|  | /* | 
|  | *  Emulation of Linux signals | 
|  | * | 
|  | *  Copyright (c) 2003 Fabrice Bellard | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or | 
|  | *  (at your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License | 
|  | *  along with this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/bitops.h" | 
|  | #include "gdbstub/user.h" | 
|  | #include "hw/core/tcg-cpu-ops.h" | 
|  |  | 
|  | #include <sys/ucontext.h> | 
|  | #include <sys/resource.h> | 
|  |  | 
|  | #include "qemu.h" | 
|  | #include "user-internals.h" | 
|  | #include "strace.h" | 
|  | #include "loader.h" | 
|  | #include "trace.h" | 
|  | #include "signal-common.h" | 
|  | #include "host-signal.h" | 
|  | #include "user/safe-syscall.h" | 
|  |  | 
|  | static struct target_sigaction sigact_table[TARGET_NSIG]; | 
|  |  | 
|  | static void host_signal_handler(int host_signum, siginfo_t *info, | 
|  | void *puc); | 
|  |  | 
|  | /* Fallback addresses into sigtramp page. */ | 
|  | abi_ulong default_sigreturn; | 
|  | abi_ulong default_rt_sigreturn; | 
|  |  | 
|  | /* | 
|  | * System includes define _NSIG as SIGRTMAX + 1, | 
|  | * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX | 
|  | * and the first signal is SIGHUP defined as 1 | 
|  | * Signal number 0 is reserved for use as kill(pid, 0), to test whether | 
|  | * a process exists without sending it a signal. | 
|  | */ | 
|  | #ifdef __SIGRTMAX | 
|  | QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG); | 
|  | #endif | 
|  | static uint8_t host_to_target_signal_table[_NSIG] = { | 
|  | #define MAKE_SIG_ENTRY(sig)     [sig] = TARGET_##sig, | 
|  | MAKE_SIGNAL_LIST | 
|  | #undef MAKE_SIG_ENTRY | 
|  | /* next signals stay the same */ | 
|  | }; | 
|  |  | 
|  | static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; | 
|  |  | 
|  | /* valid sig is between 1 and _NSIG - 1 */ | 
|  | int host_to_target_signal(int sig) | 
|  | { | 
|  | if (sig < 1 || sig >= _NSIG) { | 
|  | return sig; | 
|  | } | 
|  | return host_to_target_signal_table[sig]; | 
|  | } | 
|  |  | 
|  | /* valid sig is between 1 and TARGET_NSIG */ | 
|  | int target_to_host_signal(int sig) | 
|  | { | 
|  | if (sig < 1 || sig > TARGET_NSIG) { | 
|  | return sig; | 
|  | } | 
|  | return target_to_host_signal_table[sig]; | 
|  | } | 
|  |  | 
|  | static inline void target_sigaddset(target_sigset_t *set, int signum) | 
|  | { | 
|  | signum--; | 
|  | abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); | 
|  | set->sig[signum / TARGET_NSIG_BPW] |= mask; | 
|  | } | 
|  |  | 
|  | static inline int target_sigismember(const target_sigset_t *set, int signum) | 
|  | { | 
|  | signum--; | 
|  | abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); | 
|  | return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); | 
|  | } | 
|  |  | 
|  | void host_to_target_sigset_internal(target_sigset_t *d, | 
|  | const sigset_t *s) | 
|  | { | 
|  | int host_sig, target_sig; | 
|  | target_sigemptyset(d); | 
|  | for (host_sig = 1; host_sig < _NSIG; host_sig++) { | 
|  | target_sig = host_to_target_signal(host_sig); | 
|  | if (target_sig < 1 || target_sig > TARGET_NSIG) { | 
|  | continue; | 
|  | } | 
|  | if (sigismember(s, host_sig)) { | 
|  | target_sigaddset(d, target_sig); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) | 
|  | { | 
|  | target_sigset_t d1; | 
|  | int i; | 
|  |  | 
|  | host_to_target_sigset_internal(&d1, s); | 
|  | for(i = 0;i < TARGET_NSIG_WORDS; i++) | 
|  | d->sig[i] = tswapal(d1.sig[i]); | 
|  | } | 
|  |  | 
|  | void target_to_host_sigset_internal(sigset_t *d, | 
|  | const target_sigset_t *s) | 
|  | { | 
|  | int host_sig, target_sig; | 
|  | sigemptyset(d); | 
|  | for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { | 
|  | host_sig = target_to_host_signal(target_sig); | 
|  | if (host_sig < 1 || host_sig >= _NSIG) { | 
|  | continue; | 
|  | } | 
|  | if (target_sigismember(s, target_sig)) { | 
|  | sigaddset(d, host_sig); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) | 
|  | { | 
|  | target_sigset_t s1; | 
|  | int i; | 
|  |  | 
|  | for(i = 0;i < TARGET_NSIG_WORDS; i++) | 
|  | s1.sig[i] = tswapal(s->sig[i]); | 
|  | target_to_host_sigset_internal(d, &s1); | 
|  | } | 
|  |  | 
|  | void host_to_target_old_sigset(abi_ulong *old_sigset, | 
|  | const sigset_t *sigset) | 
|  | { | 
|  | target_sigset_t d; | 
|  | host_to_target_sigset(&d, sigset); | 
|  | *old_sigset = d.sig[0]; | 
|  | } | 
|  |  | 
|  | void target_to_host_old_sigset(sigset_t *sigset, | 
|  | const abi_ulong *old_sigset) | 
|  | { | 
|  | target_sigset_t d; | 
|  | int i; | 
|  |  | 
|  | d.sig[0] = *old_sigset; | 
|  | for(i = 1;i < TARGET_NSIG_WORDS; i++) | 
|  | d.sig[i] = 0; | 
|  | target_to_host_sigset(sigset, &d); | 
|  | } | 
|  |  | 
|  | int block_signals(void) | 
|  | { | 
|  | TaskState *ts = (TaskState *)thread_cpu->opaque; | 
|  | sigset_t set; | 
|  |  | 
|  | /* It's OK to block everything including SIGSEGV, because we won't | 
|  | * run any further guest code before unblocking signals in | 
