| /* This is the Linux kernel elf-loading code, ported into user space */ |
| #include "qemu/osdep.h" |
| #include <sys/param.h> |
| |
| #include <sys/resource.h> |
| #include <sys/shm.h> |
| |
| #include "qemu.h" |
| #include "disas/disas.h" |
| #include "qemu/path.h" |
| #include "qemu/queue.h" |
| #include "qemu/guest-random.h" |
| #include "qemu/units.h" |
| #include "qemu/selfmap.h" |
| |
| #ifdef _ARCH_PPC64 |
| #undef ARCH_DLINFO |
| #undef ELF_PLATFORM |
| #undef ELF_HWCAP |
| #undef ELF_HWCAP2 |
| #undef ELF_CLASS |
| #undef ELF_DATA |
| #undef ELF_ARCH |
| #endif |
| |
| #define ELF_OSABI ELFOSABI_SYSV |
| |
| /* from personality.h */ |
| |
| /* |
| * Flags for bug emulation. |
| * |
| * These occupy the top three bytes. |
| */ |
| enum { |
| ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ |
| FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to |
| descriptors (signal handling) */ |
| MMAP_PAGE_ZERO = 0x0100000, |
| ADDR_COMPAT_LAYOUT = 0x0200000, |
| READ_IMPLIES_EXEC = 0x0400000, |
| ADDR_LIMIT_32BIT = 0x0800000, |
| SHORT_INODE = 0x1000000, |
| WHOLE_SECONDS = 0x2000000, |
| STICKY_TIMEOUTS = 0x4000000, |
| ADDR_LIMIT_3GB = 0x8000000, |
| }; |
| |
| /* |
| * Personality types. |
| * |
| * These go in the low byte. Avoid using the top bit, it will |
| * conflict with error returns. |
| */ |
| enum { |
| PER_LINUX = 0x0000, |
| PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, |
| PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, |
| PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, |
| PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, |
| PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, |
| PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, |
| PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, |
| PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, |
| PER_BSD = 0x0006, |
| PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, |
| PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, |
| PER_LINUX32 = 0x0008, |
| PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, |
| PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ |
| PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ |
| PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ |
| PER_RISCOS = 0x000c, |
| PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, |
| PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, |
| PER_OSF4 = 0x000f, /* OSF/1 v4 */ |
| PER_HPUX = 0x0010, |
| PER_MASK = 0x00ff, |
| }; |
| |
| /* |
| * Return the base personality without flags. |
| */ |
| #define personality(pers) (pers & PER_MASK) |
| |
| int info_is_fdpic(struct image_info *info) |
| { |
| return info->personality == PER_LINUX_FDPIC; |
| } |
| |
| /* this flag is uneffective under linux too, should be deleted */ |
| #ifndef MAP_DENYWRITE |
| #define MAP_DENYWRITE 0 |
| #endif |
| |
| /* should probably go in elf.h */ |
| #ifndef ELIBBAD |
| #define ELIBBAD 80 |
| #endif |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| #define ELF_DATA ELFDATA2MSB |
| #else |
| #define ELF_DATA ELFDATA2LSB |
| #endif |
| |
| #ifdef TARGET_ABI_MIPSN32 |
| typedef abi_ullong target_elf_greg_t; |
| #define tswapreg(ptr) tswap64(ptr) |
| #else |
| typedef abi_ulong target_elf_greg_t; |
| #define tswapreg(ptr) tswapal(ptr) |
| #endif |
| |
| #ifdef USE_UID16 |
| typedef abi_ushort target_uid_t; |
| typedef abi_ushort target_gid_t; |
| #else |
| typedef abi_uint target_uid_t; |
| typedef abi_uint target_gid_t; |
| #endif |
| typedef abi_int target_pid_t; |
| |
| #ifdef TARGET_I386 |
| |
| #define ELF_PLATFORM get_elf_platform() |
| |
| static const char *get_elf_platform(void) |
| { |
| static char elf_platform[] = "i386"; |
| int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); |
| if (family > 6) |
| family = 6; |
| if (family >= 3) |
| elf_platform[1] = '0' + family; |
| return elf_platform; |
| } |
| |
| #define ELF_HWCAP get_elf_hwcap() |
| |
| static uint32_t get_elf_hwcap(void) |
| { |
| X86CPU *cpu = X86_CPU(thread_cpu); |
| |
| return cpu->env.features[FEAT_1_EDX]; |
| } |
| |
| #ifdef TARGET_X86_64 |
| #define ELF_START_MMAP 0x2aaaaab000ULL |
| |
| #define ELF_CLASS ELFCLASS64 |
| #define ELF_ARCH EM_X86_64 |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| regs->rax = 0; |
| regs->rsp = infop->start_stack; |
| regs->rip = infop->entry; |
| } |
| |
| #define ELF_NREG 27 |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| |
| /* |
| * Note that ELF_NREG should be 29 as there should be place for |
| * TRAPNO and ERR "registers" as well but linux doesn't dump |
| * those. |
| * |
| * See linux kernel: arch/x86/include/asm/elf.h |
| */ |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) |
| { |
| (*regs)[0] = env->regs[15]; |
| (*regs)[1] = env->regs[14]; |
| (*regs)[2] = env->regs[13]; |
| (*regs)[3] = env->regs[12]; |
| (*regs)[4] = env->regs[R_EBP]; |
| (*regs)[5] = env->regs[R_EBX]; |
| (*regs)[6] = env->regs[11]; |
| (*regs)[7] = env->regs[10]; |
| (*regs)[8] = env->regs[9]; |
| (*regs)[9] = env->regs[8]; |
| (*regs)[10] = env->regs[R_EAX]; |
| (*regs)[11] = env->regs[R_ECX]; |
| (*regs)[12] = env->regs[R_EDX]; |
| (*regs)[13] = env->regs[R_ESI]; |
| (*regs)[14] = env->regs[R_EDI]; |
| (*regs)[15] = env->regs[R_EAX]; /* XXX */ |
| (*regs)[16] = env->eip; |
| (*regs)[17] = env->segs[R_CS].selector & 0xffff; |
| (*regs)[18] = env->eflags; |
| (*regs)[19] = env->regs[R_ESP]; |
| (*regs)[20] = env->segs[R_SS].selector & 0xffff; |
| (*regs)[21] = env->segs[R_FS].selector & 0xffff; |
| (*regs)[22] = env->segs[R_GS].selector & 0xffff; |
| (*regs)[23] = env->segs[R_DS].selector & 0xffff; |
| (*regs)[24] = env->segs[R_ES].selector & 0xffff; |
| (*regs)[25] = env->segs[R_FS].selector & 0xffff; |
| (*regs)[26] = env->segs[R_GS].selector & 0xffff; |
| } |
| |
| #else |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| /* |
| * This is used to ensure we don't load something for the wrong architecture. |
| */ |
| #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) |
| |
| /* |
| * These are used to set parameters in the core dumps. |
| */ |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_ARCH EM_386 |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| regs->esp = infop->start_stack; |
| regs->eip = infop->entry; |
| |
| /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program |
| starts %edx contains a pointer to a function which might be |
| registered using `atexit'. This provides a mean for the |
| dynamic linker to call DT_FINI functions for shared libraries |
| that have been loaded before the code runs. |
| |
| A value of 0 tells we have no such handler. */ |
| regs->edx = 0; |
| } |
| |
| #define ELF_NREG 17 |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| |
| /* |
| * Note that ELF_NREG should be 19 as there should be place for |
| * TRAPNO and ERR "registers" as well but linux doesn't dump |
| * those. |
| * |
| * See linux kernel: arch/x86/include/asm/elf.h |
| */ |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) |
| { |
| (*regs)[0] = env->regs[R_EBX]; |
| (*regs)[1] = env->regs[R_ECX]; |
| (*regs)[2] = env->regs[R_EDX]; |
| (*regs)[3] = env->regs[R_ESI]; |
| (*regs)[4] = env->regs[R_EDI]; |
| (*regs)[5] = env->regs[R_EBP]; |
| (*regs)[6] = env->regs[R_EAX]; |
| (*regs)[7] = env->segs[R_DS].selector & 0xffff; |
| (*regs)[8] = env->segs[R_ES].selector & 0xffff; |
| (*regs)[9] = env->segs[R_FS].selector & 0xffff; |
| (*regs)[10] = env->segs[R_GS].selector & 0xffff; |
| (*regs)[11] = env->regs[R_EAX]; /* XXX */ |
| (*regs)[12] = env->eip; |
| (*regs)[13] = env->segs[R_CS].selector & 0xffff; |
| (*regs)[14] = env->eflags; |
| (*regs)[15] = env->regs[R_ESP]; |
| (*regs)[16] = env->segs[R_SS].selector & 0xffff; |
| } |
| #endif |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| #endif |
| |
| #ifdef TARGET_ARM |
| |
| #ifndef TARGET_AARCH64 |
| /* 32 bit ARM definitions */ |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define ELF_ARCH EM_ARM |
| #define ELF_CLASS ELFCLASS32 |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| abi_long stack = infop->start_stack; |
| memset(regs, 0, sizeof(*regs)); |
| |
| regs->uregs[16] = ARM_CPU_MODE_USR; |
| if (infop->entry & 1) { |
| regs->uregs[16] |= CPSR_T; |
| } |
| regs->uregs[15] = infop->entry & 0xfffffffe; |
| regs->uregs[13] = infop->start_stack; |
| /* FIXME - what to for failure of get_user()? */ |
| get_user_ual(regs->uregs[2], stack + 8); /* envp */ |
| get_user_ual(regs->uregs[1], stack + 4); /* envp */ |
| /* XXX: it seems that r0 is zeroed after ! */ |
| regs->uregs[0] = 0; |
| /* For uClinux PIC binaries. */ |
| /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ |
| regs->uregs[10] = infop->start_data; |
| |
| /* Support ARM FDPIC. */ |
| if (info_is_fdpic(infop)) { |
| /* As described in the ABI document, r7 points to the loadmap info |
| * prepared by the kernel. If an interpreter is needed, r8 points |
| * to the interpreter loadmap and r9 points to the interpreter |
| * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and |
| * r9 points to the main program PT_DYNAMIC info. |
| */ |
| regs->uregs[7] = infop->loadmap_addr; |
| if (infop->interpreter_loadmap_addr) { |
| /* Executable is dynamically loaded. */ |
| regs->uregs[8] = infop->interpreter_loadmap_addr; |
| regs->uregs[9] = infop->interpreter_pt_dynamic_addr; |
| } else { |
| regs->uregs[8] = 0; |
| regs->uregs[9] = infop->pt_dynamic_addr; |
| } |
| } |
| } |
| |
| #define ELF_NREG 18 |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) |
| { |
| (*regs)[0] = tswapreg(env->regs[0]); |
| (*regs)[1] = tswapreg(env->regs[1]); |
| (*regs)[2] = tswapreg(env->regs[2]); |
| (*regs)[3] = tswapreg(env->regs[3]); |
| (*regs)[4] = tswapreg(env->regs[4]); |
| (*regs)[5] = tswapreg(env->regs[5]); |
| (*regs)[6] = tswapreg(env->regs[6]); |
| (*regs)[7] = tswapreg(env->regs[7]); |
| (*regs)[8] = tswapreg(env->regs[8]); |
| (*regs)[9] = tswapreg(env->regs[9]); |
| (*regs)[10] = tswapreg(env->regs[10]); |
| (*regs)[11] = tswapreg(env->regs[11]); |
| (*regs)[12] = tswapreg(env->regs[12]); |
| (*regs)[13] = tswapreg(env->regs[13]); |
| (*regs)[14] = tswapreg(env->regs[14]); |
| (*regs)[15] = tswapreg(env->regs[15]); |
| |
| (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); |
| (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| enum |
| { |
| ARM_HWCAP_ARM_SWP = 1 << 0, |
| ARM_HWCAP_ARM_HALF = 1 << 1, |
| ARM_HWCAP_ARM_THUMB = 1 << 2, |
| ARM_HWCAP_ARM_26BIT = 1 << 3, |
| ARM_HWCAP_ARM_FAST_MULT = 1 << 4, |
| ARM_HWCAP_ARM_FPA = 1 << 5, |
| ARM_HWCAP_ARM_VFP = 1 << 6, |
| ARM_HWCAP_ARM_EDSP = 1 << 7, |
| ARM_HWCAP_ARM_JAVA = 1 << 8, |
| ARM_HWCAP_ARM_IWMMXT = 1 << 9, |
| ARM_HWCAP_ARM_CRUNCH = 1 << 10, |
| ARM_HWCAP_ARM_THUMBEE = 1 << 11, |
| ARM_HWCAP_ARM_NEON = 1 << 12, |
| ARM_HWCAP_ARM_VFPv3 = 1 << 13, |
| ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, |
| ARM_HWCAP_ARM_TLS = 1 << 15, |
| ARM_HWCAP_ARM_VFPv4 = 1 << 16, |
| ARM_HWCAP_ARM_IDIVA = 1 << 17, |
| ARM_HWCAP_ARM_IDIVT = 1 << 18, |
| ARM_HWCAP_ARM_VFPD32 = 1 << 19, |
| ARM_HWCAP_ARM_LPAE = 1 << 20, |
| ARM_HWCAP_ARM_EVTSTRM = 1 << 21, |
| }; |
| |
| enum { |
| ARM_HWCAP2_ARM_AES = 1 << 0, |
| ARM_HWCAP2_ARM_PMULL = 1 << 1, |
| ARM_HWCAP2_ARM_SHA1 = 1 << 2, |
| ARM_HWCAP2_ARM_SHA2 = 1 << 3, |
| ARM_HWCAP2_ARM_CRC32 = 1 << 4, |
| }; |
| |
| /* The commpage only exists for 32 bit kernels */ |
| |
| #define ARM_COMMPAGE (intptr_t)0xffff0f00u |
| |
| static bool init_guest_commpage(void) |
| { |
| void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size); |
| void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, |
| MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); |
| |
| if (addr == MAP_FAILED) { |
| perror("Allocating guest commpage"); |
| exit(EXIT_FAILURE); |
| } |
| if (addr != want) { |
| return false; |
| } |
| |
| /* Set kernel helper versions; rest of page is 0. */ |
| __put_user(5, (uint32_t *)g2h(0xffff0ffcu)); |
| |
| if (mprotect(addr, qemu_host_page_size, PROT_READ)) { |
| perror("Protecting guest commpage"); |
| exit(EXIT_FAILURE); |
| } |
| return true; |
| } |
| |
| #define ELF_HWCAP get_elf_hwcap() |
| #define ELF_HWCAP2 get_elf_hwcap2() |
| |
| static uint32_t get_elf_hwcap(void) |
| { |
| ARMCPU *cpu = ARM_CPU(thread_cpu); |
| uint32_t hwcaps = 0; |
| |
| hwcaps |= ARM_HWCAP_ARM_SWP; |
| hwcaps |= ARM_HWCAP_ARM_HALF; |
| hwcaps |= ARM_HWCAP_ARM_THUMB; |
| hwcaps |= ARM_HWCAP_ARM_FAST_MULT; |
| |
| /* probe for the extra features */ |
| #define GET_FEATURE(feat, hwcap) \ |
| do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) |
| |
| #define GET_FEATURE_ID(feat, hwcap) \ |
| do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) |
| |
| /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ |
| GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); |
| GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); |
| GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); |
| GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); |
| GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); |
| GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); |
| GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); |
| GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); |
| GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); |
| |
| if (cpu_isar_feature(aa32_fpsp_v3, cpu) || |
| cpu_isar_feature(aa32_fpdp_v3, cpu)) { |
| hwcaps |= ARM_HWCAP_ARM_VFPv3; |
| if (cpu_isar_feature(aa32_simd_r32, cpu)) { |
| hwcaps |= ARM_HWCAP_ARM_VFPD32; |
| } else { |
| hwcaps |= ARM_HWCAP_ARM_VFPv3D16; |
| } |
| } |
| GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); |
| |
| return hwcaps; |
| } |
| |
| static uint32_t get_elf_hwcap2(void) |
| { |
| ARMCPU *cpu = ARM_CPU(thread_cpu); |
| uint32_t hwcaps = 0; |
| |
| GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); |
| GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); |
| GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); |
| GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); |
| GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); |
| return hwcaps; |
| } |
| |
| #undef GET_FEATURE |
| #undef GET_FEATURE_ID |
| |
| #define ELF_PLATFORM get_elf_platform() |
| |
| static const char *get_elf_platform(void) |
| { |
| CPUARMState *env = thread_cpu->env_ptr; |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| # define END "b" |
| #else |
| # define END "l" |
| #endif |
| |
| if (arm_feature(env, ARM_FEATURE_V8)) { |
| return "v8" END; |
| } else if (arm_feature(env, ARM_FEATURE_V7)) { |
| if (arm_feature(env, ARM_FEATURE_M)) { |
| return "v7m" END; |
| } else { |
| return "v7" END; |
| } |
| } else if (arm_feature(env, ARM_FEATURE_V6)) { |
| return "v6" END; |
| } else if (arm_feature(env, ARM_FEATURE_V5)) { |
| return "v5" END; |
| } else { |
| return "v4" END; |
| } |
| |
| #undef END |
| } |
| |
| #else |
| /* 64 bit ARM definitions */ |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define ELF_ARCH EM_AARCH64 |
| #define ELF_CLASS ELFCLASS64 |
| #ifdef TARGET_WORDS_BIGENDIAN |
| # define ELF_PLATFORM "aarch64_be" |
| #else |
| # define ELF_PLATFORM "aarch64" |
| #endif |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| abi_long stack = infop->start_stack; |
| memset(regs, 0, sizeof(*regs)); |
| |
| regs->pc = infop->entry & ~0x3ULL; |
| regs->sp = stack; |
| } |
| |
| #define ELF_NREG 34 |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, |
| const CPUARMState *env) |
| { |
| int i; |
| |
| for (i = 0; i < 32; i++) { |
| (*regs)[i] = tswapreg(env->xregs[i]); |
| } |
| (*regs)[32] = tswapreg(env->pc); |
| (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| enum { |
| ARM_HWCAP_A64_FP = 1 << 0, |
| ARM_HWCAP_A64_ASIMD = 1 << 1, |
| ARM_HWCAP_A64_EVTSTRM = 1 << 2, |
| ARM_HWCAP_A64_AES = 1 << 3, |
| ARM_HWCAP_A64_PMULL = 1 << 4, |
| ARM_HWCAP_A64_SHA1 = 1 << 5, |
| ARM_HWCAP_A64_SHA2 = 1 << 6, |
| ARM_HWCAP_A64_CRC32 = 1 << 7, |
| ARM_HWCAP_A64_ATOMICS = 1 << 8, |
| ARM_HWCAP_A64_FPHP = 1 << 9, |
| ARM_HWCAP_A64_ASIMDHP = 1 << 10, |
| ARM_HWCAP_A64_CPUID = 1 << 11, |
| ARM_HWCAP_A64_ASIMDRDM = 1 << 12, |
| ARM_HWCAP_A64_JSCVT = 1 << 13, |
| ARM_HWCAP_A64_FCMA = 1 << 14, |
| ARM_HWCAP_A64_LRCPC = 1 << 15, |
| ARM_HWCAP_A64_DCPOP = 1 << 16, |
| ARM_HWCAP_A64_SHA3 = 1 << 17, |
| ARM_HWCAP_A64_SM3 = 1 << 18, |
| ARM_HWCAP_A64_SM4 = 1 << 19, |
| ARM_HWCAP_A64_ASIMDDP = 1 << 20, |
| ARM_HWCAP_A64_SHA512 = 1 << 21, |
| ARM_HWCAP_A64_SVE = 1 << 22, |
| ARM_HWCAP_A64_ASIMDFHM = 1 << 23, |
| ARM_HWCAP_A64_DIT = 1 << 24, |
| ARM_HWCAP_A64_USCAT = 1 << 25, |
| ARM_HWCAP_A64_ILRCPC = 1 << 26, |
| ARM_HWCAP_A64_FLAGM = 1 << 27, |
| ARM_HWCAP_A64_SSBS = 1 << 28, |
| ARM_HWCAP_A64_SB = 1 << 29, |
| ARM_HWCAP_A64_PACA = 1 << 30, |
| ARM_HWCAP_A64_PACG = 1UL << 31, |
| |
| ARM_HWCAP2_A64_DCPODP = 1 << 0, |
| ARM_HWCAP2_A64_SVE2 = 1 << 1, |
| ARM_HWCAP2_A64_SVEAES = 1 << 2, |
| ARM_HWCAP2_A64_SVEPMULL = 1 << 3, |
| ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, |
| ARM_HWCAP2_A64_SVESHA3 = 1 << 5, |
| ARM_HWCAP2_A64_SVESM4 = 1 << 6, |
| ARM_HWCAP2_A64_FLAGM2 = 1 << 7, |
| ARM_HWCAP2_A64_FRINT = 1 << 8, |
| }; |
| |
| #define ELF_HWCAP get_elf_hwcap() |
| #define ELF_HWCAP2 get_elf_hwcap2() |
| |
| #define GET_FEATURE_ID(feat, hwcap) \ |
| do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) |
| |
| static uint32_t get_elf_hwcap(void) |
| { |
| ARMCPU *cpu = ARM_CPU(thread_cpu); |
| uint32_t hwcaps = 0; |
| |
| hwcaps |= ARM_HWCAP_A64_FP; |
| hwcaps |= ARM_HWCAP_A64_ASIMD; |
| hwcaps |= ARM_HWCAP_A64_CPUID; |
| |
| /* probe for the extra features */ |
| |
| GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); |
| GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); |
| GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); |
| GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); |
| GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); |
| GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); |
| GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); |
| GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); |
| GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); |
| GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); |
| GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); |
| GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); |
| GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); |
| GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); |
| GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); |
| GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); |
| GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); |
| GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); |
| GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); |
| GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); |
| GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); |
| GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); |
| GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); |
| |
| return hwcaps; |
| } |
| |
| static uint32_t get_elf_hwcap2(void) |
| { |
| ARMCPU *cpu = ARM_CPU(thread_cpu); |
| uint32_t hwcaps = 0; |
| |
| GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); |
| GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); |
| GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); |
| |
| return hwcaps; |
| } |
| |
| #undef GET_FEATURE_ID |
| |
| #endif /* not TARGET_AARCH64 */ |
| #endif /* TARGET_ARM */ |
| |
| #ifdef TARGET_SPARC |
| #ifdef TARGET_SPARC64 |
| |
| #define ELF_START_MMAP 0x80000000 |
| #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ |
| | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) |
| #ifndef TARGET_ABI32 |
| #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) |
| #else |
| #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) |
| #endif |
| |
| #define ELF_CLASS ELFCLASS64 |
| #define ELF_ARCH EM_SPARCV9 |
| |
| #define STACK_BIAS 2047 |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| #ifndef TARGET_ABI32 |
| regs->tstate = 0; |
| #endif |
| regs->pc = infop->entry; |
| regs->npc = regs->pc + 4; |
| regs->y = 0; |
| #ifdef TARGET_ABI32 |
| regs->u_regs[14] = infop->start_stack - 16 * 4; |
| #else |
| if (personality(infop->personality) == PER_LINUX32) |
| regs->u_regs[14] = infop->start_stack - 16 * 4; |
| else |
| regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; |
| #endif |
| } |
| |
| #else |
| #define ELF_START_MMAP 0x80000000 |
| #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ |
| | HWCAP_SPARC_MULDIV) |
| |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_ARCH EM_SPARC |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| regs->psr = 0; |
| regs->pc = infop->entry; |
| regs->npc = regs->pc + 4; |
| regs->y = 0; |
| regs->u_regs[14] = infop->start_stack - 16 * 4; |
| } |
| |
| #endif |
| #endif |
| |
| #ifdef TARGET_PPC |
| |
| #define ELF_MACHINE PPC_ELF_MACHINE |
| #define ELF_START_MMAP 0x80000000 |
| |
| #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
| |
| #define elf_check_arch(x) ( (x) == EM_PPC64 ) |
| |
| #define ELF_CLASS ELFCLASS64 |
| |
| #else |
| |
| #define ELF_CLASS ELFCLASS32 |
| |
| #endif |
| |
| #define ELF_ARCH EM_PPC |
| |
| /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). |
| See arch/powerpc/include/asm/cputable.h. */ |
| enum { |
| QEMU_PPC_FEATURE_32 = 0x80000000, |
| QEMU_PPC_FEATURE_64 = 0x40000000, |
| QEMU_PPC_FEATURE_601_INSTR = 0x20000000, |
| QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, |
| QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, |
| QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, |
| QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, |
| QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, |
| QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, |
| QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, |
| QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, |
| QEMU_PPC_FEATURE_NO_TB = 0x00100000, |
| QEMU_PPC_FEATURE_POWER4 = 0x00080000, |
| QEMU_PPC_FEATURE_POWER5 = 0x00040000, |
| QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, |
| QEMU_PPC_FEATURE_CELL = 0x00010000, |
| QEMU_PPC_FEATURE_BOOKE = 0x00008000, |
| QEMU_PPC_FEATURE_SMT = 0x00004000, |
| QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, |
| QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, |
| QEMU_PPC_FEATURE_PA6T = 0x00000800, |
| QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, |
| QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, |
| QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, |
| QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, |
| QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, |
| |
| QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, |
| QEMU_PPC_FEATURE_PPC_LE = 0x00000001, |
| |
| /* Feature definitions in AT_HWCAP2. */ |
| QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ |
| QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ |
| QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ |
| QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ |
| QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ |
| QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ |
| QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, |
| QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, |
| QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ |
| QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ |
| QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ |
| QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ |
| QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ |
| }; |
| |
| #define ELF_HWCAP get_elf_hwcap() |
| |
| static uint32_t get_elf_hwcap(void) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); |
| uint32_t features = 0; |
| |
| /* We don't have to be terribly complete here; the high points are |
| Altivec/FP/SPE support. Anything else is just a bonus. */ |
| #define GET_FEATURE(flag, feature) \ |
| do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) |
| #define GET_FEATURE2(flags, feature) \ |
| do { \ |
| if ((cpu->env.insns_flags2 & flags) == flags) { \ |
| features |= feature; \ |
| } \ |
| } while (0) |
| GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); |
| GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); |
| GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); |
| GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); |
| GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); |
| GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); |
| GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); |
| GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); |
| GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); |
| GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); |
| GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | |
| PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), |
| QEMU_PPC_FEATURE_ARCH_2_06); |
| #undef GET_FEATURE |
| #undef GET_FEATURE2 |
| |
| return features; |
| } |
| |
| #define ELF_HWCAP2 get_elf_hwcap2() |
| |
| static uint32_t get_elf_hwcap2(void) |
| { |
| PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); |
| uint32_t features = 0; |
| |
| #define GET_FEATURE(flag, feature) \ |
| do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) |
| #define GET_FEATURE2(flag, feature) \ |
| do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) |
| |
| GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); |
| GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); |
| GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | |
| PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | |
| QEMU_PPC_FEATURE2_VEC_CRYPTO); |
| GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | |
| QEMU_PPC_FEATURE2_DARN); |
| |
| #undef GET_FEATURE |
| #undef GET_FEATURE2 |
| |
| return features; |
| } |
| |
| /* |
| * The requirements here are: |
| * - keep the final alignment of sp (sp & 0xf) |
| * - make sure the 32-bit value at the first 16 byte aligned position of |
| * AUXV is greater than 16 for glibc compatibility. |
| * AT_IGNOREPPC is used for that. |
| * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, |
| * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. |
| */ |
| #define DLINFO_ARCH_ITEMS 5 |
| #define ARCH_DLINFO \ |
| do { \ |
| PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ |
| /* \ |
| * Handle glibc compatibility: these magic entries must \ |
| * be at the lowest addresses in the final auxv. \ |
| */ \ |
| NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ |
| NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ |
| NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ |
| NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ |
| NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ |
| } while (0) |
| |
| static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) |
| { |
| _regs->gpr[1] = infop->start_stack; |
| #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) |
| if (get_ppc64_abi(infop) < 2) { |
| uint64_t val; |
| get_user_u64(val, infop->entry + 8); |
| _regs->gpr[2] = val + infop->load_bias; |
| get_user_u64(val, infop->entry); |
| infop->entry = val + infop->load_bias; |
| } else { |
| _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ |
| } |
| #endif |
| _regs->nip = infop->entry; |
| } |
| |
| /* See linux kernel: arch/powerpc/include/asm/elf.h. */ |
| #define ELF_NREG 48 |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) |
| { |
| int i; |
| target_ulong ccr = 0; |
| |
| for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { |
| (*regs)[i] = tswapreg(env->gpr[i]); |
| } |
| |
| (*regs)[32] = tswapreg(env->nip); |
| (*regs)[33] = tswapreg(env->msr); |
| (*regs)[35] = tswapreg(env->ctr); |
| (*regs)[36] = tswapreg(env->lr); |
| (*regs)[37] = tswapreg(env->xer); |
| |
| for (i = 0; i < ARRAY_SIZE(env->crf); i++) { |
| ccr |= env->crf[i] << (32 - ((i + 1) * 4)); |
| } |
| (*regs)[38] = tswapreg(ccr); |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| #endif |
| |
| #ifdef TARGET_MIPS |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #ifdef TARGET_MIPS64 |
| #define ELF_CLASS ELFCLASS64 |
| #else |
| #define ELF_CLASS ELFCLASS32 |
| #endif |
| #define ELF_ARCH EM_MIPS |
| |
| #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| regs->cp0_status = 2 << CP0St_KSU; |
| regs->cp0_epc = infop->entry; |
| regs->regs[29] = infop->start_stack; |
| } |
| |
| /* See linux kernel: arch/mips/include/asm/elf.h. */ |
| #define ELF_NREG 45 |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| |
| /* See linux kernel: arch/mips/include/asm/reg.h. */ |
| enum { |
| #ifdef TARGET_MIPS64 |
| TARGET_EF_R0 = 0, |
| #else |
| TARGET_EF_R0 = 6, |
| #endif |
| TARGET_EF_R26 = TARGET_EF_R0 + 26, |
| TARGET_EF_R27 = TARGET_EF_R0 + 27, |
| TARGET_EF_LO = TARGET_EF_R0 + 32, |
| TARGET_EF_HI = TARGET_EF_R0 + 33, |
| TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, |
| TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, |
| TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, |
| TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 |
| }; |
| |
| /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) |
| { |
| int i; |
| |
| for (i = 0; i < TARGET_EF_R0; i++) { |
| (*regs)[i] = 0; |
| } |
| (*regs)[TARGET_EF_R0] = 0; |
| |
| for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { |
| (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); |
| } |
| |
| (*regs)[TARGET_EF_R26] = 0; |
| (*regs)[TARGET_EF_R27] = 0; |
| (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); |
| (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); |
| (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); |
| (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); |
| (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); |
| (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| /* See arch/mips/include/uapi/asm/hwcap.h. */ |
| enum { |
| HWCAP_MIPS_R6 = (1 << 0), |
| HWCAP_MIPS_MSA = (1 << 1), |
| }; |
| |
| #define ELF_HWCAP get_elf_hwcap() |
| |
| static uint32_t get_elf_hwcap(void) |
| { |
| MIPSCPU *cpu = MIPS_CPU(thread_cpu); |
| uint32_t hwcaps = 0; |
| |
| #define GET_FEATURE(flag, hwcap) \ |
| do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) |
| |
| GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); |
| GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); |
| |
| #undef GET_FEATURE |
| |
| return hwcaps; |
| } |
| |
| #endif /* TARGET_MIPS */ |
| |
| #ifdef TARGET_MICROBLAZE |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) |
| |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_ARCH EM_MICROBLAZE |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| regs->pc = infop->entry; |
| regs->r1 = infop->start_stack; |
| |
| } |
| |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_NREG 38 |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| |
| /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) |
| { |
| int i, pos = 0; |
| |
| for (i = 0; i < 32; i++) { |
| (*regs)[pos++] = tswapreg(env->regs[i]); |
| } |
| |
| for (i = 0; i < 6; i++) { |
| (*regs)[pos++] = tswapreg(env->sregs[i]); |
| } |
| } |
| |
| #endif /* TARGET_MICROBLAZE */ |
| |
| #ifdef TARGET_NIOS2 |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) |
| |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_ARCH EM_ALTERA_NIOS2 |
| |
| static void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| regs->ea = infop->entry; |
| regs->sp = infop->start_stack; |
| regs->estatus = 0x3; |
| } |
| |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_NREG 49 |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| |
| /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, |
| const CPUNios2State *env) |
| { |
| int i; |
| |
| (*regs)[0] = -1; |
| for (i = 1; i < 8; i++) /* r0-r7 */ |
| (*regs)[i] = tswapreg(env->regs[i + 7]); |
| |
| for (i = 8; i < 16; i++) /* r8-r15 */ |
| (*regs)[i] = tswapreg(env->regs[i - 8]); |
| |
| for (i = 16; i < 24; i++) /* r16-r23 */ |
| (*regs)[i] = tswapreg(env->regs[i + 7]); |
| (*regs)[24] = -1; /* R_ET */ |
| (*regs)[25] = -1; /* R_BT */ |
| (*regs)[26] = tswapreg(env->regs[R_GP]); |
| (*regs)[27] = tswapreg(env->regs[R_SP]); |
| (*regs)[28] = tswapreg(env->regs[R_FP]); |
| (*regs)[29] = tswapreg(env->regs[R_EA]); |
| (*regs)[30] = -1; /* R_SSTATUS */ |
| (*regs)[31] = tswapreg(env->regs[R_RA]); |
| |
| (*regs)[32] = tswapreg(env->regs[R_PC]); |
| |
| (*regs)[33] = -1; /* R_STATUS */ |
| (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); |
| |
| for (i = 35; i < 49; i++) /* ... */ |
| (*regs)[i] = -1; |
| } |
| |
| #endif /* TARGET_NIOS2 */ |
| |
| #ifdef TARGET_OPENRISC |
| |
| #define ELF_START_MMAP 0x08000000 |
| |
| #define ELF_ARCH EM_OPENRISC |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_DATA ELFDATA2MSB |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| regs->pc = infop->entry; |
| regs->gpr[1] = infop->start_stack; |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 8192 |
| |
| /* See linux kernel arch/openrisc/include/asm/elf.h. */ |
| #define ELF_NREG 34 /* gprs and pc, sr */ |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, |
| const CPUOpenRISCState *env) |
| { |
| int i; |
| |
| for (i = 0; i < 32; i++) { |
| (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); |
| } |
| (*regs)[32] = tswapreg(env->pc); |
| (*regs)[33] = tswapreg(cpu_get_sr(env)); |
| } |
| #define ELF_HWCAP 0 |
| #define ELF_PLATFORM NULL |
| |
| #endif /* TARGET_OPENRISC */ |
| |
| #ifdef TARGET_SH4 |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_ARCH EM_SH |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| /* Check other registers XXXXX */ |
| regs->pc = infop->entry; |
| regs->regs[15] = infop->start_stack; |
| } |
| |
| /* See linux kernel: arch/sh/include/asm/elf.h. */ |
| #define ELF_NREG 23 |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| |
| /* See linux kernel: arch/sh/include/asm/ptrace.h. */ |
| enum { |
| TARGET_REG_PC = 16, |
| TARGET_REG_PR = 17, |
| TARGET_REG_SR = 18, |
| TARGET_REG_GBR = 19, |
| TARGET_REG_MACH = 20, |
| TARGET_REG_MACL = 21, |
| TARGET_REG_SYSCALL = 22 |
| }; |
| |
| static inline void elf_core_copy_regs(target_elf_gregset_t *regs, |
| const CPUSH4State *env) |
| { |
| int i; |
| |
| for (i = 0; i < 16; i++) { |
| (*regs)[i] = tswapreg(env->gregs[i]); |
| } |
| |
| (*regs)[TARGET_REG_PC] = tswapreg(env->pc); |
| (*regs)[TARGET_REG_PR] = tswapreg(env->pr); |
| (*regs)[TARGET_REG_SR] = tswapreg(env->sr); |
| (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); |
| (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); |
| (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); |
| (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| enum { |
| SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ |
| SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ |
| SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ |
| SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ |
| SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ |
| SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ |
| SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ |
| SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ |
| SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ |
| SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ |
| }; |
| |
| #define ELF_HWCAP get_elf_hwcap() |
| |
| static uint32_t get_elf_hwcap(void) |
| { |
| SuperHCPU *cpu = SUPERH_CPU(thread_cpu); |
| uint32_t hwcap = 0; |
| |
| hwcap |= SH_CPU_HAS_FPU; |
| |
| if (cpu->env.features & SH_FEATURE_SH4A) { |
| hwcap |= SH_CPU_HAS_LLSC; |
| } |
| |
| return hwcap; |
| } |
| |
| #endif |
| |
| #ifdef TARGET_CRIS |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_ARCH EM_CRIS |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| regs->erp = infop->entry; |
| } |
| |
| #define ELF_EXEC_PAGESIZE 8192 |
| |
| #endif |
| |
| #ifdef TARGET_M68K |
| |
| #define ELF_START_MMAP 0x80000000 |
| |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_ARCH EM_68K |
| |
| /* ??? Does this need to do anything? |
| #define ELF_PLAT_INIT(_r) */ |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| regs->usp = infop->start_stack; |
| regs->sr = 0; |
| regs->pc = infop->entry; |
| } |
| |
| /* See linux kernel: arch/m68k/include/asm/elf.h. */ |
| #define ELF_NREG 20 |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) |
| { |
| (*regs)[0] = tswapreg(env->dregs[1]); |
| (*regs)[1] = tswapreg(env->dregs[2]); |
| (*regs)[2] = tswapreg(env->dregs[3]); |
| (*regs)[3] = tswapreg(env->dregs[4]); |
| (*regs)[4] = tswapreg(env->dregs[5]); |
| (*regs)[5] = tswapreg(env->dregs[6]); |
| (*regs)[6] = tswapreg(env->dregs[7]); |
| (*regs)[7] = tswapreg(env->aregs[0]); |
| (*regs)[8] = tswapreg(env->aregs[1]); |
| (*regs)[9] = tswapreg(env->aregs[2]); |
| (*regs)[10] = tswapreg(env->aregs[3]); |
| (*regs)[11] = tswapreg(env->aregs[4]); |
| (*regs)[12] = tswapreg(env->aregs[5]); |
| (*regs)[13] = tswapreg(env->aregs[6]); |
| (*regs)[14] = tswapreg(env->dregs[0]); |
| (*regs)[15] = tswapreg(env->aregs[7]); |
| (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ |
| (*regs)[17] = tswapreg(env->sr); |
| (*regs)[18] = tswapreg(env->pc); |
| (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 8192 |
| |
| #endif |
| |
| #ifdef TARGET_ALPHA |
| |
| #define ELF_START_MMAP (0x30000000000ULL) |
| |
| #define ELF_CLASS ELFCLASS64 |
| #define ELF_ARCH EM_ALPHA |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| regs->pc = infop->entry; |
| regs->ps = 8; |
| regs->usp = infop->start_stack; |
| } |
| |
| #define ELF_EXEC_PAGESIZE 8192 |
| |
| #endif /* TARGET_ALPHA */ |
| |
| #ifdef TARGET_S390X |
| |
| #define ELF_START_MMAP (0x20000000000ULL) |
| |
| #define ELF_CLASS ELFCLASS64 |
| #define ELF_DATA ELFDATA2MSB |
| #define ELF_ARCH EM_S390 |
| |
| #include "elf.h" |
| |
| #define ELF_HWCAP get_elf_hwcap() |
| |
| #define GET_FEATURE(_feat, _hwcap) \ |
| do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) |
| |
| static uint32_t get_elf_hwcap(void) |
| { |
| /* |
| * Let's assume we always have esan3 and zarch. |
| * 31-bit processes can use 64-bit registers (high gprs). |
| */ |
| uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; |
| |
| GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); |
| GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); |
| GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); |
| GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); |
| if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && |
| s390_has_feat(S390_FEAT_ETF3_ENH)) { |
| hwcap |= HWCAP_S390_ETF3EH; |
| } |
| GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); |
| |
| return hwcap; |
| } |
| |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| regs->psw.addr = infop->entry; |
| regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; |
| regs->gprs[15] = infop->start_stack; |
| } |
| |
| #endif /* TARGET_S390X */ |
| |
| #ifdef TARGET_TILEGX |
| |
| /* 42 bits real used address, a half for user mode */ |
| #define ELF_START_MMAP (0x00000020000000000ULL) |
| |
| #define elf_check_arch(x) ((x) == EM_TILEGX) |
| |
| #define ELF_CLASS ELFCLASS64 |
| #define ELF_DATA ELFDATA2LSB |
| #define ELF_ARCH EM_TILEGX |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| regs->pc = infop->entry; |
| regs->sp = infop->start_stack; |
| |
| } |
| |
| #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ |
| |
| #endif /* TARGET_TILEGX */ |
| |
| #ifdef TARGET_RISCV |
| |
| #define ELF_START_MMAP 0x80000000 |
| #define ELF_ARCH EM_RISCV |
| |
| #ifdef TARGET_RISCV32 |
| #define ELF_CLASS ELFCLASS32 |
| #else |
| #define ELF_CLASS ELFCLASS64 |
| #endif |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| regs->sepc = infop->entry; |
| regs->sp = infop->start_stack; |
| } |
| |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| #endif /* TARGET_RISCV */ |
| |
| #ifdef TARGET_HPPA |
| |
| #define ELF_START_MMAP 0x80000000 |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_ARCH EM_PARISC |
| #define ELF_PLATFORM "PARISC" |
| #define STACK_GROWS_DOWN 0 |
| #define STACK_ALIGNMENT 64 |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| regs->iaoq[0] = infop->entry; |
| regs->iaoq[1] = infop->entry + 4; |
| regs->gr[23] = 0; |
| regs->gr[24] = infop->arg_start; |
| regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); |
| /* The top-of-stack contains a linkage buffer. */ |
| regs->gr[30] = infop->start_stack + 64; |
| regs->gr[31] = infop->entry; |
| } |
| |
| #endif /* TARGET_HPPA */ |
| |
| #ifdef TARGET_XTENSA |
| |
| #define ELF_START_MMAP 0x20000000 |
| |
| #define ELF_CLASS ELFCLASS32 |
| #define ELF_ARCH EM_XTENSA |
| |
| static inline void init_thread(struct target_pt_regs *regs, |
| struct image_info *infop) |
| { |
| regs->windowbase = 0; |
| regs->windowstart = 1; |
| regs->areg[1] = infop->start_stack; |
| regs->pc = infop->entry; |
| } |
| |
| /* See linux kernel: arch/xtensa/include/asm/elf.h. */ |
| #define ELF_NREG 128 |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| |
| enum { |
| TARGET_REG_PC, |
| TARGET_REG_PS, |
| TARGET_REG_LBEG, |
| TARGET_REG_LEND, |
| TARGET_REG_LCOUNT, |
| TARGET_REG_SAR, |
| TARGET_REG_WINDOWSTART, |
| TARGET_REG_WINDOWBASE, |
| TARGET_REG_THREADPTR, |
| TARGET_REG_AR0 = 64, |
| }; |
| |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, |
| const CPUXtensaState *env) |
| { |
| unsigned i; |
| |
| (*regs)[TARGET_REG_PC] = tswapreg(env->pc); |
| (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); |
| (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); |
| (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); |
| (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); |
| (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); |
| (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); |
| (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); |
| (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); |
| xtensa_sync_phys_from_window((CPUXtensaState *)env); |
| for (i = 0; i < env->config->nareg; ++i) { |
| (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); |
| } |
| } |
| |
| #define USE_ELF_CORE_DUMP |
| #define ELF_EXEC_PAGESIZE 4096 |
| |
| #endif /* TARGET_XTENSA */ |
| |
| #ifndef ELF_PLATFORM |
| #define ELF_PLATFORM (NULL) |
| #endif |
| |
| #ifndef ELF_MACHINE |
| #define ELF_MACHINE ELF_ARCH |
| #endif |
| |
| #ifndef elf_check_arch |
| #define elf_check_arch(x) ((x) == ELF_ARCH) |
| #endif |
| |
| #ifndef ELF_HWCAP |
| #define ELF_HWCAP 0 |
| #endif |
| |
| #ifndef STACK_GROWS_DOWN |
| #define STACK_GROWS_DOWN 1 |
| #endif |
| |
| #ifndef STACK_ALIGNMENT |
| #define STACK_ALIGNMENT 16 |
| #endif |
| |
| #ifdef TARGET_ABI32 |
| #undef ELF_CLASS |
| #define ELF_CLASS ELFCLASS32 |
| #undef bswaptls |
| #define bswaptls(ptr) bswap32s(ptr) |
| #endif |
| |
| #include "elf.h" |
| |
| struct exec |
| { |
| unsigned int a_info; /* Use macros N_MAGIC, etc for access */ |
| unsigned int a_text; /* length of text, in bytes */ |
| unsigned int a_data; /* length of data, in bytes */ |
| unsigned int a_bss; /* length of uninitialized data area, in bytes */ |
| unsigned int a_syms; /* length of symbol table data in file, in bytes */ |
| unsigned int a_entry; /* start address */ |
| unsigned int a_trsize; /* length of relocation info for text, in bytes */ |
| unsigned int a_drsize; /* length of relocation info for data, in bytes */ |
| }; |
| |
| |
| #define N_MAGIC(exec) ((exec).a_info & 0xffff) |
| #define OMAGIC 0407 |
| #define NMAGIC 0410 |
| #define ZMAGIC 0413 |
| #define QMAGIC 0314 |
| |
| /* Necessary parameters */ |
| #define TARGET_ELF_EXEC_PAGESIZE \ |
| (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ |
| TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) |
| #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) |
| #define TARGET_ELF_PAGESTART(_v) ((_v) & \ |
| ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) |
| #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) |
| |
| #define DLINFO_ITEMS 16 |
| |
| static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) |
| { |
| memcpy(to, from, n); |
| } |
| |
| #ifdef BSWAP_NEEDED |
| static void bswap_ehdr(struct elfhdr *ehdr) |
| { |
| bswap16s(&ehdr->e_type); /* Object file type */ |
| bswap16s(&ehdr->e_machine); /* Architecture */ |
| bswap32s(&ehdr->e_version); /* Object file version */ |
| bswaptls(&ehdr->e_entry); /* Entry point virtual address */ |
| bswaptls(&ehdr->e_phoff); /* Program header table file offset */ |
| bswaptls(&ehdr->e_shoff); /* Section header table file offset */ |
| bswap32s(&ehdr->e_flags); /* Processor-specific flags */ |
| bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ |
| bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ |
| bswap16s(&ehdr->e_phnum); /* Program header table entry count */ |
| bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ |
| bswap16s(&ehdr->e_shnum); /* Section header table entry count */ |
| bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ |
| } |
| |
| static void bswap_phdr(struct elf_phdr *phdr, int phnum) |
| { |
| int i; |
| for (i = 0; i < phnum; ++i, ++phdr) { |
| bswap32s(&phdr->p_type); /* Segment type */ |
| bswap32s(&phdr->p_flags); /* Segment flags */ |
| bswaptls(&phdr->p_offset); /* Segment file offset */ |
| bswaptls(&phdr->p_vaddr); /* Segment virtual address */ |
| bswaptls(&phdr->p_paddr); /* Segment physical address */ |
| bswaptls(&phdr->p_filesz); /* Segment size in file */ |
| bswaptls(&phdr->p_memsz); /* Segment size in memory */ |
| bswaptls(&phdr->p_align); /* Segment alignment */ |
| } |
| } |
| |
| static void bswap_shdr(struct elf_shdr *shdr, int shnum) |
| { |
| int i; |
| for (i = 0; i < shnum; ++i, ++shdr) { |
| bswap32s(&shdr->sh_name); |
| bswap32s(&shdr->sh_type); |
| bswaptls(&shdr->sh_flags); |
| bswaptls(&shdr->sh_addr); |
| bswaptls(&shdr->sh_offset); |
| bswaptls(&shdr->sh_size); |
| bswap32s(&shdr->sh_link); |
| bswap32s(&shdr->sh_info); |
| bswaptls(&shdr->sh_addralign); |
| bswaptls(&shdr->sh_entsize); |
| } |
| } |
| |
| static void bswap_sym(struct elf_sym *sym) |
| { |
| bswap32s(&sym->st_name); |
| bswaptls(&sym->st_value); |
| bswaptls(&sym->st_size); |
| bswap16s(&sym->st_shndx); |
| } |
| |
| #ifdef TARGET_MIPS |
| static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) |
| { |
| bswap16s(&abiflags->version); |
| bswap32s(&abiflags->ases); |
| bswap32s(&abiflags->isa_ext); |
| bswap32s(&abiflags->flags1); |
| bswap32s(&abiflags->flags2); |
| } |
| #endif |
| #else |
| static inline void bswap_ehdr(struct elfhdr *ehdr) { } |
| static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } |
| static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } |
| static inline void bswap_sym(struct elf_sym *sym) { } |
| #ifdef TARGET_MIPS |
| static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } |
| #endif |
| #endif |
| |
| #ifdef USE_ELF_CORE_DUMP |
| static int elf_core_dump(int, const CPUArchState *); |
| #endif /* USE_ELF_CORE_DUMP */ |
| static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); |
| |
| /* Verify the portions of EHDR within E_IDENT for the target. |
| This can be performed before bswapping the entire header. */ |
| static bool elf_check_ident(struct elfhdr *ehdr) |
| { |
| return (ehdr->e_ident[EI_MAG0] == ELFMAG0 |
| && ehdr->e_ident[EI_MAG1] == ELFMAG1 |
| && ehdr->e_ident[EI_MAG2] == ELFMAG2 |
| && ehdr->e_ident[EI_MAG3] == ELFMAG3 |
| && ehdr->e_ident[EI_CLASS] == ELF_CLASS |
| && ehdr->e_ident[EI_DATA] == ELF_DATA |
| && ehdr->e_ident[EI_VERSION] == EV_CURRENT); |
| } |
| |
| /* Verify the portions of EHDR outside of E_IDENT for the target. |
| This has to wait until after bswapping the header. */ |
| static bool elf_check_ehdr(struct elfhdr *ehdr) |
| { |
| return (elf_check_arch(ehdr->e_machine) |
| && ehdr->e_ehsize == sizeof(struct elfhdr) |
| && ehdr->e_phentsize == sizeof(struct elf_phdr) |
| && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); |
| } |
| |
| /* |
| * 'copy_elf_strings()' copies argument/envelope strings from user |
| * memory to free pages in kernel mem. These are in a format ready |
| * to be put directly into the top of new user memory. |
| * |
| */ |
| static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, |
| abi_ulong p, abi_ulong stack_limit) |
| { |
| char *tmp; |
| int len, i; |
| abi_ulong top = p; |
| |
| if (!p) { |
| return 0; /* bullet-proofing */ |
| } |
| |
| if (STACK_GROWS_DOWN) { |
| int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; |
| for (i = argc - 1; i >= 0; --i) { |
| tmp = argv[i]; |
| if (!tmp) { |
| fprintf(stderr, "VFS: argc is wrong"); |
| exit(-1); |
| } |
| len = strlen(tmp) + 1; |
| tmp += len; |
| |
| if (len > (p - stack_limit)) { |
| return 0; |
| } |
| while (len) { |
| int bytes_to_copy = (len > offset) ? offset : len; |
| tmp -= bytes_to_copy; |
| p -= bytes_to_copy; |
| offset -= bytes_to_copy; |
| len -= bytes_to_copy; |
| |
| memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); |
| |
| if (offset == 0) { |
| memcpy_to_target(p, scratch, top - p); |
| top = p; |
| offset = TARGET_PAGE_SIZE; |
| } |
| } |
| } |
| if (p != top) { |
| memcpy_to_target(p, scratch + offset, top - p); |
| } |
| } else { |
| int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); |
| for (i = 0; i < argc; ++i) { |
| tmp = argv[i]; |
| if (!tmp) { |
| fprintf(stderr, "VFS: argc is wrong"); |
| exit(-1); |
| } |
| len = strlen(tmp) + 1; |
| if (len > (stack_limit - p)) { |
| return 0; |
| } |
| while (len) { |
| int bytes_to_copy = (len > remaining) ? remaining : len; |
| |
| memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); |
| |
| tmp += bytes_to_copy; |
| remaining -= bytes_to_copy; |
| p += bytes_to_copy; |
| len -= bytes_to_copy; |
| |
| if (remaining == 0) { |
| memcpy_to_target(top, scratch, p - top); |
| top = p; |
| remaining = TARGET_PAGE_SIZE; |
| } |
| } |
| } |
| if (p != top) { |
| memcpy_to_target(top, scratch, p - top); |
| } |
| } |
| |
| return p; |
| } |
| |
| /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of |
| * argument/environment space. Newer kernels (>2.6.33) allow more, |
| * dependent on stack size, but guarantee at least 32 pages for |
| * backwards compatibility. |
| */ |
| #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) |
| |
| static abi_ulong setup_arg_pages(struct linux_binprm *bprm, |
| struct image_info *info) |
| { |
| abi_ulong size, error, guard; |
| |
| size = guest_stack_size; |
| if (size < STACK_LOWER_LIMIT) { |
| size = STACK_LOWER_LIMIT; |
| } |
| guard = TARGET_PAGE_SIZE; |
| if (guard < qemu_real_host_page_size) { |
| guard = qemu_real_host_page_size; |
| } |
| |
| error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, |
| MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| if (error == -1) { |
| perror("mmap stack"); |
| exit(-1); |
| } |
| |
| /* We reserve one extra page at the top of the stack as guard. */ |
| if (STACK_GROWS_DOWN) { |
| target_mprotect(error, guard, PROT_NONE); |
| info->stack_limit = error + guard; |
| return info->stack_limit + size - sizeof(void *); |
| } else { |
| target_mprotect(error + size, guard, PROT_NONE); |
| info->stack_limit = error + size; |
| return error; |
| } |
| } |
| |
| /* Map and zero the bss. We need to explicitly zero any fractional pages |
| after the data section (i.e. bss). */ |
| static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) |
| { |
| uintptr_t host_start, host_map_start, host_end; |
| |
| last_bss = TARGET_PAGE_ALIGN(last_bss); |
| |
| /* ??? There is confusion between qemu_real_host_page_size and |
| qemu_host_page_size here and elsewhere in target_mmap, which |
| may lead to the end of the data section mapping from the file |
| not being mapped. At least there was an explicit test and |
| comment for that here, suggesting that "the file size must |
| be known". The comment probably pre-dates the introduction |
| of the fstat system call in target_mmap which does in fact |
| find out the size. What isn't clear is if the workaround |
| here is still actually needed. For now, continue with it, |
| but merge it with the "normal" mmap that would allocate the bss. */ |
| |
| host_start = (uintptr_t) g2h(elf_bss); |
| host_end = (uintptr_t) g2h(last_bss); |
| host_map_start = REAL_HOST_PAGE_ALIGN(host_start); |
| |
| if (host_map_start < host_end) { |
| void *p = mmap((void *)host_map_start, host_end - host_map_start, |
| prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| if (p == MAP_FAILED) { |
| perror("cannot mmap brk"); |
| exit(-1); |
| } |
| } |
| |
| /* Ensure that the bss page(s) are valid */ |
| if ((page_get_flags(last_bss-1) & prot) != prot) { |
| page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); |
| } |
| |
| if (host_start < host_map_start) { |
| memset((void *)host_start, 0, host_map_start - host_start); |
| } |
| } |
| |
| #ifdef TARGET_ARM |
| static int elf_is_fdpic(struct elfhdr *exec) |
| { |
| return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; |
| } |
| #else |
| /* Default implementation, always false. */ |
| static int elf_is_fdpic(struct elfhdr *exec) |
| { |
| return 0; |
| } |
| #endif |
| |
| static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) |
| { |
| uint16_t n; |
| struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; |
| |
| /* elf32_fdpic_loadseg */ |
| n = info->nsegs; |
| while (n--) { |
| sp -= 12; |
| put_user_u32(loadsegs[n].addr, sp+0); |
| put_user_u32(loadsegs[n].p_vaddr, sp+4); |
| put_user_u32(loadsegs[n].p_memsz, sp+8); |
| } |
| |
| /* elf32_fdpic_loadmap */ |
| sp -= 4; |
| put_user_u16(0, sp+0); /* version */ |
| put_user_u16(info->nsegs, sp+2); /* nsegs */ |
| |
| info->personality = PER_LINUX_FDPIC; |
| info->loadmap_addr = sp; |
| |
| return sp; |
| } |
| |
| static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, |
| struct elfhdr *exec, |
| struct image_info *info, |
| struct image_info *interp_info) |
| { |
| abi_ulong sp; |
| abi_ulong u_argc, u_argv, u_envp, u_auxv; |
| int size; |
| int i; |
| abi_ulong u_rand_bytes; |
| uint8_t k_rand_bytes[16]; |
| abi_ulong u_platform; |
| const char *k_platform; |
| const int n = sizeof(elf_addr_t); |
| |
| sp = p; |
| |
| /* Needs to be before we load the env/argc/... */ |
| if (elf_is_fdpic(exec)) { |
| /* Need 4 byte alignment for these structs */ |
| sp &= ~3; |
| sp = loader_build_fdpic_loadmap(info, sp); |
| info->other_info = interp_info; |
| if (interp_info) { |
| interp_info->other_info = info; |
| sp = loader_build_fdpic_loadmap(interp_info, sp); |
| info->interpreter_loadmap_addr = interp_info->loadmap_addr; |
| info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; |
| } else { |
| info->interpreter_loadmap_addr = 0; |
| info->interpreter_pt_dynamic_addr = 0; |
| } |
| } |
| |
| u_platform = 0; |
| k_platform = ELF_PLATFORM; |
| if (k_platform) { |
| size_t len = strlen(k_platform) + 1; |
| if (STACK_GROWS_DOWN) { |
| sp -= (len + n - 1) & ~(n - 1); |
| u_platform = sp; |
| /* FIXME - check return value of memcpy_to_target() for failure */ |
| memcpy_to_target(sp, k_platform, len); |
| } else { |
| memcpy_to_target(sp, k_platform, len); |
| u_platform = sp; |
| sp += len + 1; |
| } |
| } |
| |
| /* Provide 16 byte alignment for the PRNG, and basic alignment for |
| * the argv and envp pointers. |
| */ |
| if (STACK_GROWS_DOWN) { |
| sp = QEMU_ALIGN_DOWN(sp, 16); |
| } else { |
| sp = QEMU_ALIGN_UP(sp, 16); |
| } |
| |
| /* |
| * Generate 16 random bytes for userspace PRNG seeding. |
| */ |
| qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); |
| if (STACK_GROWS_DOWN) { |
| sp -= 16; |
| u_rand_bytes = sp; |
| /* FIXME - check return value of memcpy_to_target() for failure */ |
| memcpy_to_target(sp, k_rand_bytes, 16); |
| } else { |
| memcpy_to_target(sp, k_rand_bytes, 16); |
| u_rand_bytes = sp; |
| sp += 16; |
| } |
| |
| size = (DLINFO_ITEMS + 1) * 2; |
| if (k_platform) |
| size += 2; |
| #ifdef DLINFO_ARCH_ITEMS |
| size += DLINFO_ARCH_ITEMS * 2; |
| #endif |
| #ifdef ELF_HWCAP2 |
| size += 2; |
| #endif |
| info->auxv_len = size * n; |
| |
| size += envc + argc + 2; |
| size += 1; /* argc itself */ |
| size *= n; |
| |
| /* Allocate space and finalize stack alignment for entry now. */ |
| if (STACK_GROWS_DOWN) { |
| u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); |
| sp = u_argc; |
| } else { |
| u_argc = sp; |
| sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); |
| } |
| |
| u_argv = u_argc + n; |
| u_envp = u_argv + (argc + 1) * n; |
| u_auxv = u_envp + (envc + 1) * n; |
| info->saved_auxv = u_auxv; |
| info->arg_start = u_argv; |
| info->arg_end = u_argv + argc * n; |
| |
| /* This is correct because Linux defines |
| * elf_addr_t as Elf32_Off / Elf64_Off |
| */ |
| #define NEW_AUX_ENT(id, val) do { \ |
| put_user_ual(id, u_auxv); u_auxv += n; \ |
| put_user_ual(val, u_auxv); u_auxv += n; \ |
| } while(0) |
| |
| #ifdef ARCH_DLINFO |
| /* |
| * ARCH_DLINFO must come first so platform specific code can enforce |
| * special alignment requirements on the AUXV if necessary (eg. PPC). |
| */ |
| ARCH_DLINFO; |
| #endif |
| /* There must be exactly DLINFO_ITEMS entries here, or the assert |
| * on info->auxv_len will trigger. |
| */ |
| NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); |
| NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); |
| NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); |
| if ((info->alignment & ~qemu_host_page_mask) != 0) { |
| /* Target doesn't support host page size alignment */ |
| NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); |
| } else { |
| NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, |
| qemu_host_page_size))); |
| } |
| NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); |
| NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); |
| NEW_AUX_ENT(AT_ENTRY, info->entry); |
| NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); |
| NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); |
| NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); |
| NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); |
| NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); |
| NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); |
| NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); |
| NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); |
| NEW_AUX_ENT(AT_EXECFN, info->file_string); |
| |
| #ifdef ELF_HWCAP2 |
| NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); |
| #endif |
| |
| if (u_platform) { |
| NEW_AUX_ENT(AT_PLATFORM, u_platform); |
| } |
| NEW_AUX_ENT (AT_NULL, 0); |
| #undef NEW_AUX_ENT |
| |
| /* Check that our initial calculation of the auxv length matches how much |
| * we actually put into it. |
| */ |
| assert(info->auxv_len == u_auxv - info->saved_auxv); |
| |
| put_user_ual(argc, u_argc); |
| |
| p = info->arg_strings; |
| for (i = 0; i < argc; ++i) { |
| put_user_ual(p, u_argv); |
| u_argv += n; |
| p += target_strlen(p) + 1; |
| } |
| put_user_ual(0, u_argv); |
| |
| p = info->env_strings; |
| for (i = 0; i < envc; ++i) { |
| put_user_ual(p, u_envp); |
| u_envp += n; |
| p += target_strlen(p) + 1; |
| } |
| put_user_ual(0, u_envp); |
| |
| return sp; |
| } |
| |
| #ifndef ARM_COMMPAGE |
| #define ARM_COMMPAGE 0 |
| #define init_guest_commpage() true |
| #endif |
| |
| static void pgb_fail_in_use(const char *image_name) |
| { |
| error_report("%s: requires virtual address space that is in use " |
| "(omit the -B option or choose a different value)", |
| image_name); |
| exit(EXIT_FAILURE); |
| } |
| |
| static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, |
| abi_ulong guest_hiaddr, long align) |
| { |
| const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; |
| void *addr, *test; |
| |
| if (!QEMU_IS_ALIGNED(guest_base, align)) { |
| fprintf(stderr, "Requested guest base 0x%lx does not satisfy " |
| "host minimum alignment (0x%lx)\n", |
| guest_base, align); |
| exit(EXIT_FAILURE); |
| } |
| |
| /* Sanity check the guest binary. */ |
| if (reserved_va) { |
| if (guest_hiaddr > reserved_va) { |
| error_report("%s: requires more than reserved virtual " |
| "address space (0x%" PRIx64 " > 0x%lx)", |
| image_name, (uint64_t)guest_hiaddr, reserved_va); |
| exit(EXIT_FAILURE); |
| } |
| } else { |
| #if HOST_LONG_BITS < TARGET_ABI_BITS |
| if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { |
| error_report("%s: requires more virtual address space " |
| "than the host can provide (0x%" PRIx64 ")", |
| image_name, (uint64_t)guest_hiaddr - guest_base); |
| exit(EXIT_FAILURE); |
| } |
| #endif |
| } |
| |
| /* |
| * Expand the allocation to the entire reserved_va. |
| * Exclude the mmap_min_addr hole. |
| */ |
| if (reserved_va) { |
| guest_loaddr = (guest_base >= mmap_min_addr ? 0 |
| : mmap_min_addr - guest_base); |
| guest_hiaddr = reserved_va; |
| } |
| |
| /* Reserve the address space for the binary, or reserved_va. */ |
| test = g2h(guest_loaddr); |
| addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); |
| if (test != addr) { |
| pgb_fail_in_use(image_name); |
| } |
| } |
| |
| /** |
| * pgd_find_hole_fallback: potential mmap address |
| * @guest_size: size of available space |
| * @brk: location of break |
| * @align: memory alignment |
| * |
| * This is a fallback method for finding a hole in the host address |
| * space if we don't have the benefit of being able to access |
| * /proc/self/map. It can potentially take a very long time as we can |
| * only dumbly iterate up the host address space seeing if the |
| * allocation would work. |
| */ |
| static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, |
| long align, uintptr_t offset) |
| { |
| uintptr_t base; |
| |
| /* Start (aligned) at the bottom and work our way up */ |
| base = ROUND_UP(mmap_min_addr, align); |
| |
| while (true) { |
| uintptr_t align_start, end; |
| align_start = ROUND_UP(base, align); |
| end = align_start + guest_size + offset; |
| |
| /* if brk is anywhere in the range give ourselves some room to grow. */ |
| if (align_start <= brk && brk < end) { |
| base = brk + (16 * MiB); |
| continue; |
| } else if (align_start + guest_size < align_start) { |
| /* we have run out of space */ |
| return -1; |
| } else { |
| int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | MAP_FIXED; |
| void * mmap_start = mmap((void *) align_start, guest_size, |
| PROT_NONE, flags, -1, 0); |
| if (mmap_start != MAP_FAILED) { |
| munmap((void *) align_start, guest_size); |
| return (uintptr_t) mmap_start + offset; |
| } |
| base += qemu_host_page_size; |
| } |
| } |
| } |
| |
| /* Return value for guest_base, or -1 if no hole found. */ |
| static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, |
| long align, uintptr_t offset) |
| { |
| GSList *maps, *iter; |
| uintptr_t this_start, this_end, next_start, brk; |
| intptr_t ret = -1; |
| |
| assert(QEMU_IS_ALIGNED(guest_loaddr, align)); |
| |
| maps = read_self_maps(); |
| |
| /* Read brk after we've read the maps, which will malloc. */ |
| brk = (uintptr_t)sbrk(0); |
| |
| if (!maps) { |
| return pgd_find_hole_fallback(guest_size, brk, align, offset); |
| } |
| |
| /* The first hole is before the first map entry. */ |
| this_start = mmap_min_addr; |
| |
| for (iter = maps; iter; |
| this_start = next_start, iter = g_slist_next(iter)) { |
| uintptr_t align_start, hole_size; |
| |
| this_end = ((MapInfo *)iter->data)->start; |
| next_start = ((MapInfo *)iter->data)->end; |
| align_start = ROUND_UP(this_start + offset, align); |
| |
| /* Skip holes that are too small. */ |
| if (align_start >= this_end) { |
| continue; |
| } |
| hole_size = this_end - align_start; |
| if (hole_size < guest_size) { |
| continue; |
| } |
| |
| /* If this hole contains brk, give ourselves some room to grow. */ |
| if (this_start <= brk && brk < this_end) { |
| hole_size -= guest_size; |
| if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { |
| align_start += 1 * GiB; |
| } else if (hole_size >= 16 * MiB) { |
| align_start += 16 * MiB; |
| } else { |
| align_start = (this_end - guest_size) & -align; |
| if (align_start < this_start) { |
| continue; |
| } |
| } |
| } |
| |
| /* Record the lowest successful match. */ |
| if (ret < 0) { |
| ret = align_start - guest_loaddr; |
| } |
| /* If this hole contains the identity map, select it. */ |
| if (align_start <= guest_loaddr && |
| guest_loaddr + guest_size <= this_end) { |
| ret = 0; |
| } |
| /* If this hole ends above the identity map, stop looking. */ |
| if (this_end >= guest_loaddr) { |
| break; |
| } |
| } |
| free_self_maps(maps); |
| |
| return ret; |
| } |
| |
| static void pgb_static(const char *image_name, abi_ulong orig_loaddr, |
| abi_ulong orig_hiaddr, long align) |
| { |
| uintptr_t loaddr = orig_loaddr; |
| uintptr_t hiaddr = orig_hiaddr; |
| uintptr_t offset = 0; |
| uintptr_t addr; |
| |
| if (hiaddr != orig_hiaddr) { |
| error_report("%s: requires virtual address space that the " |
| "host cannot provide (0x%" PRIx64 ")", |
| image_name, (uint64_t)orig_hiaddr); |
| exit(EXIT_FAILURE); |
| } |
| |
| loaddr &= -align; |
| if (ARM_COMMPAGE) { |
| /* |
| * Extend the allocation to include the commpage. |
| * For a 64-bit host, this is just 4GiB; for a 32-bit host we |
| * need to ensure there is space bellow the guest_base so we |
| * can map the commpage in the place needed when the address |
| * arithmetic wraps around. |
| */ |
| if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { |
| hiaddr = (uintptr_t) 4 << 30; |
| } else { |
| offset = -(ARM_COMMPAGE & -align); |
| } |
| } |
| |
| addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); |
| if (addr == -1) { |
| /* |
| * If ARM_COMMPAGE, there *might* be a non-consecutive allocation |
| * that can satisfy both. But as the normal arm32 link base address |
| * is ~32k, and we extend down to include the commpage, making the |
| * overhead only ~96k, this is unlikely. |
| */ |
| error_report("%s: Unable to allocate %#zx bytes of " |
| "virtual address space", image_name, |
| (size_t)(hiaddr - loaddr)); |
| exit(EXIT_FAILURE); |
| } |
| |
| guest_base = addr; |
| } |
| |
| static void pgb_dynamic(const char *image_name, long align) |
| { |
| /* |
| * The executable is dynamic and does not require a fixed address. |
| * All we need is a commpage that satisfies align. |
| * If we do not need a commpage, leave guest_base == 0. |
| */ |
| if (ARM_COMMPAGE) { |
| uintptr_t addr, commpage; |
| |
| /* 64-bit hosts should have used reserved_va. */ |
| assert(sizeof(uintptr_t) == 4); |
| |
| /* |
| * By putting the commpage at the first hole, that puts guest_base |
| * just above that, and maximises the positive guest addresses. |
| */ |
| commpage = ARM_COMMPAGE & -align; |
| addr = pgb_find_hole(commpage, -commpage, align, 0); |
| assert(addr != -1); |
| guest_base = addr; |
| } |
| } |
| |
| static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, |
| abi_ulong guest_hiaddr, long align) |
| { |
| const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; |
| void *addr, *test; |
| |
| if (guest_hiaddr > reserved_va) { |
| error_report("%s: requires more than reserved virtual " |
| "address space (0x%" PRIx64 " > 0x%lx)", |
| image_name, (uint64_t)guest_hiaddr, reserved_va); |
| exit(EXIT_FAILURE); |
| } |
| |
| /* Widen the "image" to the entire reserved address space. */ |
| pgb_static(image_name, 0, reserved_va, align); |
| |
| /* Reserve the memory on the host. */ |
| assert(guest_base != 0); |
| test = g2h(0); |
| addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); |
| if (addr == MAP_FAILED) { |
| error_report("Unable to reserve 0x%lx bytes of virtual address " |
| "space for use as guest address space (check your " |
| "virtual memory ulimit setting or reserve less " |
| "using -R option)", reserved_va); |
| exit(EXIT_FAILURE); |
| } |
| assert(addr == test); |
| } |
| |
| void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, |
| abi_ulong guest_hiaddr) |
| { |
| /* In order to use host shmat, we must be able to honor SHMLBA. */ |
| uintptr_t align = MAX(SHMLBA, qemu_host_page_size); |
| |
| if (have_guest_base) { |
| pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); |
| } else if (reserved_va) { |
| pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); |
| } else if (guest_loaddr) { |
| pgb_static(image_name, guest_loaddr, guest_hiaddr, align); |
| } else { |
| pgb_dynamic(image_name, align); |
| } |
| |
| /* Reserve and initialize the commpage. */ |
| if (!init_guest_commpage()) { |
| /* |
| * With have_guest_base, the user has selected the address and |
| * we are trying to work with that. Otherwise, we have selected |
| * free space and init_guest_commpage must succeeded. |
| */ |
| assert(have_guest_base); |
| pgb_fail_in_use(image_name); |
| } |
| |
| assert(QEMU_IS_ALIGNED(guest_base, align)); |
| qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " |
| "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); |
| } |
| |
| /* Load an ELF image into the address space. |
| |
| IMAGE_NAME is the filename of the image, to use in error messages. |
| IMAGE_FD is the open file descriptor for the image. |
| |
| BPRM_BUF is a copy of the beginning of the file; this of course |
| contains the elf file header at offset 0. It is assumed that this |
| buffer is sufficiently aligned to present no problems to the host |
| in accessing data at aligned offsets within the buffer. |
| |
| On return: INFO values will be filled in, as necessary or available. */ |
| |
| static void load_elf_image(const char *image_name, int image_fd, |
| struct image_info *info, char **pinterp_name, |
| char bprm_buf[BPRM_BUF_SIZE]) |
| { |
| struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; |
| struct elf_phdr *phdr; |
| abi_ulong load_addr, load_bias, loaddr, hiaddr, error; |
| int i, retval; |
| const char *errmsg; |
| |
| /* First of all, some simple consistency checks */ |
| errmsg = "Invalid ELF image for this architecture"; |
| if (!elf_check_ident(ehdr)) { |
| goto exit_errmsg; |
| } |
| bswap_ehdr(ehdr); |
| if (!elf_check_ehdr(ehdr)) { |
