blob: b0d21d673a01d841d48dd362187f778246d1c050 [file] [log] [blame]
/*
* Coroutine tests
*
* Copyright IBM, Corp. 2011
*
* Authors:
* Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
*
* This work is licensed under the terms of the GNU LGPL, version 2 or later.
* See the COPYING.LIB file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu/coroutine_int.h"
/*
* Check that qemu_in_coroutine() works
*/
static void coroutine_fn verify_in_coroutine(void *opaque)
{
g_assert(qemu_in_coroutine());
}
static void test_in_coroutine(void)
{
Coroutine *coroutine;
g_assert(!qemu_in_coroutine());
coroutine = qemu_coroutine_create(verify_in_coroutine, NULL);
qemu_coroutine_enter(coroutine);
}
/*
* Check that qemu_coroutine_self() works
*/
static void coroutine_fn verify_self(void *opaque)
{
Coroutine **p_co = opaque;
g_assert(qemu_coroutine_self() == *p_co);
}
static void test_self(void)
{
Coroutine *coroutine;
coroutine = qemu_coroutine_create(verify_self, &coroutine);
qemu_coroutine_enter(coroutine);
}
/*
* Check that qemu_coroutine_entered() works
*/
static void coroutine_fn verify_entered_step_2(void *opaque)
{
Coroutine *caller = (Coroutine *)opaque;
g_assert(qemu_coroutine_entered(caller));
g_assert(qemu_coroutine_entered(qemu_coroutine_self()));
qemu_coroutine_yield();
/* Once more to check it still works after yielding */
g_assert(qemu_coroutine_entered(caller));
g_assert(qemu_coroutine_entered(qemu_coroutine_self()));
}
static void coroutine_fn verify_entered_step_1(void *opaque)
{
Coroutine *self = qemu_coroutine_self();
Coroutine *coroutine;
g_assert(qemu_coroutine_entered(self));
coroutine = qemu_coroutine_create(verify_entered_step_2, self);
g_assert(!qemu_coroutine_entered(coroutine));
qemu_coroutine_enter(coroutine);
g_assert(!qemu_coroutine_entered(coroutine));
qemu_coroutine_enter(coroutine);
}
static void test_entered(void)
{
Coroutine *coroutine;
coroutine = qemu_coroutine_create(verify_entered_step_1, NULL);
g_assert(!qemu_coroutine_entered(coroutine));
qemu_coroutine_enter(coroutine);
}
/*
* Check that coroutines may nest multiple levels
*/
typedef struct {
unsigned int n_enter; /* num coroutines entered */
unsigned int n_return; /* num coroutines returned */
unsigned int max; /* maximum level of nesting */
} NestData;
static void coroutine_fn nest(void *opaque)
{
NestData *nd = opaque;
nd->n_enter++;
if (nd->n_enter < nd->max) {
Coroutine *child;
child = qemu_coroutine_create(nest, nd);
qemu_coroutine_enter(child);
}
nd->n_return++;
}
static void test_nesting(void)
{
Coroutine *root;
NestData nd = {
.n_enter = 0,
.n_return = 0,
.max = 128,
};
root = qemu_coroutine_create(nest, &nd);
qemu_coroutine_enter(root);
/* Must enter and return from max nesting level */
g_assert_cmpint(nd.n_enter, ==, nd.max);
g_assert_cmpint(nd.n_return, ==, nd.max);
}
/*
* Check that yield/enter transfer control correctly
*/
static void coroutine_fn yield_5_times(void *opaque)
{
bool *done = opaque;
int i;
for (i = 0; i < 5; i++) {
qemu_coroutine_yield();
}
*done = true;
}
static void test_yield(void)
{
Coroutine *coroutine;
bool done = false;
int i = -1; /* one extra time to return from coroutine */
coroutine = qemu_coroutine_create(yield_5_times, &done);
while (!done) {
qemu_coroutine_enter(coroutine);
i++;
}
g_assert_cmpint(i, ==, 5); /* coroutine must yield 5 times */
}
static void coroutine_fn c2_fn(void *opaque)
{
qemu_coroutine_yield();
}
static void coroutine_fn c1_fn(void *opaque)
{
Coroutine *c2 = opaque;
qemu_coroutine_enter(c2);
}
static void test_no_dangling_access(void)
{
Coroutine *c1;
Coroutine *c2;