|  | * process_pending_signals(). | 
|  | */ | 
|  | sigfillset(&set); | 
|  | sigprocmask(SIG_SETMASK, &set, 0); | 
|  |  | 
|  | return qatomic_xchg(&ts->signal_pending, 1); | 
|  | } | 
|  |  | 
|  | /* Wrapper for sigprocmask function | 
|  | * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset | 
|  | * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if | 
|  | * a signal was already pending and the syscall must be restarted, or | 
|  | * 0 on success. | 
|  | * If set is NULL, this is guaranteed not to fail. | 
|  | */ | 
|  | int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) | 
|  | { | 
|  | TaskState *ts = (TaskState *)thread_cpu->opaque; | 
|  |  | 
|  | if (oldset) { | 
|  | *oldset = ts->signal_mask; | 
|  | } | 
|  |  | 
|  | if (set) { | 
|  | int i; | 
|  |  | 
|  | if (block_signals()) { | 
|  | return -QEMU_ERESTARTSYS; | 
|  | } | 
|  |  | 
|  | switch (how) { | 
|  | case SIG_BLOCK: | 
|  | sigorset(&ts->signal_mask, &ts->signal_mask, set); | 
|  | break; | 
|  | case SIG_UNBLOCK: | 
|  | for (i = 1; i <= NSIG; ++i) { | 
|  | if (sigismember(set, i)) { | 
|  | sigdelset(&ts->signal_mask, i); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case SIG_SETMASK: | 
|  | ts->signal_mask = *set; | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | /* Silently ignore attempts to change blocking status of KILL or STOP */ | 
|  | sigdelset(&ts->signal_mask, SIGKILL); | 
|  | sigdelset(&ts->signal_mask, SIGSTOP); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Just set the guest's signal mask to the specified value; the | 
|  | * caller is assumed to have called block_signals() already. | 
|  | */ | 
|  | void set_sigmask(const sigset_t *set) | 
|  | { | 
|  | TaskState *ts = (TaskState *)thread_cpu->opaque; | 
|  |  | 
|  | ts->signal_mask = *set; | 
|  | } | 
|  |  | 
|  | /* sigaltstack management */ | 
|  |  | 
|  | int on_sig_stack(unsigned long sp) | 
|  | { | 
|  | TaskState *ts = (TaskState *)thread_cpu->opaque; | 
|  |  | 
|  | return (sp - ts->sigaltstack_used.ss_sp | 
|  | < ts->sigaltstack_used.ss_size); | 
|  | } | 
|  |  | 
|  | int sas_ss_flags(unsigned long sp) | 
|  | { | 
|  | TaskState *ts = (TaskState *)thread_cpu->opaque; | 
|  |  | 
|  | return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE | 
|  | : on_sig_stack(sp) ? SS_ONSTACK : 0); | 
|  | } | 
|  |  | 
|  | abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) | 
|  | { | 
|  | /* | 
|  | * This is the X/Open sanctioned signal stack switching. | 
|  | */ | 
|  | TaskState *ts = (TaskState *)thread_cpu->opaque; | 
|  |  | 
|  | if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { | 
|  | return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; | 
|  | } | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | void target_save_altstack(target_stack_t *uss, CPUArchState *env) | 
|  | { | 
|  | TaskState *ts = (TaskState *)thread_cpu->opaque; | 
|  |  | 
|  | __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); | 
|  | __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); | 
|  | __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); | 
|  | } | 
|  |  | 
|  | abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env) | 
|  | { | 
|  | TaskState *ts = (TaskState *)thread_cpu->opaque; | 
|  | size_t minstacksize = TARGET_MINSIGSTKSZ; | 
|  | target_stack_t ss; | 
|  |  | 
|  | #if defined(TARGET_PPC64) | 
|  | /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ | 
|  | struct image_info *image = ts->info; | 
|  | if (get_ppc64_abi(image) > 1) { | 
|  | minstacksize = 4096; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | __get_user(ss.ss_sp, &uss->ss_sp); | 
|  | __get_user(ss.ss_size, &uss->ss_size); | 
|  | __get_user(ss.ss_flags, &uss->ss_flags); | 
|  |  | 
|  | if (on_sig_stack(get_sp_from_cpustate(env))) { | 
|  | return -TARGET_EPERM; | 
|  | } | 
|  |  | 
|  | switch (ss.ss_flags) { | 
|  | default: | 
|  | return -TARGET_EINVAL; | 
|  |  | 
|  | case TARGET_SS_DISABLE: | 
|  | ss.ss_size = 0; | 
|  | ss.ss_sp = 0; | 
|  | break; | 
|  |  | 
|  | case TARGET_SS_ONSTACK: | 
|  | case 0: | 
|  | if (ss.ss_size < minstacksize) { | 
|  | return -TARGET_ENOMEM; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | ts->sigaltstack_used.ss_sp = ss.ss_sp; | 
|  | ts->sigaltstack_used.ss_size = ss.ss_size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* siginfo conversion */ | 
|  |  | 
|  | static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, | 
|  | const siginfo_t *info) | 
|  | { | 
|  | int sig = host_to_target_signal(info->si_signo); | 
|  | int si_code = info->si_code; | 
|  | int si_type; | 
|  | tinfo->si_signo = sig; | 
|  | tinfo->si_errno = 0; | 
|  | tinfo->si_code = info->si_code; | 
|  |  | 
|  | /* This memset serves two purposes: | 
|  | * (1) ensure we don't leak random junk to the guest later | 
|  | * (2) placate false positives from gcc about fields | 
|  | *     being used uninitialized if it chooses to inline both this | 
|  | *     function and tswap_siginfo() into host_to_target_siginfo(). | 
|  | */ | 
|  | memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); | 
|  |  | 
|  | /* This is awkward, because we have to use a combination of | 
|  | * the si_code and si_signo to figure out which of the union's | 
|  | * members are valid. (Within the host kernel it is always possible | 
|  | * to tell, but the kernel carefully avoids giving userspace the | 
|  | * high 16 bits of si_code, so we don't have the information to | 
|  | * do this the easy way...) We therefore make our best guess, | 
|  | * bearing in mind that a guest can spoof most of the si_codes | 
|  | * via rt_sigqueueinfo() if it likes. | 
|  | * | 
|  | * Once we have made our guess, we record it in the top 16 bits of | 
|  | * the si_code, so that tswap_siginfo() later can use it. | 
|  | * tswap_siginfo() will strip these top bits out before writing | 
|  | * si_code to the guest (sign-extending the lower bits). | 
|  | */ | 
|  |  | 
|  | switch (si_code) { | 
|  | case SI_USER: | 
|  | case SI_TKILL: | 
|  | case SI_KERNEL: | 
|  | /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. | 
|  | * These are the only unspoofable si_code values. | 
|  | */ | 
|  | tinfo->_sifields._kill._pid = info->si_pid; | 
|  | tinfo->_sifields._kill._uid = info->si_uid; | 
|  | si_type = QEMU_SI_KILL; | 
|  | break; | 
|  | default: | 
|  | /* Everything else is spoofable. Make best guess based on signal */ | 
|  | switch (sig) { | 
|  | case TARGET_SIGCHLD: | 
|  | tinfo->_sifields._sigchld._pid = info->si_pid; | 
|  | tinfo->_sifields._sigchld._uid = info->si_uid; | 
|  | if (si_code == CLD_EXITED) | 
|  | tinfo->_sifields._sigchld._status = info->si_status; | 
|  | else | 
|  | tinfo->_sifields._sigchld._status | 
|  | = host_to_target_signal(info->si_status & 0x7f) | 
|  | | (info->si_status & ~0x7f); | 
|  | tinfo->_sifields._sigchld._utime = info->si_utime; | 
|  | tinfo->_sifields._sigchld._stime = info->si_stime; | 
|  | si_type = QEMU_SI_CHLD; | 
|  | break; | 
|  | case TARGET_SIGIO: | 
|  | tinfo->_sifields._sigpoll._band = info->si_band; | 
|  | tinfo->_sifields._sigpoll._fd = info->si_fd; | 
|  | si_type = QEMU_SI_POLL; | 
|  | break; | 
|  | default: | 
|  | /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ | 
|  | tinfo->_sifields._rt._pid = info->si_pid; | 
|  | tinfo->_sifields._rt._uid = info->si_uid; | 
|  | /* XXX: potential problem if 64 bit */ | 
|  | tinfo->_sifields._rt._sigval.sival_ptr | 
|  | = (abi_ulong)(unsigned long)info->si_value.sival_ptr; | 
|  | si_type = QEMU_SI_RT; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | tinfo->si_code = deposit32(si_code, 16, 16, si_type); | 
|  | } | 
|  |  | 
|  | void tswap_siginfo(target_siginfo_t *tinfo, | 
|  | const target_siginfo_t *info) | 
|  | { | 
|  | int si_type = extract32(info->si_code, 16, 16); | 
|  | int si_code = sextract32(info->si_code, 0, 16); | 
|  |  | 
|  | __put_user(info->si_signo, &tinfo->si_signo); | 
|  | __put_user(info->si_errno, &tinfo->si_errno); | 
|  | __put_user(si_code, &tinfo->si_code); | 
|  |  | 
|  | /* We can use our internal marker of which fields in the structure | 
|  | * are valid, rather than duplicating the guesswork of | 
|  | * host_to_target_siginfo_noswap() here. | 
|  | */ | 
|  | switch (si_type) { | 
|  | case QEMU_SI_KILL: | 
|  | __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); | 
|  | __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); | 
|  | break; | 
|  | case QEMU_SI_TIMER: | 
|  | __put_user(info->_sifields._timer._timer1, | 
|  | &tinfo->_sifields._timer._timer1); | 
|  | __put_user(info->_sifields._timer._timer2, | 
|  | &tinfo->_sifields._timer._timer2); | 
|  | break; | 
|  | case QEMU_SI_POLL: | 
|  | __put_user(info->_sifields._sigpoll._band, | 
|  | &tinfo->_sifields._sigpoll._band); | 
|  | __put_user(info->_sifields._sigpoll._fd, | 
|  | &tinfo->_sifields._sigpoll._fd); | 
|  | break; | 
|  | case QEMU_SI_FAULT: | 
|  | __put_user(info->_sifields._sigfault._addr, | 
|  | &tinfo->_sifields._sigfault._addr); | 
|  | break; | 
|  | case QEMU_SI_CHLD: | 
|  | __put_user(info->_sifields._sigchld._pid, | 
|  | &tinfo->_sifields._sigchld._pid); | 
|  | __put_user(info->_sifields._sigchld._uid, | 
|  | &tinfo->_sifields._sigchld._uid); | 
|  | __put_user(info->_sifields._sigchld._status, | 
|  | &tinfo->_sifields._sigchld._status); | 
|  | __put_user(info->_sifields._sigchld._utime, | 
|  | &tinfo->_sifields._sigchld._utime); | 
|  | __put_user(info->_sifields._sigchld._stime, | 
|  | &tinfo->_sifields._sigchld._stime); | 
|  | break; | 
|  | case QEMU_SI_RT: | 
|  | __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); | 
|  | __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); | 
|  | __put_user(info->_sifields._rt._sigval.sival_ptr, | 
|  | &tinfo->_sifields._rt._sigval.sival_ptr); | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) | 
|  | { | 
|  | target_siginfo_t tgt_tmp; | 
|  | host_to_target_siginfo_noswap(&tgt_tmp, info); | 
|  | tswap_siginfo(tinfo, &tgt_tmp); | 
|  | } | 