| goto exit_errmsg; |
| } |
| |
| i = ehdr->e_phnum * sizeof(struct elf_phdr); |
| if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { |
| phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); |
| } else { |
| phdr = (struct elf_phdr *) alloca(i); |
| retval = pread(image_fd, phdr, i, ehdr->e_phoff); |
| if (retval != i) { |
| goto exit_read; |
| } |
| } |
| bswap_phdr(phdr, ehdr->e_phnum); |
| |
| info->nsegs = 0; |
| info->pt_dynamic_addr = 0; |
| |
| mmap_lock(); |
| |
| /* Find the maximum size of the image and allocate an appropriate |
| amount of memory to handle that. */ |
| loaddr = -1, hiaddr = 0; |
| info->alignment = 0; |
| for (i = 0; i < ehdr->e_phnum; ++i) { |
| if (phdr[i].p_type == PT_LOAD) { |
| abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; |
| if (a < loaddr) { |
| loaddr = a; |
| } |
| a = phdr[i].p_vaddr + phdr[i].p_memsz; |
| if (a > hiaddr) { |
| hiaddr = a; |
| } |
| ++info->nsegs; |
| info->alignment |= phdr[i].p_align; |
| } |
| } |
| |
| if (pinterp_name != NULL) { |
| /* |
| * This is the main executable. |
| * |
| * Reserve extra space for brk. |
| * We hold on to this space while placing the interpreter |
| * and the stack, lest they be placed immediately after |
| * the data segment and block allocation from the brk. |
| * |
| * 16MB is chosen as "large enough" without being so large |
| * as to allow the result to not fit with a 32-bit guest on |
| * a 32-bit host. |
| */ |
| info->reserve_brk = 16 * MiB; |
| hiaddr += info->reserve_brk; |
| |
| if (ehdr->e_type == ET_EXEC) { |
| /* |
| * Make sure that the low address does not conflict with |
| * MMAP_MIN_ADDR or the QEMU application itself. |
| */ |
| probe_guest_base(image_name, loaddr, hiaddr); |
| } else { |
| /* |
| * The binary is dynamic, but we still need to |
| * select guest_base. In this case we pass a size. |
| */ |
| probe_guest_base(image_name, 0, hiaddr - loaddr); |
| } |
| } |
| |
| /* |
| * Reserve address space for all of this. |
| * |
| * In the case of ET_EXEC, we supply MAP_FIXED so that we get |
| * exactly the address range that is required. |
| * |
| * Otherwise this is ET_DYN, and we are searching for a location |
| * that can hold the memory space required. If the image is |
| * pre-linked, LOADDR will be non-zero, and the kernel should |
| * honor that address if it happens to be free. |
| * |
| * In both cases, we will overwrite pages in this range with mappings |
| * from the executable. |
| */ |
| load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, |
| MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | |
| (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), |
| -1, 0); |
| if (load_addr == -1) { |
| goto exit_perror; |
| } |
| load_bias = load_addr - loaddr; |
| |
| if (elf_is_fdpic(ehdr)) { |
| struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = |
| g_malloc(sizeof(*loadsegs) * info->nsegs); |
| |
| for (i = 0; i < ehdr->e_phnum; ++i) { |
| switch (phdr[i].p_type) { |
| case PT_DYNAMIC: |
| info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; |
| break; |
| case PT_LOAD: |
| loadsegs->addr = phdr[i].p_vaddr + load_bias; |
| loadsegs->p_vaddr = phdr[i].p_vaddr; |
| loadsegs->p_memsz = phdr[i].p_memsz; |
| ++loadsegs; |
| break; |
| } |
| } |
| } |
| |
| info->load_bias = load_bias; |
| info->code_offset = load_bias; |
| info->data_offset = load_bias; |
| info->load_addr = load_addr; |
| info->entry = ehdr->e_entry + load_bias; |
| info->start_code = -1; |
| info->end_code = 0; |
| info->start_data = -1; |
| info->end_data = 0; |
| info->brk = 0; |
| info->elf_flags = ehdr->e_flags; |
| |
| for (i = 0; i < ehdr->e_phnum; i++) { |
| struct elf_phdr *eppnt = phdr + i; |
| if (eppnt->p_type == PT_LOAD) { |
| abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; |
| int elf_prot = 0; |
| |
| if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; |
| if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; |
| if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; |
| |
| vaddr = load_bias + eppnt->p_vaddr; |
| vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); |
| vaddr_ps = TARGET_ELF_PAGESTART(vaddr); |
| vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); |
| |
| /* |
| * Some segments may be completely empty without any backing file |
| * segment, in that case just let zero_bss allocate an empty buffer |
| * for it. |
| */ |
| if (eppnt->p_filesz != 0) { |
| error = target_mmap(vaddr_ps, vaddr_len, elf_prot, |
| MAP_PRIVATE | MAP_FIXED, |
| image_fd, eppnt->p_offset - vaddr_po); |
| |
| if (error == -1) { |
| goto exit_perror; |
| } |
| } |
| |
| vaddr_ef = vaddr + eppnt->p_filesz; |
| vaddr_em = vaddr + eppnt->p_memsz; |
| |
| /* If the load segment requests extra zeros (e.g. bss), map it. */ |
| if (vaddr_ef < vaddr_em) { |
| zero_bss(vaddr_ef, vaddr_em, elf_prot); |
| } |
| |
| /* Find the full program boundaries. */ |
| if (elf_prot & PROT_EXEC) { |
| if (vaddr < info->start_code) { |
| info->start_code = vaddr; |
| } |
| if (vaddr_ef > info->end_code) { |
| info->end_code = vaddr_ef; |
| } |
| } |
| if (elf_prot & PROT_WRITE) { |
| if (vaddr < info->start_data) { |
| info->start_data = vaddr; |
| } |
| if (vaddr_ef > info->end_data) { |
| info->end_data = vaddr_ef; |
| } |
| if (vaddr_em > info->brk) { |
| info->brk = vaddr_em; |
| } |
| } |
| } else if (eppnt->p_type == PT_INTERP && pinterp_name) { |
| char *interp_name; |
| |
| if (*pinterp_name) { |
| errmsg = "Multiple PT_INTERP entries"; |
| goto exit_errmsg; |
| } |
| interp_name = malloc(eppnt->p_filesz); |
| if (!interp_name) { |
| goto exit_perror; |
| } |
| |
| if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { |
| memcpy(interp_name, bprm_buf + eppnt->p_offset, |
| eppnt->p_filesz); |
| } else { |
| retval = pread(image_fd, interp_name, eppnt->p_filesz, |
| eppnt->p_offset); |
| if (retval != eppnt->p_filesz) { |
| goto exit_perror; |
| } |
| } |
| if (interp_name[eppnt->p_filesz - 1] != 0) { |
| errmsg = "Invalid PT_INTERP entry"; |
| goto exit_errmsg; |
| } |
| *pinterp_name = interp_name; |
| #ifdef TARGET_MIPS |
| } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { |
| Mips_elf_abiflags_v0 abiflags; |
| if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { |
| errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; |
| goto exit_errmsg; |
| } |
| if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { |
| memcpy(&abiflags, bprm_buf + eppnt->p_offset, |
| sizeof(Mips_elf_abiflags_v0)); |
| } else { |
| retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), |
| eppnt->p_offset); |
| if (retval != sizeof(Mips_elf_abiflags_v0)) { |
| goto exit_perror; |
| } |
| } |
| bswap_mips_abiflags(&abiflags); |
| info->fp_abi = abiflags.fp_abi; |
| #endif |
| } |
| } |
| |
| if (info->end_data == 0) { |
| info->start_data = info->end_code; |
| info->end_data = info->end_code; |
| info->brk = info->end_code; |
| } |
| |
| if (qemu_log_enabled()) { |
| load_symbols(ehdr, image_fd, load_bias); |
| } |
| |
| mmap_unlock(); |
| |
| close(image_fd); |
| return; |
| |
| exit_read: |
| if (retval >= 0) { |
| errmsg = "Incomplete read of file header"; |
| goto exit_errmsg; |
| } |
| exit_perror: |
| errmsg = strerror(errno); |
| exit_errmsg: |
| fprintf(stderr, "%s: %s\n", image_name, errmsg); |
| exit(-1); |
| } |
| |
| static void load_elf_interp(const char *filename, struct image_info *info, |
| char bprm_buf[BPRM_BUF_SIZE]) |
| { |
| int fd, retval; |
| |
| fd = open(path(filename), O_RDONLY); |
| if (fd < 0) { |
| goto exit_perror; |
| } |
| |
| retval = read(fd, bprm_buf, BPRM_BUF_SIZE); |
| if (retval < 0) { |
| goto exit_perror; |
| } |
| if (retval < BPRM_BUF_SIZE) { |
| memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); |
| } |
| |
| load_elf_image(filename, fd, info, NULL, bprm_buf); |
| return; |
| |
| exit_perror: |
| fprintf(stderr, "%s: %s\n", filename, strerror(errno)); |
| exit(-1); |
| } |
| |
| static int symfind(const void *s0, const void *s1) |
| { |
| target_ulong addr = *(target_ulong *)s0; |
| struct elf_sym *sym = (struct elf_sym *)s1; |
| int result = 0; |
| if (addr < sym->st_value) { |
| result = -1; |
| } else if (addr >= sym->st_value + sym->st_size) { |
| result = 1; |
| } |
| return result; |
| } |
| |
| static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) |
| { |
| #if ELF_CLASS == ELFCLASS32 |
| struct elf_sym *syms = s->disas_symtab.elf32; |
| #else |
| struct elf_sym *syms = s->disas_symtab.elf64; |
| #endif |
| |
| // binary search |
| struct elf_sym *sym; |
| |
| sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); |
| if (sym != NULL) { |
| return s->disas_strtab + sym->st_name; |
| } |
| |
| return ""; |
| } |
| |
| /* FIXME: This should use elf_ops.h */ |
| static int symcmp(const void *s0, const void *s1) |
| { |
| struct elf_sym *sym0 = (struct elf_sym *)s0; |
| struct elf_sym *sym1 = (struct elf_sym *)s1; |
| return (sym0->st_value < sym1->st_value) |
| ? -1 |
| : ((sym0->st_value > sym1->st_value) ? 1 : 0); |
| } |
| |
| /* Best attempt to load symbols from this ELF object. */ |
| static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) |
| { |
| int i, shnum, nsyms, sym_idx = 0, str_idx = 0; |
| uint64_t segsz; |
| struct elf_shdr *shdr; |
| char *strings = NULL; |
| struct syminfo *s = NULL; |
| struct elf_sym *new_syms, *syms = NULL; |
| |
| shnum = hdr->e_shnum; |
| i = shnum * sizeof(struct elf_shdr); |
| shdr = (struct elf_shdr *)alloca(i); |
| if (pread(fd, shdr, i, hdr->e_shoff) != i) { |
| return; |
| } |
| |
| bswap_shdr(shdr, shnum); |
| for (i = 0; i < shnum; ++i) { |
| if (shdr[i].sh_type == SHT_SYMTAB) { |
| sym_idx = i; |
| str_idx = shdr[i].sh_link; |
| goto found; |
| } |
| } |
| |
| /* There will be no symbol table if the file was stripped. */ |
| return; |
| |
| found: |
| /* Now know where the strtab and symtab are. Snarf them. */ |
| s = g_try_new(struct syminfo, 1); |
| if (!s) { |
| goto give_up; |
| } |
| |
| segsz = shdr[str_idx].sh_size; |
| s->disas_strtab = strings = g_try_malloc(segsz); |
| if (!strings || |
| pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { |
| goto give_up; |
| } |
| |
| segsz = shdr[sym_idx].sh_size; |
| syms = g_try_malloc(segsz); |
| if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { |
| goto give_up; |
| } |
| |
| if (segsz / sizeof(struct elf_sym) > INT_MAX) { |
| /* Implausibly large symbol table: give up rather than ploughing |
| * on with the number of symbols calculation overflowing |
| */ |
| goto give_up; |
| } |
| nsyms = segsz / sizeof(struct elf_sym); |
| for (i = 0; i < nsyms; ) { |
| bswap_sym(syms + i); |
| /* Throw away entries which we do not need. */ |
| if (syms[i].st_shndx == SHN_UNDEF |
| || syms[i].st_shndx >= SHN_LORESERVE |
| || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { |
| if (i < --nsyms) { |
| syms[i] = syms[nsyms]; |
| } |
| } else { |
| #if defined(TARGET_ARM) || defined (TARGET_MIPS) |
| /* The bottom address bit marks a Thumb or MIPS16 symbol. */ |
| syms[i].st_value &= ~(target_ulong)1; |
| #endif |
| syms[i].st_value += load_bias; |
| i++; |
| } |
| } |
| |
| /* No "useful" symbol. */ |
| if (nsyms == 0) { |
| goto give_up; |
| } |
| |
| /* Attempt to free the storage associated with the local symbols |
| that we threw away. Whether or not this has any effect on the |
| memory allocation depends on the malloc implementation and how |
| many symbols we managed to discard. */ |
| new_syms = g_try_renew(struct elf_sym, syms, nsyms); |
| if (new_syms == NULL) { |
| goto give_up; |
| } |
| syms = new_syms; |
| |
| qsort(syms, nsyms, sizeof(*syms), symcmp); |
| |
| s->disas_num_syms = nsyms; |
| #if ELF_CLASS == ELFCLASS32 |
| s->disas_symtab.elf32 = syms; |
| #else |
| s->disas_symtab.elf64 = syms; |
| #endif |
| s->lookup_symbol = lookup_symbolxx; |
| s->next = syminfos; |
| syminfos = s; |
| |
| return; |
| |
| give_up: |
| g_free(s); |
| g_free(strings); |
| g_free(syms); |
| } |
| |
| uint32_t get_elf_eflags(int fd) |
| { |
| struct elfhdr ehdr; |
| off_t offset; |
| int ret; |
| |
| /* Read ELF header */ |
| offset = lseek(fd, 0, SEEK_SET); |
| if (offset == (off_t) -1) { |
| return 0; |
| } |
| ret = read(fd, &ehdr, sizeof(ehdr)); |
| if (ret < sizeof(ehdr)) { |
| return 0; |
| } |
| offset = lseek(fd, offset, SEEK_SET); |
| if (offset == (off_t) -1) { |
| return 0; |
| } |
| |
| /* Check ELF signature */ |
| if (!elf_check_ident(&ehdr)) { |
| return 0; |
| } |
| |
| /* check header */ |
| bswap_ehdr(&ehdr); |
| if (!elf_check_ehdr(&ehdr)) { |
| return 0; |
| } |
| |
| /* return architecture id */ |
| return ehdr.e_flags; |
| } |
| |
| int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) |
| { |
| struct image_info interp_info; |
| struct elfhdr elf_ex; |
| char *elf_interpreter = NULL; |
| char *scratch; |
| |
| memset(&interp_info, 0, sizeof(interp_info)); |
| #ifdef TARGET_MIPS |
| interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; |
| #endif |
| |
| info->start_mmap = (abi_ulong)ELF_START_MMAP; |
| |
| load_elf_image(bprm->filename, bprm->fd, info, |
| &elf_interpreter, bprm->buf); |
| |
| /* ??? We need a copy of the elf header for passing to create_elf_tables. |
| If we do nothing, we'll have overwritten this when we re-use bprm->buf |
| when we load the interpreter. */ |
| elf_ex = *(struct elfhdr *)bprm->buf; |
| |
| /* Do this so that we can load the interpreter, if need be. We will |
| change some of these later */ |
| bprm->p = setup_arg_pages(bprm, info); |
| |
| scratch = g_new0(char, TARGET_PAGE_SIZE); |
| if (STACK_GROWS_DOWN) { |
| bprm->p = copy_elf_strings(1, &bprm->filename, scratch, |
| bprm->p, info->stack_limit); |
| info->file_string = bprm->p; |
| bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, |
| bprm->p, info->stack_limit); |
| info->env_strings = bprm->p; |
| bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, |
| bprm->p, info->stack_limit); |
| info->arg_strings = bprm->p; |
| } else { |
| info->arg_strings = bprm->p; |
| bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, |