Coroutine tmp;
c2 = qemu_coroutine_create(c2_fn, NULL);
c1 = qemu_coroutine_create(c1_fn, c2);
qemu_coroutine_enter(c1);
/* c1 shouldn't be used any more now; make sure we segfault if it is */
tmp = *c1;
memset(c1, 0xff, sizeof(Coroutine));
qemu_coroutine_enter(c2);
/* Must restore the coroutine now to avoid corrupted pool */
*c1 = tmp;
}
static bool locked;
static int done;
static void coroutine_fn mutex_fn(void *opaque)
{
CoMutex *m = opaque;
qemu_co_mutex_lock(m);
assert(!locked);
locked = true;
qemu_coroutine_yield();
locked = false;
qemu_co_mutex_unlock(m);
done++;
}
static void coroutine_fn lockable_fn(void *opaque)
{
QemuLockable *x = opaque;
qemu_lockable_lock(x);
assert(!locked);
locked = true;
qemu_coroutine_yield();
locked = false;
qemu_lockable_unlock(x);
done++;
}
static void do_test_co_mutex(CoroutineEntry *entry, void *opaque)
{
Coroutine *c1 = qemu_coroutine_create(entry, opaque);
Coroutine *c2 = qemu_coroutine_create(entry, opaque);
done = 0;
qemu_coroutine_enter(c1);
g_assert(locked);
qemu_coroutine_enter(c2);
/* Unlock queues c2. It is then started automatically when c1 yields or
* terminates.
*/
qemu_coroutine_enter(c1);
g_assert_cmpint(done, ==, 1);
g_assert(locked);
qemu_coroutine_enter(c2);
g_assert_cmpint(done, ==, 2);
g_assert(!locked);
}
static void test_co_mutex(void)
{
CoMutex m;
qemu_co_mutex_init(&m);
do_test_co_mutex(mutex_fn, &m);
}
static void test_co_mutex_lockable(void)
{
CoMutex m;
CoMutex *null_pointer = NULL;
qemu_co_mutex_init(&m);
do_test_co_mutex(lockable_fn, QEMU_MAKE_LOCKABLE(&m));
g_assert(QEMU_MAKE_LOCKABLE(null_pointer) == NULL);
}
static CoRwlock rwlock;
/* Test that readers are properly sent back to the queue when upgrading,
* even if they are the sole readers. The test scenario is as follows:
*
*
* | c1 | c2 |
* |--------------+------------+
* | rdlock | |
* | yield | |
* | | wrlock |
* | | <queued> |
* | upgrade | |
* | <queued> | <dequeued> |
* | | unlock |
* | <dequeued> | |
* | unlock | |
*/
static void coroutine_fn rwlock_yield_upgrade(void *opaque)
{
qemu_co_rwlock_rdlock(&rwlock);
qemu_coroutine_yield();
qemu_co_rwlock_upgrade(&rwlock);
qemu_co_rwlock_unlock(&rwlock);
*(bool *)opaque = true;
}
static void coroutine_fn rwlock_wrlock_yield(void *opaque)
{
qemu_co_rwlock_wrlock(&rwlock);
qemu_coroutine_yield();
qemu_co_rwlock_unlock(&rwlock);
*(bool *)opaque = true;
}
static void test_co_rwlock_upgrade(void)
{
bool c1_done = false;
bool c2_done = false;
Coroutine *c1, *c2;
qemu_co_rwlock_init(&rwlock);
c1 = qemu_coroutine_create(rwlock_yield_upgrade, &c1_done);
c2 = qemu_coroutine_create(rwlock_wrlock_yield, &c2_done);
qemu_coroutine_enter(c1);
qemu_coroutine_enter(c2);
/* c1 now should go to sleep. */
qemu_coroutine_enter(c1);
g_assert(!c1_done);
qemu_coroutine_enter(c2);
g_assert(c1_done);
g_assert(c2_done);
}
static void coroutine_fn rwlock_rdlock_yield(void *opaque)
{
qemu_co_rwlock_rdlock(&rwlock);
qemu_coroutine_yield();
qemu_co_rwlock_unlock(&rwlock);
qemu_coroutine_yield();
*(bool *)opaque = true;
}
static void coroutine_fn rwlock_wrlock_downgrade(void *opaque)
{
qemu_co_rwlock_wrlock(&rwlock);
qemu_co_rwlock_downgrade(&rwlock);
qemu_co_rwlock_unlock(&rwlock);
*(bool *)opaque = true;
}
static void coroutine_fn rwlock_rdlock(void *opaque)
{
qemu_co_rwlock_rdlock(&rwlock);
qemu_co_rwlock_unlock(&rwlock);
*(bool *)opaque = true;
}
static void coroutine_fn rwlock_wrlock(void *opaque)
{
qemu_co_rwlock_wrlock(&rwlock);
qemu_co_rwlock_unlock(&rwlock);
*(bool *)opaque = true;
}
/*
* Check that downgrading a reader-writer lock does not cause a hang.
*
* Four coroutines are used to produce a situation where there are
* both reader and writer hopefuls waiting to acquire an rwlock that
* is held by a reader.
*
* The correct sequence of operations we aim to provoke can be
* represented as:
*
* | c1 | c2 | c3 | c4 |
* |--------+------------+------------+------------|
* | rdlock | | | |
* | yield | | | |
* | | wrlock | | |
* | | <queued> | | |
* | | | rdlock | |
* | | | <queued> | |
* | | | | wrlock |
* | | | | <queued> |
* | unlock | | | |
* | yield | | | |
* | | <dequeued> | | |
* | | downgrade | | |
* | | | <dequeued> | |
* | | | unlock | |
* | | ... | | |
* | | unlock | | |
* | | | | <dequeued> |
* | | | | unlock |
*/
static void test_co_rwlock_downgrade(void)
{
bool c1_done = false;
bool c2_done = false;
bool c3_done = false;
bool c4_done = false;
Coroutine *c1, *c2, *c3, *c4;
qemu_co_rwlock_init(&rwlock);
c1 = qemu_coroutine_create(rwlock_rdlock_yield, &c1_done);
c2 = qemu_coroutine_create(rwlock_wrlock_downgrade, &c2_done);
c3 = qemu_coroutine_create(rwlock_rdlock, &c3_done);
c4 = qemu_coroutine_create(rwlock_wrlock, &c4_done);
qemu_coroutine_enter(c1);
qemu_coroutine_enter(c2);
qemu_coroutine_enter(c3);
qemu_coroutine_enter(c4);
qemu_coroutine_enter(c1);
g_assert(c2_done);
g_assert(c3_done);
g_assert(c4_done);
qemu_coroutine_enter(c1);
g_assert(c1_done);
}
/*
* Check that creation, enter, and return work
*/
static void coroutine_fn set_and_exit(void *opaque)
{
bool *done = opaque;
*done = true;
}
static void test_lifecycle(void)
{
Coroutine *coroutine;
bool done = false;
/* Create, enter, and return from coroutine */
coroutine = qemu_coroutine_create(set_and_exit, &done);
qemu_coroutine_enter(coroutine);
g_assert(done); /* expect done to be true (first time) */
/* Repeat to check that no state affects this test */
done = false;
coroutine = qemu_coroutine_create(set_and_exit, &done);
qemu_coroutine_enter(coroutine);
g_assert(done); /* expect done to be true (second time) */
}
#define RECORD_SIZE 10 /* Leave some room for expansion */
struct coroutine_position {
int func;
int state;
};
static struct coroutine_position records[RECORD_SIZE];
static unsigned record_pos;
static void record_push(int func, int state)
{
struct coroutine_position *cp = &records[record_pos++];
g_assert_cmpint(record_pos, <, RECORD_SIZE);
cp->func = func;
cp->state = state;
}
static void coroutine_fn co_order_test(void *opaque)
{
record_push(2, 1);
g_assert(qemu_in_coroutine());
qemu_coroutine_yield();
record_push(2, 2);
g_assert(qemu_in_coroutine());
}
static void do_order_test(void)
{
Coroutine *co;
co = qemu_coroutine_create(co_order_test, NULL);
record_push(1, 1);
qemu_coroutine_enter(co);
record_push(1, 2);
g_assert(!qemu_in_coroutine());
qemu_coroutine_enter(co);
record_push(1, 3);
g_assert(!qemu_in_coroutine());
}
static void test_order(void)
{
int i;
const struct coroutine_position expected_pos[] = {
{1, 1,}, {2, 1}, {1, 2}, {2, 2}, {1, 3}
};
do_order_test();
g_assert_cmpint(record_pos, ==, 5);
for (i = 0; i < record_pos; i++) {
g_assert_cmpint(records[i].func , ==, expected_pos[i].func );
g_assert_cmpint(records[i].state, ==, expected_pos[i].state);
}
}
/*
* Lifecycle benchmark
*/
static void coroutine_fn empty_coroutine(void *opaque)
{
/* Do nothing */
}
static void perf_lifecycle(void)
{
Coroutine *coroutine;
unsigned int i, max;
double duration;
max = 1000000;
g_test_timer_start();
for (i = 0; i < max; i++) {