|  |  | 
|  | /* XXX: we support only POSIX RT signals are used. */ | 
|  | /* XXX: find a solution for 64 bit (additional malloced data is needed) */ | 
|  | void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) | 
|  | { | 
|  | /* This conversion is used only for the rt_sigqueueinfo syscall, | 
|  | * and so we know that the _rt fields are the valid ones. | 
|  | */ | 
|  | abi_ulong sival_ptr; | 
|  |  | 
|  | __get_user(info->si_signo, &tinfo->si_signo); | 
|  | __get_user(info->si_errno, &tinfo->si_errno); | 
|  | __get_user(info->si_code, &tinfo->si_code); | 
|  | __get_user(info->si_pid, &tinfo->_sifields._rt._pid); | 
|  | __get_user(info->si_uid, &tinfo->_sifields._rt._uid); | 
|  | __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); | 
|  | info->si_value.sival_ptr = (void *)(long)sival_ptr; | 
|  | } | 
|  |  | 
|  | static int fatal_signal (int sig) | 
|  | { | 
|  | switch (sig) { | 
|  | case TARGET_SIGCHLD: | 
|  | case TARGET_SIGURG: | 
|  | case TARGET_SIGWINCH: | 
|  | /* Ignored by default.  */ | 
|  | return 0; | 
|  | case TARGET_SIGCONT: | 
|  | case TARGET_SIGSTOP: | 
|  | case TARGET_SIGTSTP: | 
|  | case TARGET_SIGTTIN: | 
|  | case TARGET_SIGTTOU: | 
|  | /* Job control signals.  */ | 
|  | return 0; | 
|  | default: | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* returns 1 if given signal should dump core if not handled */ | 
|  | static int core_dump_signal(int sig) | 
|  | { | 
|  | switch (sig) { | 
|  | case TARGET_SIGABRT: | 
|  | case TARGET_SIGFPE: | 
|  | case TARGET_SIGILL: | 
|  | case TARGET_SIGQUIT: | 
|  | case TARGET_SIGSEGV: | 
|  | case TARGET_SIGTRAP: | 
|  | case TARGET_SIGBUS: | 
|  | return (1); | 
|  | default: | 
|  | return (0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void signal_table_init(void) | 
|  | { | 
|  | int host_sig, target_sig, count; | 
|  |  | 
|  | /* | 
|  | * Signals are supported starting from TARGET_SIGRTMIN and going up | 
|  | * until we run out of host realtime signals. | 
|  | * glibc at least uses only the lower 2 rt signals and probably | 
|  | * nobody's using the upper ones. | 
|  | * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32) | 
|  | * To fix this properly we need to do manual signal delivery multiplexed | 
|  | * over a single host signal. | 
|  | * Attempts for configure "missing" signals via sigaction will be | 
|  | * silently ignored. | 
|  | */ | 
|  | for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) { | 
|  | target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN; | 
|  | if (target_sig <= TARGET_NSIG) { | 
|  | host_to_target_signal_table[host_sig] = target_sig; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* generate signal conversion tables */ | 
|  | for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { | 
|  | target_to_host_signal_table[target_sig] = _NSIG; /* poison */ | 
|  | } | 
|  | for (host_sig = 1; host_sig < _NSIG; host_sig++) { | 
|  | if (host_to_target_signal_table[host_sig] == 0) { | 
|  | host_to_target_signal_table[host_sig] = host_sig; | 
|  | } | 
|  | target_sig = host_to_target_signal_table[host_sig]; | 
|  | if (target_sig <= TARGET_NSIG) { | 
|  | target_to_host_signal_table[target_sig] = host_sig; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) { | 
|  | for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) { | 
|  | if (target_to_host_signal_table[target_sig] == _NSIG) { | 
|  | count++; | 
|  | } | 
|  | } | 
|  | trace_signal_table_init(count); | 
|  | } | 
|  | } | 
|  |  | 
|  | void signal_init(void) | 
|  | { | 
|  | TaskState *ts = (TaskState *)thread_cpu->opaque; | 
|  | struct sigaction act; | 
|  | struct sigaction oact; | 
|  | int i; | 
|  | int host_sig; | 
|  |  | 
|  | /* initialize signal conversion tables */ | 
|  | signal_table_init(); | 
|  |  | 
|  | /* Set the signal mask from the host mask. */ | 
|  | sigprocmask(0, 0, &ts->signal_mask); | 
|  |  | 
|  | sigfillset(&act.sa_mask); | 
|  | act.sa_flags = SA_SIGINFO; | 
|  | act.sa_sigaction = host_signal_handler; | 
|  | for(i = 1; i <= TARGET_NSIG; i++) { | 
|  | #ifdef CONFIG_GPROF | 
|  | if (i == TARGET_SIGPROF) { | 
|  | continue; | 
|  | } | 
|  | #endif | 
|  | host_sig = target_to_host_signal(i); | 
|  | sigaction(host_sig, NULL, &oact); | 
|  | if (oact.sa_sigaction == (void *)SIG_IGN) { | 
|  | sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; | 
|  | } else if (oact.sa_sigaction == (void *)SIG_DFL) { | 
|  | sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; | 
|  | } | 
|  | /* If there's already a handler installed then something has | 
|  | gone horribly wrong, so don't even try to handle that case.  */ | 
|  | /* Install some handlers for our own use.  We need at least | 
|  | SIGSEGV and SIGBUS, to detect exceptions.  We can not just | 
|  | trap all signals because it affects syscall interrupt | 
|  | behavior.  But do trap all default-fatal signals.  */ | 
|  | if (fatal_signal (i)) | 
|  | sigaction(host_sig, &act, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Force a synchronously taken signal. The kernel force_sig() function | 
|  | * also forces the signal to "not blocked, not ignored", but for QEMU | 
|  | * that work is done in process_pending_signals(). | 
|  | */ | 
|  | void force_sig(int sig) | 
|  | { | 
|  | CPUState *cpu = thread_cpu; | 
|  | CPUArchState *env = cpu->env_ptr; | 
|  | target_siginfo_t info = {}; | 
|  |  | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = TARGET_SI_KERNEL; | 
|  | info._sifields._kill._pid = 0; | 
|  | info._sifields._kill._uid = 0; | 
|  | queue_signal(env, info.si_signo, QEMU_SI_KILL, &info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the | 
|  | * 'force' part is handled in process_pending_signals(). | 
|  | */ | 
|  | void force_sig_fault(int sig, int code, abi_ulong addr) | 
|  | { | 
|  | CPUState *cpu = thread_cpu; | 
|  | CPUArchState *env = cpu->env_ptr; | 
|  | target_siginfo_t info = {}; | 
|  |  | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = code; | 
|  | info._sifields._sigfault._addr = addr; | 
|  | queue_signal(env, sig, QEMU_SI_FAULT, &info); | 
|  | } | 
|  |  | 
|  | /* Force a SIGSEGV if we couldn't write to memory trying to set | 
|  | * up the signal frame. oldsig is the signal we were trying to handle | 
|  | * at the point of failure. | 
|  | */ | 
|  | #if !defined(TARGET_RISCV) | 
|  | void force_sigsegv(int oldsig) | 
|  | { | 
|  | if (oldsig == SIGSEGV) { | 
|  | /* Make sure we don't try to deliver the signal again; this will | 
|  | * end up with handle_pending_signal() calling dump_core_and_abort(). | 
|  | */ | 
|  | sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; | 
|  | } | 
|  | force_sig(TARGET_SIGSEGV); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, | 
|  | MMUAccessType access_type, bool maperr, uintptr_t ra) | 
|  | { | 
|  | const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; | 
|  |  | 
|  | if (tcg_ops->record_sigsegv) { | 
|  | tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); | 
|  | } | 
|  |  | 
|  | force_sig_fault(TARGET_SIGSEGV, | 
|  | maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, | 
|  | addr); | 
|  | cpu->exception_index = EXCP_INTERRUPT; | 
|  | cpu_loop_exit_restore(cpu, ra); | 
|  | } | 
|  |  | 
|  | void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, | 
|  | MMUAccessType access_type, uintptr_t ra) | 
|  | { | 
|  | const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; | 
|  |  | 
|  | if (tcg_ops->record_sigbus) { | 
|  | tcg_ops->record_sigbus(cpu, addr, access_type, ra); | 
|  | } | 
|  |  | 
|  | force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); | 
|  | cpu->exception_index = EXCP_INTERRUPT; | 
|  | cpu_loop_exit_restore(cpu, ra); | 
|  | } | 
|  |  | 
|  | /* abort execution with signal */ | 
|  | static G_NORETURN | 
|  | void dump_core_and_abort(CPUArchState *cpu_env, int target_sig) | 
|  | { | 
|  | CPUState *cpu = thread_cpu; | 
|  | CPUArchState *env = cpu->env_ptr; | 
|  | TaskState *ts = (TaskState *)cpu->opaque; | 
|  | int host_sig, core_dumped = 0; | 
|  | struct sigaction act; | 
|  |  | 
|  | host_sig = target_to_host_signal(target_sig); | 
|  | trace_user_dump_core_and_abort(env, target_sig, host_sig); | 
|  | gdb_signalled(env, target_sig); | 
|  |  | 
|  | /* dump core if supported by target binary format */ | 
|  | if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { | 
|  | stop_all_tasks(); | 
|  | core_dumped = | 
|  | ((*ts->bprm->core_dump)(target_sig, env) == 0); | 
|  | } | 
|  | if (core_dumped) { | 
|  | /* we already dumped the core of target process, we don't want | 
|  | * a coredump of qemu itself */ | 
|  | struct rlimit nodump; | 
|  | getrlimit(RLIMIT_CORE, &nodump); | 
|  | nodump.rlim_cur=0; | 
|  | setrlimit(RLIMIT_CORE, &nodump); | 
|  | (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", | 
|  | target_sig, strsignal(host_sig), "core dumped" ); | 
|  | } | 
|  |  | 
|  | preexit_cleanup(cpu_env, 128 + target_sig); | 
|  |  | 
|  | /* The proper exit code for dying from an uncaught signal is | 
|  | * -<signal>.  The kernel doesn't allow exit() or _exit() to pass | 
|  | * a negative value.  To get the proper exit code we need to | 
|  | * actually die from an uncaught signal.  Here the default signal | 
|  | * handler is installed, we send ourself a signal and we wait for | 
|  | * it to arrive. */ | 
|  | sigfillset(&act.sa_mask); | 
|  | act.sa_handler = SIG_DFL; | 
|  | act.sa_flags = 0; | 
|  | sigaction(host_sig, &act, NULL); | 
|  |  | 
|  | /* For some reason raise(host_sig) doesn't send the signal when | 
|  | * statically linked on x86-64. */ | 
|  | kill(getpid(), host_sig); | 
|  |  | 
|  | /* Make sure the signal isn't masked (just reuse the mask inside | 
|  | of act) */ | 
|  | sigdelset(&act.sa_mask, host_sig); | 
|  | sigsuspend(&act.sa_mask); | 
|  |  | 
|  | /* unreachable */ | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | /* queue a signal so that it will be send to the virtual CPU as soon | 
|  | as possible */ | 
|  | void queue_signal(CPUArchState *env, int sig, int si_type, | 
|  | target_siginfo_t *info) | 
|  | { | 
|  | CPUState *cpu = env_cpu(env); | 
|  | TaskState *ts = cpu->opaque; | 
|  |  | 
|  | trace_user_queue_signal(env, sig); | 
|  |  | 
|  | info->si_code = deposit32(info->si_code, 16, 16, si_type); | 
|  |  | 
|  | ts->sync_signal.info = *info; | 
|  | ts->sync_signal.pending = sig; | 
|  | /* signal that a new signal is pending */ | 
|  | qatomic_set(&ts->signal_pending, 1); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Adjust the signal context to rewind out of safe-syscall if we're in it */ | 
|  | static inline void rewind_if_in_safe_syscall(void *puc) | 
|  | { | 
|  | host_sigcontext *uc = (host_sigcontext *)puc; | 
|  | uintptr_t pcreg = host_signal_pc(uc); | 
|  |  | 
|  | if (pcreg > (uintptr_t)safe_syscall_start | 
|  | && pcreg < (uintptr_t)safe_syscall_end) { | 
|  | host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) | 
|  | { | 
|  | CPUArchState *env = thread_cpu->env_ptr; | 
|  | CPUState *cpu = env_cpu(env); | 
|  | TaskState *ts = cpu->opaque; | 
|  | target_siginfo_t tinfo; | 
|  | host_sigcontext *uc = puc; | 
|  | struct emulated_sigtable *k; | 
|  | int guest_sig; | 
|  | uintptr_t pc = 0; | 
|  | bool sync_sig = false; | 
|  | void *sigmask = host_signal_mask(uc); | 
|  |  | 
|  | /* | 
|  | * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special | 
|  | * handling wrt signal blocking and unwinding. | 
|  | */ | 
|  | if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { | 
|  | MMUAccessType access_type; | 
|  | uintptr_t host_addr; | 
|  | abi_ptr guest_addr; | 
|  | bool is_write; | 
|  |  | 
|  | host_addr = (uintptr_t)info->si_addr; | 
|  |  | 
|  | /* | 
|  | * Convert forcefully to guest address space: addresses outside | 
|  | * reserved_va are still valid to report via SEGV_MAPERR. | 
|  | */ | 
|  | guest_addr = h2g_nocheck(host_addr); | 
|  |  | 
|  | pc = host_signal_pc(uc); | 
|  | is_write = host_signal_write(info, uc); | 
|  | access_type = adjust_signal_pc(&pc, is_write); | 
|  |  | 
|  | if (host_sig == SIGSEGV) { | 
|  | bool maperr = true; | 
|  |  | 
|  | if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { | 
|  | /* If this was a write to a TB protected page, restart. */ | 
|  | if (is_write && | 
|  | handle_sigsegv_accerr_write(cpu, sigmask, pc, guest_addr)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * With reserved_va, the whole address space is PROT_NONE, | 
|  | * which means that we may get ACCERR when we want MAPERR. | 
|  | */ | 
|  | if (page_get_flags(guest_addr) & PAGE_VALID) { | 
|  | maperr = false; | 
|  | } else { | 
|  | info->si_code = SEGV_MAPERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | sigprocmask(SIG_SETMASK, sigmask, NULL); | 
|  | cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); | 
|  | } else { | 
|  | sigprocmask(SIG_SETMASK, sigmask, NULL); | 
|  | if (info->si_code == BUS_ADRALN) { | 
|  | cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); | 
|  | } | 
|  | } | 
|  |  | 
|  | sync_sig = true; | 
|  | } | 
|  |  | 
|  | /* get target signal number */ | 
|  | guest_sig = host_to_target_signal(host_sig); | 
|  | if (guest_sig < 1 || guest_sig > TARGET_NSIG) { | 
|  | return; | 
|  | } | 
|  | trace_user_host_signal(env, host_sig, guest_sig); | 
|  |  | 
|  | host_to_target_siginfo_noswap(&tinfo, info); | 
|  | k = &ts->sigtab[guest_sig - 1]; | 
|  | k->info = tinfo; | 
|  | k->pending = guest_sig; | 
|  | ts->signal_pending = 1; | 
|  |  | 
|  | /* | 
|  | * For synchronous signals, unwind the cpu state to the faulting | 
|  | * insn and then exit back to the main loop so that the signal | 
|  | * is delivered immediately. | 
|  | */ | 
|  | if (sync_sig) { | 
|  | cpu->exception_index = EXCP_INTERRUPT; | 
|  | cpu_loop_exit_restore(cpu, pc); | 
|  | } | 
|  |  | 
|  | rewind_if_in_safe_syscall(puc); | 
|  |  | 
|  | /* | 
|  | * Block host signals until target signal handler entered. We | 
|  | * can't block SIGSEGV or SIGBUS while we're executing guest | 
|  | * code in case the guest code provokes one in the window between | 
|  | * now and it getting out to the main loop. Signals will be | 
|  | * unblocked again in process_pending_signals(). | 
|  | * | 
|  | * WARNING: we cannot use sigfillset() here because the sigmask | 
|  | * field is a kernel sigset_t, which is much smaller than the | 
|  | * libc sigset_t which sigfillset() operates on. Using sigfillset() | 
|  | * would write 0xff bytes off the end of the structure and trash | 
|  | * data on the struct. | 
|  | */ | 
|  | memset(sigmask, 0xff, SIGSET_T_SIZE); | 
|  | sigdelset(sigmask, SIGSEGV); | 
|  | sigdelset(sigmask, SIGBUS); | 
|  |  | 
|  | /* interrupt the virtual CPU as soon as possible */ | 
|  | cpu_exit(thread_cpu); | 
|  | } | 
|  |  | 
|  | /* do_sigaltstack() returns target values and errnos. */ | 
|  | /* compare linux/kernel/signal.c:do_sigaltstack() */ | 
|  | abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, | 
|  | CPUArchState *env) | 
|  | { | 
|  | target_stack_t oss, *uoss = NULL; | 
|  | abi_long ret = -TARGET_EFAULT; | 
|  |  | 
|  | if (uoss_addr) { | 
|  | /* Verify writability now, but do not alter user memory yet. */ | 
|  | if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) { | 
|  | goto out; | 
|  | } | 
|  | target_save_altstack(&oss, env); | 
|  | } | 
|  |  | 
|  | if (uss_addr) { | 
|  | target_stack_t *uss; | 
|  |  | 
|  | if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { | 
|  | goto out; | 
|  | } | 
|  | ret = target_restore_altstack(uss, env); | 
|  | if (ret) { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (uoss_addr) { | 
|  | memcpy(uoss, &oss, sizeof(oss)); | 
|  | unlock_user_struct(uoss, uoss_addr, 1); | 
|  | uoss = NULL; | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | if (uoss) { | 
|  | unlock_user_struct(uoss, uoss_addr, 0); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* do_sigaction() return target values and host errnos */ | 
|  | int do_sigaction(int sig, const struct target_sigaction *act, | 
|  | struct target_sigaction *oact, abi_ulong ka_restorer) | 
|  | { | 
|  | struct target_sigaction *k; | 
|  | struct sigaction act1; | 
|  | int host_sig; | 
|  | int ret = 0; | 
|  |  | 
|  | trace_signal_do_sigaction_guest(sig, TARGET_NSIG); | 
|  |  | 
|  | if (sig < 1 || sig > TARGET_NSIG) { | 
|  | return -TARGET_EINVAL; | 
|  | } | 
|  |  | 
|  | if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) { | 
|  | return -TARGET_EINVAL; | 
|  | } | 
|  |  | 
|  | if (block_signals()) { | 
|  | return -QEMU_ERESTARTSYS; | 
|  | } | 
|  |  | 
|  | k = &sigact_table[sig - 1]; | 
|  | if (oact) { | 
|  | __put_user(k->_sa_handler, &oact->_sa_handler); | 
|  | __put_user(k->sa_flags, &oact->sa_flags); | 
|  | #ifdef TARGET_ARCH_HAS_SA_RESTORER | 
|  | __put_user(k->sa_restorer, &oact->sa_restorer); | 
|  | #endif | 
|  | /* Not swapped.  */ | 
|  | oact->sa_mask = k->sa_mask; | 
|  | } | 
|  | if (act) { | 
|  | __get_user(k->_sa_handler, &act->_sa_handler); | 
|  | __get_user(k->sa_flags, &act->sa_flags); | 
|  | #ifdef TARGET_ARCH_HAS_SA_RESTORER | 
|  | __get_user(k->sa_restorer, &act->sa_restorer); | 
|  | #endif | 
|  | #ifdef TARGET_ARCH_HAS_KA_RESTORER | 
|  | k->ka_restorer = ka_restorer; | 
|  | #endif | 
|  | /* To be swapped in target_to_host_sigset.  */ | 
|  | k->sa_mask = act->sa_mask; | 
|  |  | 
|  | /* we update the host linux signal state */ | 
|  | host_sig = target_to_host_signal(sig); | 
|  | trace_signal_do_sigaction_host(host_sig, TARGET_NSIG); | 
|  | if (host_sig > SIGRTMAX) { | 
|  | /* we don't have enough host signals to map all target signals */ | 
|  | qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n", | 
|  | sig); | 
|  | /* | 
|  | * we don't return an error here because some programs try to | 
|  | * register an handler for all possible rt signals even if they | 
|  | * don't need it. | 
|  | * An error here can abort them whereas there can be no problem | 
|  | * to not have the signal available later. | 
|  | * This is the case for golang, | 
|  | *   See https://github.com/golang/go/issues/33746 | 
|  | * So we silently ignore the error. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  | if (host_sig != SIGSEGV && host_sig != SIGBUS) { | 
|  | sigfillset(&act1.sa_mask); | 
|  | act1.sa_flags = SA_SIGINFO; | 
|  | if (k->sa_flags & TARGET_SA_RESTART) | 
|  | act1.sa_flags |= SA_RESTART; | 
|  | /* NOTE: it is important to update the host kernel signal | 
|  | ignore state to avoid getting unexpected interrupted | 
|  | syscalls */ | 
|  | if (k->_sa_handler == TARGET_SIG_IGN) { | 
|  | act1.sa_sigaction = (void *)SIG_IGN; | 
|  | } else if (k->_sa_handler == TARGET_SIG_DFL) { | 
|  | if (fatal_signal (sig)) | 
|  | act1.sa_sigaction = host_signal_handler; | 
|  | else | 
|  | act1.sa_sigaction = (void *)SIG_DFL; | 
|  | } else { | 
|  | act1.sa_sigaction = host_signal_handler; | 
|  | } | 
|  | ret = sigaction(host_sig, &act1, NULL); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void handle_pending_signal(CPUArchState *cpu_env, int sig, | 
|  | struct emulated_sigtable *k) | 
|  | { | 
|  | CPUState *cpu = env_cpu(cpu_env); | 
|  | abi_ulong handler; | 
|  | sigset_t set; | 
|  | target_sigset_t target_old_set; | 
|  | struct target_sigaction *sa; | 
|  | TaskState *ts = cpu->opaque; | 
|  |  | 
|  | trace_user_handle_signal(cpu_env, sig); | 
|  | /* dequeue signal */ | 
|  | k->pending = 0; | 
|  |  | 
|  | sig = gdb_handlesig(cpu, sig); | 
|  | if (!sig) { | 
|  | sa = NULL; | 
|  | handler = TARGET_SIG_IGN; | 
|  | } else { | 
|  | sa = &sigact_table[sig - 1]; | 
|  | handler = sa->_sa_handler; | 
|  | } | 
|  |  | 
|  | if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { | 
|  | print_taken_signal(sig, &k->info); | 
|  | } | 
|  |  | 
|  | if (handler == TARGET_SIG_DFL) { | 
|  | /* default handler : ignore some signal. The other are job control or fatal */ | 
|  | if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { | 
|  | kill(getpid(),SIGSTOP); | 
|  | } else if (sig != TARGET_SIGCHLD && | 
|  | sig != TARGET_SIGURG && | 
|  | sig != TARGET_SIGWINCH && | 
|  | sig != TARGET_SIGCONT) { | 
|  | dump_core_and_abort(cpu_env, sig); | 
|  | } | 
|  | } else if (handler == TARGET_SIG_IGN) { | 
|  | /* ignore sig */ | 
|  | } else if (handler == TARGET_SIG_ERR) { | 
|  | dump_core_and_abort(cpu_env, sig); | 
|  | } else { | 
|  | /* compute the blocked signals during the handler execution */ | 
|  | sigset_t *blocked_set; | 
|  |  | 
|  | target_to_host_sigset(&set, &sa->sa_mask); | 
|  | /* SA_NODEFER indicates that the current signal should not be | 
|  | blocked during the handler */ | 
|  | if (!(sa->sa_flags & TARGET_SA_NODEFER)) | 
|  | sigaddset(&set, target_to_host_signal(sig)); | 
|  |  | 
|  | /* save the previous blocked signal state to restore it at the | 
|  | end of the signal execution (see do_sigreturn) */ | 
|  | host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); | 
|  |  | 
|  | /* block signals in the handler */ | 
|  | blocked_set = ts->in_sigsuspend ? | 
|  | &ts->sigsuspend_mask : &ts->signal_mask; | 
|  | sigorset(&ts->signal_mask, blocked_set, &set); | 
|  | ts->in_sigsuspend = 0; | 
|  |  | 
|  | /* if the CPU is in VM86 mode, we restore the 32 bit values */ | 
|  | #if defined(TARGET_I386) && !defined(TARGET_X86_64) | 
|  | { | 
|  | CPUX86State *env = cpu_env; | 
|  | if (env->eflags & VM_MASK) | 
|  | save_v86_state(env); | 
|  | } | 
|  | #endif | 
|  | /* prepare the stack frame of the virtual CPU */ | 
|  | #if defined(TARGET_ARCH_HAS_SETUP_FRAME) | 
|  | if (sa->sa_flags & TARGET_SA_SIGINFO) { | 
|  | setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); | 
|  | } else { | 
|  | setup_frame(sig, sa, &target_old_set, cpu_env); | 
|  | } | 
|  | #else | 
|  | /* These targets do not have traditional signals.  */ | 
|  | setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); | 
|  | #endif | 
|  | if (sa->sa_flags & TARGET_SA_RESETHAND) { | 
|  | sa->_sa_handler = TARGET_SIG_DFL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void process_pending_signals(CPUArchState *cpu_env) | 
|  | { | 
|  | CPUState *cpu = env_cpu(cpu_env); | 
|  | int sig; | 
|  | TaskState *ts = cpu->opaque; | 
|  | sigset_t set; | 
|  | sigset_t *blocked_set; | 
|  |  | 
|  | while (qatomic_read(&ts->signal_pending)) { | 
|  | sigfillset(&set); | 
|  | sigprocmask(SIG_SETMASK, &set, 0); | 
|  |  | 
|  | restart_scan: | 
|  | sig = ts->sync_signal.pending; | 
|  | if (sig) { | 
|  | /* Synchronous signals are forced, | 
|  | * see force_sig_info() and callers in Linux | 
|  | * Note that not all of our queue_signal() calls in QEMU correspond | 
|  | * to force_sig_info() calls in Linux (some are send_sig_info()). | 
|  | * However it seems like a kernel bug to me to allow the process | 
|  | * to block a synchronous signal since it could then just end up | 
|  | * looping round and round indefinitely. | 
|  | */ | 
|  | if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) | 
|  | || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { | 
|  | sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); | 
|  | sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; | 
|  | } | 
|  |  | 
|  | handle_pending_signal(cpu_env, sig, &ts->sync_signal); | 
|  | } | 
|  |  | 
|  | for (sig = 1; sig <= TARGET_NSIG; sig++) { | 
|  | blocked_set = ts->in_sigsuspend ? | 
|  | &ts->sigsuspend_mask : &ts->signal_mask; | 
|  |  | 
|  | if (ts->sigtab[sig - 1].pending && | 
|  | (!sigismember(blocked_set, | 
|  | target_to_host_signal_table[sig]))) { | 
|  | handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); | 
|  | /* Restart scan from the beginning, as handle_pending_signal | 
|  | * might have resulted in a new synchronous signal (eg SIGSEGV). | 
|  | */ | 
|  | goto restart_scan; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if no signal is pending, unblock signals and recheck (the act | 
|  | * of unblocking might cause us to take another host signal which | 
|  | * will set signal_pending again). | 
|  | */ | 
|  | qatomic_set(&ts->signal_pending, 0); | 
|  | ts->in_sigsuspend = 0; | 
|  | set = ts->signal_mask; | 
|  | sigdelset(&set, SIGSEGV); | 
|  | sigdelset(&set, SIGBUS); | 
|  | sigprocmask(SIG_SETMASK, &set, 0); | 
|  | } | 
|  | ts->in_sigsuspend = 0; | 
|  | } | 
|  |  | 
|  | int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset, | 
|  | target_ulong sigsize) | 
|  | { | 
|  | TaskState *ts = (TaskState *)thread_cpu->opaque; | 
|  | sigset_t *host_set = &ts->sigsuspend_mask; | 
|  | target_sigset_t *target_sigset; | 
|  |  | 
|  | if (sigsize != sizeof(*target_sigset)) { | 
|  | /* Like the kernel, we enforce correct size sigsets */ | 
|  | return -TARGET_EINVAL; | 
|  | } | 
|  |  | 
|  | target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1); | 
|  | if (!target_sigset) { | 
|  | return -TARGET_EFAULT; | 
|  | } | 
|  | target_to_host_sigset(host_set, target_sigset); | 
|  | unlock_user(target_sigset, sigset, 0); | 
|  |  | 
|  | *pset = host_set; | 
|  | return 0; | 
|  | } |