_packet(p); |
| ret = qio_channel_write_all(p->c, (void *)p->packet, |
| p->packet_len, &local_err); |
| if (ret != 0) { |
| break; |
| } |
| /* p->next_packet_size will always be zero for a SYNC packet */ |
| stat64_add(&mig_stats.multifd_bytes, p->packet_len); |
| } |
| |
| qatomic_set(&p->pending_sync, false); |
| qemu_sem_post(&p->sem_sync); |
| } |
| } |
| |
| out: |
| if (ret) { |
| assert(local_err); |
| trace_multifd_send_error(p->id); |
| multifd_send_set_error(local_err); |
| multifd_send_kick_main(p); |
| error_free(local_err); |
| } |
| |
| rcu_unregister_thread(); |
| migration_threads_remove(thread); |
| trace_multifd_send_thread_end(p->id, p->packets_sent); |
| |
| return NULL; |
| } |
| |
| static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque); |
| |
| typedef struct { |
| MultiFDSendParams *p; |
| QIOChannelTLS *tioc; |
| } MultiFDTLSThreadArgs; |
| |
| static void *multifd_tls_handshake_thread(void *opaque) |
| { |
| MultiFDTLSThreadArgs *args = opaque; |
| |
| qio_channel_tls_handshake(args->tioc, |
| multifd_new_send_channel_async, |
| args->p, |
| NULL, |
| NULL); |
| g_free(args); |
| |
| return NULL; |
| } |
| |
| static bool multifd_tls_channel_connect(MultiFDSendParams *p, |
| QIOChannel *ioc, |
| Error **errp) |
| { |
| MigrationState *s = migrate_get_current(); |
| const char *hostname = s->hostname; |
| MultiFDTLSThreadArgs *args; |
| QIOChannelTLS *tioc; |
| |
| tioc = migration_tls_client_create(ioc, hostname, errp); |
| if (!tioc) { |
| return false; |
| } |
| |
| /* |
| * Ownership of the socket channel now transfers to the newly |
| * created TLS channel, which has already taken a reference. |
| */ |
| object_unref(OBJECT(ioc)); |
| trace_multifd_tls_outgoing_handshake_start(ioc, tioc, hostname); |
| qio_channel_set_name(QIO_CHANNEL(tioc), "multifd-tls-outgoing"); |
| |
| args = g_new0(MultiFDTLSThreadArgs, 1); |
| args->tioc = tioc; |
| args->p = p; |
| |
| p->tls_thread_created = true; |
| qemu_thread_create(&p->tls_thread, MIGRATION_THREAD_SRC_TLS, |
| multifd_tls_handshake_thread, args, |
| QEMU_THREAD_JOINABLE); |
| return true; |
| } |
| |
| void multifd_channel_connect(MultiFDSendParams *p, QIOChannel *ioc) |
| { |
| qio_channel_set_delay(ioc, false); |
| |
| migration_ioc_register_yank(ioc); |
| /* Setup p->c only if the channel is completely setup */ |
| p->c = ioc; |
| |
| p->thread_created = true; |
| qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, |
| QEMU_THREAD_JOINABLE); |
| } |
| |
| /* |
| * When TLS is enabled this function is called once to establish the |
| * TLS connection and a second time after the TLS handshake to create |
| * the multifd channel. Without TLS it goes straight into the channel |
| * creation. |
| */ |
| static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) |
| { |
| MultiFDSendParams *p = opaque; |
| QIOChannel *ioc = QIO_CHANNEL(qio_task_get_source(task)); |
| Error *local_err = NULL; |
| bool ret; |
| |
| trace_multifd_new_send_channel_async(p->id); |
| |
| if (qio_task_propagate_error(task, &local_err)) { |
| ret = false; |
| goto out; |
| } |
| |
| trace_multifd_set_outgoing_channel(ioc, object_get_typename(OBJECT(ioc)), |
| migrate_get_current()->hostname); |
| |
| if (migrate_channel_requires_tls_upgrade(ioc)) { |
| ret = multifd_tls_channel_connect(p, ioc, &local_err); |
| if (ret) { |
| return; |
| } |
| } else { |
| multifd_channel_connect(p, ioc); |
| ret = true; |
| } |
| |
| out: |
| /* |
| * Here we're not interested whether creation succeeded, only that |
| * it happened at all. |
| */ |
| multifd_send_channel_created(); |
| |
| if (ret) { |
| return; |
| } |
| |