coroutine = qemu_coroutine_create(empty_coroutine, NULL);
qemu_coroutine_enter(coroutine);
}
duration = g_test_timer_elapsed();
g_test_message("Lifecycle %u iterations: %f s", max, duration);
}
static void perf_nesting(void)
{
unsigned int i, maxcycles, maxnesting;
double duration;
maxcycles = 10000;
maxnesting = 1000;
Coroutine *root;
g_test_timer_start();
for (i = 0; i < maxcycles; i++) {
NestData nd = {
.n_enter = 0,
.n_return = 0,
.max = maxnesting,
};
root = qemu_coroutine_create(nest, &nd);
qemu_coroutine_enter(root);
}
duration = g_test_timer_elapsed();
g_test_message("Nesting %u iterations of %u depth each: %f s",
maxcycles, maxnesting, duration);
}
/*
* Yield benchmark
*/
static void coroutine_fn yield_loop(void *opaque)
{
unsigned int *counter = opaque;
while ((*counter) > 0) {
(*counter)--;
qemu_coroutine_yield();
}
}
static void perf_yield(void)
{
unsigned int i, maxcycles;
double duration;
maxcycles = 100000000;
i = maxcycles;
Coroutine *coroutine = qemu_coroutine_create(yield_loop, &i);
g_test_timer_start();
while (i > 0) {
qemu_coroutine_enter(coroutine);
}
duration = g_test_timer_elapsed();
g_test_message("Yield %u iterations: %f s", maxcycles, duration);
}
static __attribute__((noinline)) void dummy(unsigned *i)
{
(*i)--;
}
static void perf_baseline(void)
{
unsigned int i, maxcycles;
double duration;
maxcycles = 100000000;
i = maxcycles;
g_test_timer_start();
while (i > 0) {
dummy(&i);
}
duration = g_test_timer_elapsed();
g_test_message("Function call %u iterations: %f s", maxcycles, duration);
}
static __attribute__((noinline)) void coroutine_fn perf_cost_func(void *opaque)
{
qemu_coroutine_yield();
}
static void perf_cost(void)
{
const unsigned long maxcycles = 40000000;
unsigned long i = 0;
double duration;
unsigned long ops;
Coroutine *co;
g_test_timer_start();
while (i++ < maxcycles) {
co = qemu_coroutine_create(perf_cost_func, &i);
qemu_coroutine_enter(co);
qemu_coroutine_enter(co);
}
duration = g_test_timer_elapsed();
ops = (long)(maxcycles / (duration * 1000));
g_test_message("Run operation %lu iterations %f s, %luK operations/s, "
"%luns per coroutine",
maxcycles,
duration, ops,
(unsigned long)(1000000000.0 * duration / maxcycles));
}
int main(int argc, char **argv)
{
g_test_init(&argc, &argv, NULL);
/* This test assumes there is a freelist and marks freed coroutine memory
* with a sentinel value. If there is no freelist this would legitimately
* crash, so skip it.
*/
if (CONFIG_COROUTINE_POOL) {
g_test_add_func("/basic/no-dangling-access", test_no_dangling_access);
}
g_test_add_func("/basic/lifecycle", test_lifecycle);
g_test_add_func("/basic/yield", test_yield);
g_test_add_func("/basic/nesting", test_nesting);
g_test_add_func("/basic/self", test_self);
g_test_add_func("/basic/entered", test_entered);
g_test_add_func("/basic/in_coroutine", test_in_coroutine);
g_test_add_func("/basic/order", test_order);
g_test_add_func("/locking/co-mutex", test_co_mutex);
g_test_add_func("/locking/co-mutex/lockable", test_co_mutex_lockable);
g_test_add_func("/locking/co-rwlock/upgrade", test_co_rwlock_upgrade);
g_test_add_func("/locking/co-rwlock/downgrade", test_co_rwlock_downgrade);
if (g_test_perf()) {
g_test_add_func("/perf/lifecycle", perf_lifecycle);
g_test_add_func("/perf/nesting", perf_nesting);
g_test_add_func("/perf/yield", perf_yield);
g_test_add_func("/perf/function-call", perf_baseline);
g_test_add_func("/perf/cost", perf_cost);
}
return g_test_run();
}