| bprm->p, info->stack_limit); |
| info->env_strings = bprm->p; |
| bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, |
| bprm->p, info->stack_limit); |
| info->file_string = bprm->p; |
| bprm->p = copy_elf_strings(1, &bprm->filename, scratch, |
| bprm->p, info->stack_limit); |
| } |
| |
| g_free(scratch); |
| |
| if (!bprm->p) { |
| fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); |
| exit(-1); |
| } |
| |
| if (elf_interpreter) { |
| load_elf_interp(elf_interpreter, &interp_info, bprm->buf); |
| |
| /* If the program interpreter is one of these two, then assume |
| an iBCS2 image. Otherwise assume a native linux image. */ |
| |
| if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 |
| || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { |
| info->personality = PER_SVR4; |
| |
| /* Why this, you ask??? Well SVr4 maps page 0 as read-only, |
| and some applications "depend" upon this behavior. Since |
| we do not have the power to recompile these, we emulate |
| the SVr4 behavior. Sigh. */ |
| target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, |
| MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); |
| } |
| #ifdef TARGET_MIPS |
| info->interp_fp_abi = interp_info.fp_abi; |
| #endif |
| } |
| |
| bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, |
| info, (elf_interpreter ? &interp_info : NULL)); |
| info->start_stack = bprm->p; |
| |
| /* If we have an interpreter, set that as the program's entry point. |
| Copy the load_bias as well, to help PPC64 interpret the entry |
| point as a function descriptor. Do this after creating elf tables |
| so that we copy the original program entry point into the AUXV. */ |
| if (elf_interpreter) { |
| info->load_bias = interp_info.load_bias; |
| info->entry = interp_info.entry; |
| free(elf_interpreter); |
| } |
| |
| #ifdef USE_ELF_CORE_DUMP |
| bprm->core_dump = &elf_core_dump; |
| #endif |
| |
| /* |
| * If we reserved extra space for brk, release it now. |
| * The implementation of do_brk in syscalls.c expects to be able |
| * to mmap pages in this space. |
| */ |
| if (info->reserve_brk) { |
| abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); |
| abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); |
| target_munmap(start_brk, end_brk - start_brk); |
| } |
| |
| return 0; |
| } |
| |
| #ifdef USE_ELF_CORE_DUMP |
| /* |
| * Definitions to generate Intel SVR4-like core files. |
| * These mostly have the same names as the SVR4 types with "target_elf_" |
| * tacked on the front to prevent clashes with linux definitions, |
| * and the typedef forms have been avoided. This is mostly like |
| * the SVR4 structure, but more Linuxy, with things that Linux does |
| * not support and which gdb doesn't really use excluded. |
| * |
| * Fields we don't dump (their contents is zero) in linux-user qemu |
| * are marked with XXX. |
| * |
| * Core dump code is copied from linux kernel (fs/binfmt_elf.c). |
| * |
| * Porting ELF coredump for target is (quite) simple process. First you |
| * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for |
| * the target resides): |
| * |
| * #define USE_ELF_CORE_DUMP |
| * |
| * Next you define type of register set used for dumping. ELF specification |
| * says that it needs to be array of elf_greg_t that has size of ELF_NREG. |
| * |
| * typedef <target_regtype> target_elf_greg_t; |
| * #define ELF_NREG <number of registers> |
| * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; |
| * |
| * Last step is to implement target specific function that copies registers |
| * from given cpu into just specified register set. Prototype is: |
| * |
| * static void elf_core_copy_regs(taret_elf_gregset_t *regs, |
| * const CPUArchState *env); |
| * |
| * Parameters: |
| * regs - copy register values into here (allocated and zeroed by caller) |
| * env - copy registers from here |
| * |
| * Example for ARM target is provided in this file. |
| */ |
| |
| /* An ELF note in memory */ |
| struct memelfnote { |
| const char *name; |
| size_t namesz; |
| size_t namesz_rounded; |
| int type; |
| size_t datasz; |
| size_t datasz_rounded; |
| void *data; |
| size_t notesz; |
| }; |
| |
| struct target_elf_siginfo { |
| abi_int si_signo; /* signal number */ |
| abi_int si_code; /* extra code */ |
| abi_int si_errno; /* errno */ |
| }; |
| |
| struct target_elf_prstatus { |
| struct target_elf_siginfo pr_info; /* Info associated with signal */ |
| abi_short pr_cursig; /* Current signal */ |
| abi_ulong pr_sigpend; /* XXX */ |
| abi_ulong pr_sighold; /* XXX */ |
| target_pid_t pr_pid; |
| target_pid_t pr_ppid; |
| target_pid_t pr_pgrp; |
| target_pid_t pr_sid; |
| struct target_timeval pr_utime; /* XXX User time */ |
| struct target_timeval pr_stime; /* XXX System time */ |
| struct target_timeval pr_cutime; /* XXX Cumulative user time */ |
| struct target_timeval pr_cstime; /* XXX Cumulative system time */ |
| target_elf_gregset_t pr_reg; /* GP registers */ |
| abi_int pr_fpvalid; /* XXX */ |
| }; |
| |
| #define ELF_PRARGSZ (80) /* Number of chars for args */ |
| |
| struct target_elf_prpsinfo { |
| char pr_state; /* numeric process state */ |
| char pr_sname; /* char for pr_state */ |
| char pr_zomb; /* zombie */ |
| char pr_nice; /* nice val */ |
| abi_ulong pr_flag; /* flags */ |
| target_uid_t pr_uid; |
| target_gid_t pr_gid; |
| target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; |
| /* Lots missing */ |
| char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ |
| char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ |
| }; |
| |
| /* Here is the structure in which status of each thread is captured. */ |
| struct elf_thread_status { |
| QTAILQ_ENTRY(elf_thread_status) ets_link; |
| struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ |
| #if 0 |
| elf_fpregset_t fpu; /* NT_PRFPREG */ |
| struct task_struct *thread; |
| elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ |
| #endif |
| struct memelfnote notes[1]; |
| int num_notes; |
| }; |
| |
| struct elf_note_info { |
| struct memelfnote *notes; |
| struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ |
| struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ |
| |
| QTAILQ_HEAD(, elf_thread_status) thread_list; |
| #if 0 |
| /* |
| * Current version of ELF coredump doesn't support |
| * dumping fp regs etc. |
| */ |
| elf_fpregset_t *fpu; |
| elf_fpxregset_t *xfpu; |
| int thread_status_size; |
| #endif |
| int notes_size; |
| int numnote; |
| }; |
| |
| struct vm_area_struct { |
| target_ulong vma_start; /* start vaddr of memory region */ |
| target_ulong vma_end; /* end vaddr of memory region */ |
| abi_ulong vma_flags; /* protection etc. flags for the region */ |
| QTAILQ_ENTRY(vm_area_struct) vma_link; |
| }; |
| |
| struct mm_struct { |
| QTAILQ_HEAD(, vm_area_struct) mm_mmap; |
| int mm_count; /* number of mappings */ |
| }; |
| |
| static struct mm_struct *vma_init(void); |
| static void vma_delete(struct mm_struct *); |
| static int vma_add_mapping(struct mm_struct *, target_ulong, |
| target_ulong, abi_ulong); |
| static int vma_get_mapping_count(const struct mm_struct *); |
| static struct vm_area_struct *vma_first(const struct mm_struct *); |
| static struct vm_area_struct *vma_next(struct vm_area_struct *); |
| static abi_ulong vma_dump_size(const struct vm_area_struct *); |
| static int vma_walker(void *priv, target_ulong start, target_ulong end, |
| unsigned long flags); |
| |
| static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); |
| static void fill_note(struct memelfnote *, const char *, int, |
| unsigned int, void *); |
| static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); |
| static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); |
| static void fill_auxv_note(struct memelfnote *, const TaskState *); |
| static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); |
| static size_t note_size(const struct memelfnote *); |
| static void free_note_info(struct elf_note_info *); |
| static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); |
| static void fill_thread_info(struct elf_note_info *, const CPUArchState *); |
| static int core_dump_filename(const TaskState *, char *, size_t); |
| |
| static int dump_write(int, const void *, size_t); |
| static int write_note(struct memelfnote *, int); |
| static int write_note_info(struct elf_note_info *, int); |
| |
| #ifdef BSWAP_NEEDED |
| static void bswap_prstatus(struct target_elf_prstatus *prstatus) |
| { |
| prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); |
| prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); |
| prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); |
| prstatus->pr_cursig = tswap16(prstatus->pr_cursig); |
| prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); |
| prstatus->pr_sighold = tswapal(prstatus->pr_sighold); |
| prstatus->pr_pid = tswap32(prstatus->pr_pid); |
| prstatus->pr_ppid = tswap32(prstatus->pr_ppid); |
| prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); |
| prstatus->pr_sid = tswap32(prstatus->pr_sid); |
| /* cpu times are not filled, so we skip them */ |
| /* regs should be in correct format already */ |
| prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); |
| } |
| |
| static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) |
| { |
| psinfo->pr_flag = tswapal(psinfo->pr_flag); |
| psinfo->pr_uid = tswap16(psinfo->pr_uid); |
| psinfo->pr_gid = tswap16(psinfo->pr_gid); |
| psinfo->pr_pid = tswap32(psinfo->pr_pid); |
| psinfo->pr_ppid = tswap32(psinfo->pr_ppid); |
| psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); |
| psinfo->pr_sid = tswap32(psinfo->pr_sid); |
| } |
| |
| static void bswap_note(struct elf_note *en) |
| { |
| bswap32s(&en->n_namesz); |
| bswap32s(&en->n_descsz); |
| bswap32s(&en->n_type); |
| } |
| #else |
| static inline void bswap_prstatus(struct target_elf_prstatus *p) { } |
| static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} |
| static inline void bswap_note(struct elf_note *en) { } |
| #endif /* BSWAP_NEEDED */ |
| |
| /* |
| * Minimal support for linux memory regions. These are needed |
| * when we are finding out what memory exactly belongs to |
| * emulated process. No locks needed here, as long as |
| * thread that received the signal is stopped. |
| */ |
| |
| static struct mm_struct *vma_init(void) |
| { |
| struct mm_struct *mm; |
| |
| if ((mm = g_malloc(sizeof (*mm))) == NULL) |
| return (NULL); |
| |
| mm->mm_count = 0; |
| QTAILQ_INIT(&mm->mm_mmap); |
| |
| return (mm); |
| } |
| |
| static void vma_delete(struct mm_struct *mm) |
| { |
| struct vm_area_struct *vma; |
| |
| while ((vma = vma_first(mm)) != NULL) { |
| QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); |
| g_free(vma); |
| } |
| g_free(mm); |
| } |
| |
| static int vma_add_mapping(struct mm_struct *mm, target_ulong start, |
| target_ulong end, abi_ulong flags) |
| { |
| struct vm_area_struct *vma; |
| |
| if ((vma = g_malloc0(sizeof (*vma))) == NULL) |
| return (-1); |
| |
| vma->vma_start = start; |
| vma->vma_end = end; |
| vma->vma_flags = flags; |
| |
| QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); |
| mm->mm_count++; |
| |
| return (0); |
| } |
| |
| static struct vm_area_struct *vma_first(const struct mm_struct *mm) |
| { |
| return (QTAILQ_FIRST(&mm->mm_mmap)); |
| } |
| |
| static struct vm_area_struct *vma_next(struct vm_area_struct *vma) |
| { |
| return (QTAILQ_NEXT(vma, vma_link)); |
| } |
| |
| static int vma_get_mapping_count(const struct mm_struct *mm) |
| { |
| return (mm->mm_count); |
| } |
| |
| /* |
| * Calculate file (dump) size of given memory region. |
| */ |
| static abi_ulong vma_dump_size(const struct vm_area_struct *vma) |
| { |
| /* if we cannot even read the first page, skip it */ |
| if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) |
| return (0); |
| |
| /* |
| * Usually we don't dump executable pages as they contain |
| * non-writable code that debugger can read directly from |
| * target library etc. However, thread stacks are marked |
| * also executable so we read in first page of given region |
| * and check whether it contains elf header. If there is |
| * no elf header, we dump it. |
| */ |
| if (vma->vma_flags & PROT_EXEC) { |
| char page[TARGET_PAGE_SIZE]; |
| |
| copy_from_user(page, vma->vma_start, sizeof (page)); |
| if ((page[EI_MAG0] == ELFMAG0) && |
| (page[EI_MAG1] == ELFMAG1) && |
| (page[EI_MAG2] == ELFMAG2) && |
| (page[EI_MAG3] == ELFMAG3)) { |
| /* |
| * Mappings are possibly from ELF binary. Don't dump |
| * them. |
| */ |
| return (0); |
| } |
| } |
| |
| return (vma->vma_end - vma->vma_start); |
| } |
| |
| static int vma_walker(void *priv, target_ulong start, target_ulong end, |
| unsigned long flags) |
| { |
| struct mm_struct *mm = (struct mm_struct *)priv; |
| |
| vma_add_mapping(mm, start, end, flags); |
| return (0); |
| } |
| |
| static void fill_note(struct memelfnote *note, const char *name, int type, |
| unsigned int sz, void *data) |
| { |
| unsigned int namesz; |
| |
| namesz = strlen(name) + 1; |
| note->name = name; |
| note->namesz = namesz; |
| note->namesz_rounded = roundup(namesz, sizeof (int32_t)); |
| note->type = type; |
| note->datasz = sz; |
| note->datasz_rounded = roundup(sz, sizeof (int32_t)); |
| |
| note->data = data; |
| |
| /* |
| * We calculate rounded up note size here as specified by |
| * ELF document. |
| */ |
| note->notesz = sizeof (struct elf_note) + |
| note->namesz_rounded + note->datasz_rounded; |
| } |
| |
| static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, |
| uint32_t flags) |
| { |
| (void) memset(elf, 0, sizeof(*elf)); |
| |
| (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); |
| elf->e_ident[EI_CLASS] = ELF_CLASS; |
| elf->e_ident[EI_DATA] = ELF_DATA; |
| elf->e_ident[EI_VERSION] = EV_CURRENT; |
| elf->e_ident[EI_OSABI] = ELF_OSABI; |
| |
| elf->e_type = ET_CORE; |
| elf->e_machine = machine; |
| elf->e_version = EV_CURRENT; |
| elf->e_phoff = sizeof(struct elfhdr); |
| elf->e_flags = flags; |