| trace_multifd_new_send_channel_async_error(p->id, local_err); |
| multifd_send_set_error(local_err); |
| /* |
| * For error cases (TLS or non-TLS), IO channel is always freed here |
| * rather than when cleanup multifd: since p->c is not set, multifd |
| * cleanup code doesn't even know its existence. |
| */ |
| object_unref(OBJECT(ioc)); |
| error_free(local_err); |
| } |
| |
| static bool multifd_new_send_channel_create(gpointer opaque, Error **errp) |
| { |
| if (!multifd_use_packets()) { |
| return file_send_channel_create(opaque, errp); |
| } |
| |
| socket_send_channel_create(multifd_new_send_channel_async, opaque); |
| return true; |
| } |
| |
| bool multifd_send_setup(void) |
| { |
| MigrationState *s = migrate_get_current(); |
| int thread_count, ret = 0; |
| uint32_t page_count = multifd_ram_page_count(); |
| bool use_packets = multifd_use_packets(); |
| uint8_t i; |
| |
| if (!migrate_multifd()) { |
| return true; |
| } |
| |
| thread_count = migrate_multifd_channels(); |
| multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); |
| multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); |
| qemu_sem_init(&multifd_send_state->channels_created, 0); |
| qemu_sem_init(&multifd_send_state->channels_ready, 0); |
| qatomic_set(&multifd_send_state->exiting, 0); |
| multifd_send_state->ops = multifd_ops[migrate_multifd_compression()]; |
| |
| for (i = 0; i < thread_count; i++) { |
| MultiFDSendParams *p = &multifd_send_state->params[i]; |
| Error *local_err = NULL; |
| |
| qemu_sem_init(&p->sem, 0); |
| qemu_sem_init(&p->sem_sync, 0); |
| p->id = i; |
| p->data = multifd_send_data_alloc(); |
| |
| if (use_packets) { |
| p->packet_len = sizeof(MultiFDPacket_t) |
| + sizeof(uint64_t) * page_count; |
| p->packet = g_malloc0(p->packet_len); |
| } |
| p->name = g_strdup_printf(MIGRATION_THREAD_SRC_MULTIFD, i); |
| p->write_flags = 0; |
| |
| if (!multifd_new_send_channel_create(p, &local_err)) { |
| migrate_set_error(s, local_err); |
| ret = -1; |
| } |
| } |
| |
| /* |
| * Wait until channel creation has started for all channels. The |
| * creation can still fail, but no more channels will be created |
| * past this point. |
| */ |
| for (i = 0; i < thread_count; i++) { |
| qemu_sem_wait(&multifd_send_state->channels_created); |
| } |
| |
| if (ret) { |
| goto err; |
| } |
| |
| for (i = 0; i < thread_count; i++) { |
| MultiFDSendParams *p = &multifd_send_state->params[i]; |
| Error *local_err = NULL; |
| |
| ret = multifd_send_state->ops->send_setup(p, &local_err); |
| if (ret) { |
| migrate_set_error(s, local_err); |
| goto err; |
| } |
| assert(p->iov); |
| } |
| |
| return true; |
| |
| err: |
| migrate_set_state(&s->state, MIGRATION_STATUS_SETUP, |
| MIGRATION_STATUS_FAILED); |
| return false; |
| } |
| |
| bool multifd_recv(void) |
| { |
| int i; |
| static int next_recv_channel; |
| MultiFDRecvParams *p = NULL; |
| MultiFDRecvData *data = multifd_recv_state->data; |
| |
| /* |
| * next_channel can remain from a previous migration that was |
| * using more channels, so ensure it doesn't overflow if the |
| * limit is lower now. |
| */ |
| next_recv_channel %= migrate_multifd_channels(); |
| for (i = next_recv_channel;; i = (i + 1) % migrate_multifd_channels()) { |
| if (multifd_recv_should_exit()) { |
| return false; |
| } |
| |
| p = &multifd_recv_state->params[i]; |
| |
| if (qatomic_read(&p->pending_job) == false) { |
| next_recv_channel = (i + 1) % migrate_multifd_channels(); |
| break; |
| } |
| } |
| |
| /* |
| * Order pending_job read before manipulating p->data below. Pairs |
| * with qatomic_store_release() at multifd_recv_thread(). |
| */ |
| smp_mb_acquire(); |
| |
| assert(!p->data->size); |
