blob: 2bab6cece709114e940a7ff27a2df7dd1aa32281 [file] [log] [blame]
/*
* PMU register read/write functions for TCG IBM POWER chips
*
* Copyright IBM Corp. 2021
*
* Authors:
* Daniel Henrique Barboza <danielhb413@gmail.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
/*
* Checks whether the Group A SPR (MMCR0, MMCR2, MMCRA, and the
* PMCs) has problem state read access.
*
* Read acccess is granted for all PMCC values but 0b01, where a
* Facility Unavailable Interrupt will occur.
*/
static bool spr_groupA_read_allowed(DisasContext *ctx)
{
if (!ctx->mmcr0_pmcc0 && ctx->mmcr0_pmcc1) {
gen_hvpriv_exception(ctx, POWERPC_EXCP_FU);
return false;
}
return true;
}
/*
* Checks whether the Group A SPR (MMCR0, MMCR2, MMCRA, and the
* PMCs) has problem state write access.
*
* Write acccess is granted for PMCC values 0b10 and 0b11. Userspace
* writing with PMCC 0b00 will generate a Hypervisor Emulation
* Assistance Interrupt. Userspace writing with PMCC 0b01 will
* generate a Facility Unavailable Interrupt.
*/
static bool spr_groupA_write_allowed(DisasContext *ctx)
{
if (ctx->mmcr0_pmcc0) {
return true;
}
if (ctx->mmcr0_pmcc1) {
/* PMCC = 0b01 */
gen_hvpriv_exception(ctx, POWERPC_EXCP_FU);
} else {
/* PMCC = 0b00 */
gen_hvpriv_exception(ctx, POWERPC_EXCP_INVAL_SPR);
}
return false;
}
/*
* Helper function to avoid code repetition between MMCR0 and
* MMCR2 problem state write functions.
*
* 'ret' must be tcg_temp_freed() by the caller.
*/
static TCGv masked_gprn_for_spr_write(int gprn, int sprn,
uint64_t spr_mask)
{
TCGv ret = tcg_temp_new();
TCGv t0 = tcg_temp_new();
/* 'ret' starts with all mask bits cleared */
gen_load_spr(ret, sprn);
tcg_gen_andi_tl(ret, ret, ~(spr_mask));
/* Apply the mask into 'gprn' in a temp var */
tcg_gen_andi_tl(t0, cpu_gpr[gprn], spr_mask);
/* Add the masked gprn bits into 'ret' */
tcg_gen_or_tl(ret, ret, t0);
tcg_temp_free(t0);
return ret;
}
void spr_read_MMCR0_ureg(DisasContext *ctx, int gprn, int sprn)
{
TCGv t0;
if (!spr_groupA_read_allowed(ctx)) {
return;
}
t0 = tcg_temp_new();
/*
* Filter out all bits but FC, PMAO, and PMAE, according
* to ISA v3.1, in 10.4.4 Monitor Mode Control Register 0,
* fourth paragraph.
*/
gen_load_spr(t0, SPR_POWER_MMCR0);
tcg_gen_andi_tl(t0, t0, MMCR0_UREG_MASK);
tcg_gen_mov_tl(cpu_gpr[gprn], t0);
tcg_temp_free(t0);
}
static void write_MMCR0_common(DisasContext *ctx, TCGv val)
{
/*
* helper_store_mmcr0 will make clock based operations that
* will cause 'bad icount read' errors if we do not execute
* gen_icount_io_start() beforehand.
*/
gen_icount_io_start(ctx);
gen_helper_store_mmcr0(cpu_env, val);
/*
* End the translation block because MMCR0 writes can change
* ctx->pmu_insn_cnt.
*/
ctx->base.is_jmp = DISAS_EXIT_UPDATE;
}
void spr_write_MMCR0_ureg(DisasContext *ctx, int sprn, int gprn)
{
TCGv masked_gprn;
if (!spr_groupA_write_allowed(ctx)) {
return;
}
/*
* Filter out all bits but FC, PMAO, and PMAE, according
* to ISA v3.1, in 10.4.4 Monitor Mode Control Register 0,
* fourth paragraph.
*/
masked_gprn = masked_gprn_for_spr_write(gprn, SPR_POWER_MMCR0,
MMCR0_UREG_MASK);
write_MMCR0_common(ctx, masked_gprn);
tcg_temp_free(masked_gprn);
}
void spr_read_MMCR2_ureg(DisasContext *ctx, int gprn, int sprn)
{
TCGv t0;
if (!spr_groupA_read_allowed(ctx)) {
return;
}
t0 = tcg_temp_new();
/*
* On read, filter out all bits that are not FCnP0 bits.
* When MMCR0[PMCC] is set to 0b10 or 0b11, providing
* problem state programs read/write access to MMCR2,
* only the FCnP0 bits can be accessed. All other bits are
* not changed when mtspr is executed in problem state, and
* all other bits return 0s when mfspr is executed in problem
* state, according to ISA v3.1, section 10.4.6 Monitor Mode
* Control Register 2, p. 1316, third paragraph.