| elf->e_ehsize = sizeof(struct elfhdr); |
| elf->e_phentsize = sizeof(struct elf_phdr); |
| elf->e_phnum = segs; |
| |
| bswap_ehdr(elf); |
| } |
| |
| static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) |
| { |
| phdr->p_type = PT_NOTE; |
| phdr->p_offset = offset; |
| phdr->p_vaddr = 0; |
| phdr->p_paddr = 0; |
| phdr->p_filesz = sz; |
| phdr->p_memsz = 0; |
| phdr->p_flags = 0; |
| phdr->p_align = 0; |
| |
| bswap_phdr(phdr, 1); |
| } |
| |
| static size_t note_size(const struct memelfnote *note) |
| { |
| return (note->notesz); |
| } |
| |
| static void fill_prstatus(struct target_elf_prstatus *prstatus, |
| const TaskState *ts, int signr) |
| { |
| (void) memset(prstatus, 0, sizeof (*prstatus)); |
| prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; |
| prstatus->pr_pid = ts->ts_tid; |
| prstatus->pr_ppid = getppid(); |
| prstatus->pr_pgrp = getpgrp(); |
| prstatus->pr_sid = getsid(0); |
| |
| bswap_prstatus(prstatus); |
| } |
| |
| static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) |
| { |
| char *base_filename; |
| unsigned int i, len; |
| |
| (void) memset(psinfo, 0, sizeof (*psinfo)); |
| |
| len = ts->info->arg_end - ts->info->arg_start; |
| if (len >= ELF_PRARGSZ) |
| len = ELF_PRARGSZ - 1; |
| if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) |
| return -EFAULT; |
| for (i = 0; i < len; i++) |
| if (psinfo->pr_psargs[i] == 0) |
| psinfo->pr_psargs[i] = ' '; |
| psinfo->pr_psargs[len] = 0; |
| |
| psinfo->pr_pid = getpid(); |
| psinfo->pr_ppid = getppid(); |
| psinfo->pr_pgrp = getpgrp(); |
| psinfo->pr_sid = getsid(0); |
| psinfo->pr_uid = getuid(); |
| psinfo->pr_gid = getgid(); |
| |
| base_filename = g_path_get_basename(ts->bprm->filename); |
| /* |
| * Using strncpy here is fine: at max-length, |
| * this field is not NUL-terminated. |
| */ |
| (void) strncpy(psinfo->pr_fname, base_filename, |
| sizeof(psinfo->pr_fname)); |
| |
| g_free(base_filename); |
| bswap_psinfo(psinfo); |
| return (0); |
| } |
| |
| static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) |
| { |
| elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; |
| elf_addr_t orig_auxv = auxv; |
| void *ptr; |
| int len = ts->info->auxv_len; |
| |
| /* |
| * Auxiliary vector is stored in target process stack. It contains |
| * {type, value} pairs that we need to dump into note. This is not |
| * strictly necessary but we do it here for sake of completeness. |
| */ |
| |
| /* read in whole auxv vector and copy it to memelfnote */ |
| ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); |
| if (ptr != NULL) { |
| fill_note(note, "CORE", NT_AUXV, len, ptr); |
| unlock_user(ptr, auxv, len); |
| } |
| } |
| |
| /* |
| * Constructs name of coredump file. We have following convention |
| * for the name: |
| * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core |
| * |
| * Returns 0 in case of success, -1 otherwise (errno is set). |
| */ |
| static int core_dump_filename(const TaskState *ts, char *buf, |
| size_t bufsize) |
| { |
| char timestamp[64]; |
| char *base_filename = NULL; |
| struct timeval tv; |
| struct tm tm; |
| |
| assert(bufsize >= PATH_MAX); |
| |
| if (gettimeofday(&tv, NULL) < 0) { |
| (void) fprintf(stderr, "unable to get current timestamp: %s", |
| strerror(errno)); |
| return (-1); |
| } |
| |
| base_filename = g_path_get_basename(ts->bprm->filename); |
| (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", |
| localtime_r(&tv.tv_sec, &tm)); |
| (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", |
| base_filename, timestamp, (int)getpid()); |
| g_free(base_filename); |
| |
| return (0); |
| } |
| |
| static int dump_write(int fd, const void *ptr, size_t size) |
| { |
| const char *bufp = (const char *)ptr; |
| ssize_t bytes_written, bytes_left; |
| struct rlimit dumpsize; |
| off_t pos; |
| |
| bytes_written = 0; |
| getrlimit(RLIMIT_CORE, &dumpsize); |
| if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { |
| if (errno == ESPIPE) { /* not a seekable stream */ |
| bytes_left = size; |
| } else { |
| return pos; |
| } |
| } else { |
| if (dumpsize.rlim_cur <= pos) { |
| return -1; |
| } else if (dumpsize.rlim_cur == RLIM_INFINITY) { |
| bytes_left = size; |
| } else { |
| size_t limit_left=dumpsize.rlim_cur - pos; |
| bytes_left = limit_left >= size ? size : limit_left ; |
| } |
| } |
| |
| /* |
| * In normal conditions, single write(2) should do but |
| * in case of socket etc. this mechanism is more portable. |
| */ |
| do { |
| bytes_written = write(fd, bufp, bytes_left); |
| if (bytes_written < 0) { |
| if (errno == EINTR) |
| continue; |
| return (-1); |
| } else if (bytes_written == 0) { /* eof */ |
| return (-1); |
| } |
| bufp += bytes_written; |
| bytes_left -= bytes_written; |
| } while (bytes_left > 0); |
| |
| return (0); |
| } |
| |
| static int write_note(struct memelfnote *men, int fd) |
| { |
| struct elf_note en; |
| |
| en.n_namesz = men->namesz; |
| en.n_type = men->type; |
| en.n_descsz = men->datasz; |
| |
| bswap_note(&en); |
| |
| if (dump_write(fd, &en, sizeof(en)) != 0) |
| return (-1); |
| if (dump_write(fd, men->name, men->namesz_rounded) != 0) |
| return (-1); |
| if (dump_write(fd, men->data, men->datasz_rounded) != 0) |
| return (-1); |
| |
| return (0); |
| } |
| |
| static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) |
| { |
| CPUState *cpu = env_cpu((CPUArchState *)env); |
| TaskState *ts = (TaskState *)cpu->opaque; |
| struct elf_thread_status *ets; |
| |
| ets = g_malloc0(sizeof (*ets)); |
| ets->num_notes = 1; /* only prstatus is dumped */ |
| fill_prstatus(&ets->prstatus, ts, 0); |
| elf_core_copy_regs(&ets->prstatus.pr_reg, env); |
| fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), |
| &ets->prstatus); |
| |
| QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); |
| |
| info->notes_size += note_size(&ets->notes[0]); |
| } |
| |
| static void init_note_info(struct elf_note_info *info) |
| { |
| /* Initialize the elf_note_info structure so that it is at |
| * least safe to call free_note_info() on it. Must be |
| * called before calling fill_note_info(). |
| */ |
| memset(info, 0, sizeof (*info)); |
| QTAILQ_INIT(&info->thread_list); |
| } |
| |
| static int fill_note_info(struct elf_note_info *info, |
| long signr, const CPUArchState *env) |
| { |
| #define NUMNOTES 3 |
| CPUState *cpu = env_cpu((CPUArchState *)env); |
| TaskState *ts = (TaskState *)cpu->opaque; |
| int i; |
| |
| info->notes = g_new0(struct memelfnote, NUMNOTES); |
| if (info->notes == NULL) |
| return (-ENOMEM); |
| info->prstatus = g_malloc0(sizeof (*info->prstatus)); |
| if (info->prstatus == NULL) |
| return (-ENOMEM); |
| info->psinfo = g_malloc0(sizeof (*info->psinfo)); |
| if (info->prstatus == NULL) |
| return (-ENOMEM); |
| |
| /* |
| * First fill in status (and registers) of current thread |
| * including process info & aux vector. |
| */ |
| fill_prstatus(info->prstatus, ts, signr); |
| elf_core_copy_regs(&info->prstatus->pr_reg, env); |
| fill_note(&info->notes[0], "CORE", NT_PRSTATUS, |
| sizeof (*info->prstatus), info->prstatus); |
| fill_psinfo(info->psinfo, ts); |
| fill_note(&info->notes[1], "CORE", NT_PRPSINFO, |
| sizeof (*info->psinfo), info->psinfo); |
| fill_auxv_note(&info->notes[2], ts); |
| info->numnote = 3; |
| |
| info->notes_size = 0; |
| for (i = 0; i < info->numnote; i++) |
| info->notes_size += note_size(&info->notes[i]); |
| |
| /* read and fill status of all threads */ |
| cpu_list_lock(); |
| CPU_FOREACH(cpu) { |
| if (cpu == thread_cpu) { |
| continue; |
| } |
| fill_thread_info(info, (CPUArchState *)cpu->env_ptr); |
| } |
| cpu_list_unlock(); |
| |
| return (0); |
| } |
| |
| static void free_note_info(struct elf_note_info *info) |
| { |
| struct elf_thread_status *ets; |
| |
| while (!QTAILQ_EMPTY(&info->thread_list)) { |
| ets = QTAILQ_FIRST(&info->thread_list); |
| QTAILQ_REMOVE(&info->thread_list, ets, ets_link); |
| g_free(ets); |
| } |
| |
| g_free(info->prstatus); |
| g_free(info->psinfo); |
| g_free(info->notes); |
| } |
| |
| static int write_note_info(struct elf_note_info *info, int fd) |
| { |
| struct elf_thread_status *ets; |
| int i, error = 0; |
| |
| /* write prstatus, psinfo and auxv for current thread */ |
| for (i = 0; i < info->numnote; i++) |
| if ((error = write_note(&info->notes[i], fd)) != 0) |
| return (error); |
| |
| /* write prstatus for each thread */ |
| QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { |
| if ((error = write_note(&ets->notes[0], fd)) != 0) |
| return (error); |
| } |
| |
| return (0); |
| } |
| |
| /* |
| * Write out ELF coredump. |
| * |
| * See documentation of ELF object file format in: |
| * http://www.caldera.com/developers/devspecs/gabi41.pdf |
| * |
| * Coredump format in linux is following: |
| * |
| * 0 +----------------------+ \ |
| * | ELF header | ET_CORE | |
| * +----------------------+ | |
| * | ELF program headers | |--- headers |
| * | - NOTE section | | |
| * | - PT_LOAD sections | | |
| * +----------------------+ / |
| * | NOTEs: | |
| * | - NT_PRSTATUS | |
| * | - NT_PRSINFO | |
| * | - NT_AUXV | |
| * +----------------------+ <-- aligned to target page |
| * | Process memory dump | |
| * : : |
| * . . |
| * : : |
| * | | |
| * +----------------------+ |
| * |
| * NT_PRSTATUS -> struct elf_prstatus (per thread) |
| * NT_PRSINFO -> struct elf_prpsinfo |
| * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). |
| * |
| * Format follows System V format as close as possible. Current |
| * version limitations are as follows: |
| * - no floating point registers are dumped |
| * |
| * Function returns 0 in case of success, negative errno otherwise. |
| * |
| * TODO: make this work also during runtime: it should be |
| * possible to force coredump from running process and then |
| * continue processing. For example qemu could set up SIGUSR2 |
| * handler (provided that target process haven't registered |
| * handler for that) that does the dump when signal is received. |
| */ |
| static int elf_core_dump(int signr, const CPUArchState *env) |
| { |
| const CPUState *cpu = env_cpu((CPUArchState *)env); |
| const TaskState *ts = (const TaskState *)cpu->opaque; |
| struct vm_area_struct *vma = NULL; |
| char corefile[PATH_MAX]; |
| struct elf_note_info info; |
| struct elfhdr elf; |
| struct elf_phdr phdr; |
| struct rlimit dumpsize; |
| struct mm_struct *mm = NULL; |
| off_t offset = 0, data_offset = 0; |
| int segs = 0; |
| int fd = -1; |
| |
| init_note_info(&info); |
| |
| errno = 0; |
| getrlimit(RLIMIT_CORE, &dumpsize); |
| if (dumpsize.rlim_cur == 0) |
| return 0; |
| |
| if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) |
| return (-errno); |
| |
| if ((fd = open(corefile, O_WRONLY | O_CREAT, |
| S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) |
| return (-errno); |
| |
| /* |
| * Walk through target process memory mappings and |
| * set up structure containing this information. After |
| * this point vma_xxx functions can be used. |
| */ |
| if ((mm = vma_init()) == NULL) |
| goto out; |
| |
| walk_memory_regions(mm, vma_walker); |
| segs = vma_get_mapping_count(mm); |
| |
| /* |
| * Construct valid coredump ELF header. We also |
| * add one more segment for notes. |
| */ |
| fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); |
| if (dump_write(fd, &elf, sizeof (elf)) != 0) |
| goto out; |
| |
| /* fill in the in-memory version of notes */ |
| if (fill_note_info(&info, signr, env) < 0) |
| goto out; |
| |
| offset += sizeof (elf); /* elf header */ |
| offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ |
| |
| /* write out notes program header */ |
| fill_elf_note_phdr(&phdr, info.notes_size, offset); |
| |
| offset += info.notes_size; |
| if (dump_write(fd, &phdr, sizeof (phdr)) != 0) |
| goto out; |
| |
| /* |
| * ELF specification wants data to start at page boundary so |
| * we align it here. |
| */ |
| data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); |
| |
| /* |
| * Write program headers for memory regions mapped in |
| * the target process. |
| */ |
| for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { |
| (void) memset(&phdr, 0, sizeof (phdr)); |
| |
| phdr.p_type = PT_LOAD; |
| phdr.p_offset = offset; |
| phdr.p_vaddr = vma->vma_start; |
| phdr.p_paddr = 0; |
| phdr.p_filesz = vma_dump_size(vma); |
| offset += phdr.p_filesz; |
| phdr.p_memsz = vma->vma_end - vma->vma_start; |
| phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; |
| if (vma->vma_flags & PROT_WRITE) |
| phdr.p_flags |= PF_W; |
| if (vma->vma_flags & PROT_EXEC) |
| phdr.p_flags |= PF_X; |
| phdr.p_align = ELF_EXEC_PAGESIZE; |
| |
| bswap_phdr(&phdr, 1); |
| if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { |
| goto out; |
| } |
| } |
| |
| /* |
| * Next we write notes just after program headers. No |
| * alignment needed here. |
| */ |
| if (write_note_info(&info, fd) < 0) |
| goto out; |
| |
| /* align data to page boundary */ |
| if (lseek(fd, data_offset, SEEK_SET) != data_offset) |
| goto out; |
| |
| /* |
| * Finally we can dump process memory into corefile as well. |
| */ |
| for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { |
| abi_ulong addr; |
| abi_ulong end; |
| |
| end = vma->vma_start + vma_dump_size(vma); |
| |
| for (addr = vma->vma_start; addr < end; |
| addr += TARGET_PAGE_SIZE) { |
| char page[TARGET_PAGE_SIZE]; |
| int error; |
| |
| /* |
| * Read in page from target process memory and |
| * write it to coredump file. |
| */ |
| error = copy_from_user(page, addr, sizeof (page)); |
| if (error != 0) { |
| (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", |
| addr); |
| errno = -error; |
| goto out; |
| } |
| if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) |
| goto out; |
| } |
| } |
| |
| out: |
| free_note_info(&info); |
| if (mm != NULL) |
| vma_delete(mm); |
| (void) close(fd); |
| |
| if (errno != 0) |
| return (-errno); |
| return (0); |
| } |
| #endif /* USE_ELF_CORE_DUMP */ |
| |
| void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) |
| { |
| init_thread(regs, infop); |
| } |