| multifd_recv_state->data = p->data; |
| p->data = data; |
| |
| /* |
| * Order p->data update before setting pending_job. Pairs with |
| * qatomic_load_acquire() at multifd_recv_thread(). |
| */ |
| qatomic_store_release(&p->pending_job, true); |
| qemu_sem_post(&p->sem); |
| |
| return true; |
| } |
| |
| MultiFDRecvData *multifd_get_recv_data(void) |
| { |
| return multifd_recv_state->data; |
| } |
| |
| static void multifd_recv_terminate_threads(Error *err) |
| { |
| int i; |
| |
| trace_multifd_recv_terminate_threads(err != NULL); |
| |
| if (qatomic_xchg(&multifd_recv_state->exiting, 1)) { |
| return; |
| } |
| |
| if (err) { |
| MigrationState *s = migrate_get_current(); |
| migrate_set_error(s, err); |
| if (s->state == MIGRATION_STATUS_SETUP || |
| s->state == MIGRATION_STATUS_ACTIVE) { |
| migrate_set_state(&s->state, s->state, |
| MIGRATION_STATUS_FAILED); |
| } |
| } |
| |
| for (i = 0; i < migrate_multifd_channels(); i++) { |
| MultiFDRecvParams *p = &multifd_recv_state->params[i]; |
| |
| /* |
| * The migration thread and channels interact differently |
| * depending on the presence of packets. |
| */ |
| if (multifd_use_packets()) { |
| /* |
| * The channel receives as long as there are packets. When |
| * packets end (i.e. MULTIFD_FLAG_SYNC is reached), the |
| * channel waits for the migration thread to sync. If the |
| * sync never happens, do it here. |
| */ |
| qemu_sem_post(&p->sem_sync); |
| } else { |
| /* |
| * The channel waits for the migration thread to give it |
| * work. When the migration thread runs out of work, it |
| * releases the channel and waits for any pending work to |
| * finish. If we reach here (e.g. due to error) before the |
| * work runs out, release the channel. |
| */ |
| qemu_sem_post(&p->sem); |
| } |
| |
| /* |
| * We could arrive here for two reasons: |
| * - normal quit, i.e. everything went fine, just finished |
| * - error quit: We close the channels so the channel threads |
| * finish the qio_channel_read_all_eof() |
| */ |
| if (p->c) { |
| qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); |
| } |
| } |
| } |
| |
| void multifd_recv_shutdown(void) |
| { |
| if (migrate_multifd()) { |
| multifd_recv_terminate_threads(NULL); |
| } |
| } |
| |
| static void multifd_recv_cleanup_channel(MultiFDRecvParams *p) |
| { |
| migration_ioc_unregister_yank(p->c); |
| object_unref(OBJECT(p->c)); |
| p->c = NULL; |
| qemu_mutex_destroy(&p->mutex); |
| qemu_sem_destroy(&p->sem_sync); |
| qemu_sem_destroy(&p->sem); |
| g_free(p->data); |
| p->data = NULL; |
| g_free(p->name); |
| p->name = NULL; |
| p->packet_len = 0; |
| g_free(p->packet); |
| p->packet = NULL; |
| g_free(p->normal); |
| p->normal = NULL; |
| g_free(p->zero); |
| p->zero = NULL; |
| multifd_recv_state->ops->recv_cleanup(p); |
| } |
| |
| static void multifd_recv_cleanup_state(void) |
| { |
| qemu_sem_destroy(&multifd_recv_state->sem_sync); |
| g_free(multifd_recv_state->params); |
| multifd_recv_state->params = NULL; |
| g_free(multifd_recv_state->data); |
| multifd_recv_state->data = NULL; |
| g_free(multifd_recv_state); |
| multifd_recv_state = NULL; |
| } |
| |
| void multifd_recv_cleanup(void) |
| { |
| int i; |
| |
| if (!migrate_multifd()) { |
| return; |
| } |
| multifd_recv_terminate_threads(NULL); |
| for (i = 0; i < migrate_multifd_channels(); i++) { |
| MultiFDRecvParams *p = &multifd_recv_state->params[i]; |
| |
| if (p->thread_created) { |
| qemu_thread_join(&p->thread); |
| } |
| } |
| for (i = 0; i < migrate_multifd_channels(); i++) { |
| multifd_recv_cleanup_channel(&multifd_recv_state->params[i]); |
| } |
| multifd_recv_cleanup_state(); |
| } |
| |
| void multifd_recv_sync_main(void) |
| { |
| int thread_count = migrate_multifd_channels(); |
| bool file_based = !multifd_use_packets(); |
| int i; |
| |
| if (!migrate_multifd()) { |
| return; |
| } |
| |
| /* |
| * File-based channels don't use packets and therefore need to |
| * wait for more work. Release them to start the sync. |
| */ |
| if (file_based) { |
| for (i = 0; i < thread_count; i++) { |
| MultiFDRecvParams *p = &multifd_recv_state->params[i]; |
| |
| trace_multifd_recv_sync_main_signal(p->id); |
| qemu_sem_post(&p->sem); |
| } |
| } |
| |
| /* |
| * Initiate the synchronization by waiting for all channels. |
| * |
| * For socket-based migration this means each channel has received |
| * the SYNC packet on the stream. |
| * |
| * For file-based migration this means each channel is done with |
| * the work (pending_job=false). |
| */ |
| for (i = 0; i < thread_count; i++) { |
| trace_multifd_recv_sync_main_wait(i); |
| qemu_sem_wait(&multifd_recv_state->sem_sync); |
| } |
| |
| if (file_based) { |
| /* |
| * For file-based loading is done in one iteration. We're |
| * done. |
| */ |
| return; |
| } |
| |
| /* |
| * Sync done. Release the channels for the next iteration. |
| */ |
| for (i = 0; i < thread_count; i++) { |
| MultiFDRecvParams *p = &multifd_recv_state->params[i]; |
| |
| WITH_QEMU_LOCK_GUARD(&p->mutex) { |
| if (multifd_recv_state->packet_num < p->packet_num) { |
| multifd_recv_state->packet_num = p->packet_num; |
| } |
| } |
| trace_multifd_recv_sync_main_signal(p->id); |
| qemu_sem_post(&p->sem_sync); |
| } |
| trace_multifd_recv_sync_main(multifd_recv_state->packet_num); |
| } |
| |
| static void *multifd_recv_thread(void *opaque) |
| { |
| MultiFDRecvParams *p = opaque; |
| Error *local_err = NULL; |
| bool use_packets = multifd_use_packets(); |
| int ret; |
| |
| trace_multifd_recv_thread_start(p->id); |
| rcu_register_thread(); |
| |
| while (true) { |
| uint32_t flags = 0; |
| bool has_data = false; |
| p->normal_num = 0; |
| |
| if (use_packets) { |
| if (multifd_recv_should_exit()) { |
| break; |
| } |
| |
| ret = qio_channel_read_all_eof(p->c, (void *)p->packet, |
| p->packet_len, &local_err); |
| if (ret == 0 || ret == -1) { /* 0: EOF -1: Error */ |
| break; |
| } |
| |
| qemu_mutex_lock(&p->mutex); |
| ret = multifd_recv_unfill_packet(p, &local_err); |
| if (ret) { |
| qemu_mutex_unlock(&p->mutex); |
| break; |
| } |
| |
| flags = p->flags; |
| /* recv methods don't know how to handle the SYNC flag */ |
| p->flags &= ~MULTIFD_FLAG_SYNC; |
| if (!(flags & MULTIFD_FLAG_SYNC)) { |
| has_data = p->normal_num || p->zero_num; |
| } |
| qemu_mutex_unlock(&p->mutex); |
| } else { |
| /* |
| * No packets, so we need to wait for the vmstate code to |
| * give us work. |
| */ |
| qemu_sem_wait(&p->sem); |
| |
| if (multifd_recv_should_exit()) { |
| break; |
| } |
| |
| /* pairs with qatomic_store_release() at multifd_recv() */ |
| if (!qatomic_load_acquire(&p->pending_job)) { |
| /* |
| * Migration thread did not send work, this is |
| * equivalent to pending_sync on the sending |
| * side. Post sem_sync to notify we reached this |
| * point. |
| */ |
| qemu_sem_post(&multifd_recv_state->sem_sync); |
| continue; |
| } |
| |
| has_data = !!p->data->size; |
| } |
| |
| if (has_data) { |
| ret = multifd_recv_state->ops->recv(p, &local_err); |
| if (ret != 0) { |
| break; |
| } |
| } |
| |
| if (use_packets) { |
| if (flags & MULTIFD_FLAG_SYNC) { |
| qemu_sem_post(&multifd_recv_state->sem_sync); |
| qemu_sem_wait(&p->sem_sync); |
| } |
| } else { |
| p->data->size = 0; |
| /* |
| * Order data->size update before clearing |
| * pending_job. Pairs with smp_mb_acquire() at |
| * multifd_recv(). |
| */ |
| qatomic_store_release(&p->pending_job, false); |
| } |
| } |
| |
| if (local_err) { |
| multifd_recv_terminate_threads(local_err); |
| error_free(local_err); |
| } |
| |
| rcu_unregister_thread(); |
| trace_multifd_recv_thread_end(p->id, p->packets_recved); |
| |
| return NULL; |
| } |
| |
| int multifd_recv_setup(Error **errp) |
| { |
| int thread_count; |
| uint32_t page_count = multifd_ram_page_count(); |
| bool use_packets = multifd_use_packets(); |
| uint8_t i; |
| |
| /* |
| * Return successfully if multiFD recv state is already initialised |
| * or multiFD is not enabled. |
| */ |
| if (multifd_recv_state || !migrate_multifd()) { |
| return 0; |
| } |
| |
| thread_count = migrate_multifd_channels(); |
| multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); |
| multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); |
| |
| multifd_recv_state->data = g_new0(MultiFDRecvData, 1); |
| multifd_recv_state->data->size = 0; |
| |
| qatomic_set(&multifd_recv_state->count, 0); |
| qatomic_set(&multifd_recv_state->exiting, 0); |
| qemu_sem_init(&multifd_recv_state->sem_sync, 0); |
| multifd_recv_state->ops = multifd_ops[migrate_multifd_compression()]; |
| |
| for (i = 0; i < thread_count; i++) { |
| MultiFDRecvParams *p = &multifd_recv_state->params[i]; |
| |
| qemu_mutex_init(&p->mutex); |
| qemu_sem_init(&p->sem_sync, 0); |
| qemu_sem_init(&p->sem, 0); |
| p->pending_job = false; |
| p->id = i; |
| |
| p->data = g_new0(MultiFDRecvData, 1); |
| p->data->size = 0; |
| |
| if (use_packets) { |
| p->packet_len = sizeof(MultiFDPacket_t) |
| + sizeof(uint64_t) * page_count; |
| p->packet = g_malloc0(p->packet_len); |
| } |
| p->name = g_strdup_printf(MIGRATION_THREAD_DST_MULTIFD, i); |
| p->normal = g_new0(ram_addr_t, page_count); |
| p->zero = g_new0(ram_addr_t, page_count); |
| } |
| |
| for (i = 0; i < thread_count; i++) { |
| MultiFDRecvParams *p = &multifd_recv_state->params[i]; |
| int ret; |
| |
| ret = multifd_recv_state->ops->recv_setup(p, errp); |
| if (ret) { |
| return ret; |
| } |
| } |
| return 0; |
| } |
| |
| bool multifd_recv_all_channels_created(void) |
| { |
| int thread_count = migrate_multifd_channels(); |
| |
| if (!migrate_multifd()) { |
| return true; |
| } |
| |
| if (!multifd_recv_state) { |
| /* Called before any connections created */ |
| return false; |
| } |
| |
| return thread_count == qatomic_read(&multifd_recv_state->count); |
| } |
| |
| /* |
| * Try to receive all multifd channels to get ready for the migration. |
| * Sets @errp when failing to receive the current channel. |
| */ |
| void multifd_recv_new_channel(QIOChannel *ioc, Error **errp) |
| { |
| MultiFDRecvParams *p; |
| Error *local_err = NULL; |
| bool use_packets = multifd_use_packets(); |
| int id; |
| |
| if (use_packets) { |
| id = multifd_recv_initial_packet(ioc, &local_err); |
| if (id < 0) { |
| multifd_recv_terminate_threads(local_err); |
| error_propagate_prepend(errp, local_err, |
| "failed to receive packet" |
| " via multifd channel %d: ", |
| qatomic_read(&multifd_recv_state->count)); |
| return; |
| } |
| trace_multifd_recv_new_channel(id); |
| } else { |
| id = qatomic_read(&multifd_recv_state->count); |
| } |
| |
| p = &multifd_recv_state->params[id]; |
| if (p->c != NULL) { |
| error_setg(&local_err, "multifd: received id '%d' already setup'", |
| id); |
| multifd_recv_terminate_threads(local_err); |
| error_propagate(errp, local_err); |
| return; |
| } |
| p->c = ioc; |
| object_ref(OBJECT(ioc)); |
| |
| p->thread_created = true; |
| qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, |
| QEMU_THREAD_JOINABLE); |
| qatomic_inc(&multifd_recv_state->count); |
| } |