*/
gen_load_spr(t0, SPR_POWER_MMCR2);
tcg_gen_andi_tl(t0, t0, MMCR2_UREG_MASK);
tcg_gen_mov_tl(cpu_gpr[gprn], t0);
tcg_temp_free(t0);
}
void spr_write_MMCR2_ureg(DisasContext *ctx, int sprn, int gprn)
{
TCGv masked_gprn;
if (!spr_groupA_write_allowed(ctx)) {
return;
}
/*
* Filter the bits that can be written using MMCR2_UREG_MASK,
* similar to what is done in spr_write_MMCR0_ureg().
*/
masked_gprn = masked_gprn_for_spr_write(gprn, SPR_POWER_MMCR2,
MMCR2_UREG_MASK);
gen_store_spr(SPR_POWER_MMCR2, masked_gprn);
tcg_temp_free(masked_gprn);
}
void spr_read_PMC(DisasContext *ctx, int gprn, int sprn)
{
TCGv_i32 t_sprn = tcg_const_i32(sprn);
gen_icount_io_start(ctx);
gen_helper_read_pmc(cpu_gpr[gprn], cpu_env, t_sprn);
tcg_temp_free_i32(t_sprn);
}
void spr_read_PMC14_ureg(DisasContext *ctx, int gprn, int sprn)
{
if (!spr_groupA_read_allowed(ctx)) {
return;
}
spr_read_PMC(ctx, gprn, sprn + 0x10);
}
void spr_read_PMC56_ureg(DisasContext *ctx, int gprn, int sprn)
{
/*
* If PMCC = 0b11, PMC5 and PMC6 aren't included in the Performance
* Monitor, and a read attempt results in a Facility Unavailable
* Interrupt.
*/
if (ctx->mmcr0_pmcc0 && ctx->mmcr0_pmcc1) {
gen_hvpriv_exception(ctx, POWERPC_EXCP_FU);
return;
}
/* The remaining steps are similar to PMCs 1-4 userspace read */
spr_read_PMC14_ureg(ctx, gprn, sprn);
}
void spr_write_PMC(DisasContext *ctx, int sprn, int gprn)
{
TCGv_i32 t_sprn = tcg_const_i32(sprn);
gen_icount_io_start(ctx);
gen_helper_store_pmc(cpu_env, t_sprn, cpu_gpr[gprn]);
tcg_temp_free_i32(t_sprn);
}
void spr_write_PMC14_ureg(DisasContext *ctx, int sprn, int gprn)
{
if (!spr_groupA_write_allowed(ctx)) {
return;
}
spr_write_PMC(ctx, sprn + 0x10, gprn);
}
void spr_write_PMC56_ureg(DisasContext *ctx, int sprn, int gprn)
{
/*
* If PMCC = 0b11, PMC5 and PMC6 aren't included in the Performance
* Monitor, and a write attempt results in a Facility Unavailable
* Interrupt.
*/
if (ctx->mmcr0_pmcc0 && ctx->mmcr0_pmcc1) {
gen_hvpriv_exception(ctx, POWERPC_EXCP_FU);
return;
}
/* The remaining steps are similar to PMCs 1-4 userspace write */
spr_write_PMC14_ureg(ctx, sprn, gprn);
}
void spr_write_MMCR0(DisasContext *ctx, int sprn, int gprn)
{
write_MMCR0_common(ctx, cpu_gpr[gprn]);
}
void spr_write_MMCR1(DisasContext *ctx, int sprn, int gprn)
{
gen_icount_io_start(ctx);
gen_helper_store_mmcr1(cpu_env, cpu_gpr[gprn]);
}
#else
void spr_read_MMCR0_ureg(DisasContext *ctx, int gprn, int sprn)
{
spr_read_ureg(ctx, gprn, sprn);
}
void spr_write_MMCR0_ureg(DisasContext *ctx, int sprn, int gprn)
{
spr_noaccess(ctx, gprn, sprn);
}
void spr_read_MMCR2_ureg(DisasContext *ctx, int gprn, int sprn)
{
spr_read_ureg(ctx, gprn, sprn);
}
void spr_write_MMCR2_ureg(DisasContext *ctx, int sprn, int gprn)
{
spr_noaccess(ctx, gprn, sprn);
}
void spr_read_PMC14_ureg(DisasContext *ctx, int gprn, int sprn)
{
spr_read_ureg(ctx, gprn, sprn);
}
void spr_read_PMC56_ureg(DisasContext *ctx, int gprn, int sprn)
{
spr_read_ureg(ctx, gprn, sprn);
}
void spr_write_PMC14_ureg(DisasContext *ctx, int sprn, int gprn)
{
spr_noaccess(ctx, gprn, sprn);
}
void spr_write_PMC56_ureg(DisasContext *ctx, int sprn, int gprn)
{
spr_noaccess(ctx, gprn, sprn);
}
void spr_write_MMCR0(DisasContext *ctx, int sprn, int gprn)
{
spr_write_generic(ctx, sprn, gprn);
}
void spr_write_MMCR1(DisasContext *ctx, int sprn, int gprn)
{
spr_write_generic(ctx, sprn, gprn);
}
void spr_write_PMC(DisasContext *ctx, int sprn, int gprn)
{
spr_write_generic(ctx, sprn, gprn);
}
#endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */