| /* |
| * MIPS emulation helpers for qemu. |
| * |
| * Copyright (c) 2004-2005 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #include <stdlib.h> |
| #include "exec.h" |
| |
| #include "host-utils.h" |
| |
| /*****************************************************************************/ |
| /* Exceptions processing helpers */ |
| |
| void do_raise_exception_err (uint32_t exception, int error_code) |
| { |
| #if 1 |
| if (logfile && exception < 0x100) |
| fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code); |
| #endif |
| env->exception_index = exception; |
| env->error_code = error_code; |
| cpu_loop_exit(); |
| } |
| |
| void do_raise_exception (uint32_t exception) |
| { |
| do_raise_exception_err(exception, 0); |
| } |
| |
| void do_interrupt_restart (void) |
| { |
| if (!(env->CP0_Status & (1 << CP0St_EXL)) && |
| !(env->CP0_Status & (1 << CP0St_ERL)) && |
| !(env->hflags & MIPS_HFLAG_DM) && |
| (env->CP0_Status & (1 << CP0St_IE)) && |
| (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) { |
| env->CP0_Cause &= ~(0x1f << CP0Ca_EC); |
| do_raise_exception(EXCP_EXT_INTERRUPT); |
| } |
| } |
| |
| void do_restore_state (void *pc_ptr) |
| { |
| TranslationBlock *tb; |
| unsigned long pc = (unsigned long) pc_ptr; |
| |
| tb = tb_find_pc (pc); |
| if (tb) { |
| cpu_restore_state (tb, env, pc, NULL); |
| } |
| } |
| |
| target_ulong do_clo (target_ulong t0) |
| { |
| return clo32(t0); |
| } |
| |
| target_ulong do_clz (target_ulong t0) |
| { |
| return clz32(t0); |
| } |
| |
| #if defined(TARGET_MIPS64) |
| target_ulong do_dclo (target_ulong t0) |
| { |
| return clo64(t0); |
| } |
| |
| target_ulong do_dclz (target_ulong t0) |
| { |
| return clz64(t0); |
| } |
| #endif /* TARGET_MIPS64 */ |
| |
| /* 64 bits arithmetic for 32 bits hosts */ |
| static inline uint64_t get_HILO (void) |
| { |
| return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0]; |
| } |
| |
| static inline void set_HILO (uint64_t HILO) |
| { |
| env->active_tc.LO[0] = (int32_t)HILO; |
| env->active_tc.HI[0] = (int32_t)(HILO >> 32); |
| } |
| |
| static inline void set_HIT0_LO (target_ulong t0, uint64_t HILO) |
| { |
| env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF); |
| t0 = env->active_tc.HI[0] = (int32_t)(HILO >> 32); |
| } |
| |
| static inline void set_HI_LOT0 (target_ulong t0, uint64_t HILO) |
| { |
| t0 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF); |
| env->active_tc.HI[0] = (int32_t)(HILO >> 32); |
| } |
| |
| #if TARGET_LONG_BITS > HOST_LONG_BITS |
| void do_madd (target_ulong t0, target_ulong t1) |
| { |
| int64_t tmp; |
| |
| tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1); |
| set_HILO((int64_t)get_HILO() + tmp); |
| } |
| |
| void do_maddu (target_ulong t0, target_ulong t1) |
| { |
| uint64_t tmp; |
| |
| tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1); |
| set_HILO(get_HILO() + tmp); |
| } |
| |
| void do_msub (target_ulong t0, target_ulong t1) |
| { |
| int64_t tmp; |
| |
| tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1); |
| set_HILO((int64_t)get_HILO() - tmp); |
| } |
| |
| void do_msubu (target_ulong t0, target_ulong t1) |
| { |
| uint64_t tmp; |
| |
| tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1); |
| set_HILO(get_HILO() - tmp); |
| } |
| #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */ |
| |
| /* Multiplication variants of the vr54xx. */ |
| target_ulong do_muls (target_ulong t0, target_ulong t1) |
| { |
| set_HI_LOT0(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1)); |
| |
| return t0; |
| } |
| |
| target_ulong do_mulsu (target_ulong t0, target_ulong t1) |
| { |
| set_HI_LOT0(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1)); |
| |
| return t0; |
| } |
| |
| target_ulong do_macc (target_ulong t0, target_ulong t1) |
| { |
| set_HI_LOT0(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1)); |
| |
| return t0; |
| } |
| |
| target_ulong do_macchi (target_ulong t0, target_ulong t1) |
| { |
| set_HIT0_LO(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1)); |
| |
| return t0; |
| } |
| |
| target_ulong do_maccu (target_ulong t0, target_ulong t1) |
| { |
| set_HI_LOT0(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1)); |
| |
| return t0; |
| } |
| |
| target_ulong do_macchiu (target_ulong t0, target_ulong t1) |
| { |
| set_HIT0_LO(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1)); |
| |
| return t0; |
| } |
| |
| target_ulong do_msac (target_ulong t0, target_ulong t1) |
| { |
| set_HI_LOT0(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1)); |
| |
| return t0; |
| } |
| |
| target_ulong do_msachi (target_ulong t0, target_ulong t1) |
| { |
| set_HIT0_LO(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1)); |
| |
| return t0; |
| } |
| |
| target_ulong do_msacu (target_ulong t0, target_ulong t1) |
| { |
| set_HI_LOT0(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1)); |
| |
| return t0; |
| } |
| |
| target_ulong do_msachiu (target_ulong t0, target_ulong t1) |
| { |
| set_HIT0_LO(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1)); |
| |
| return t0; |
| } |
| |
| target_ulong do_mulhi (target_ulong t0, target_ulong t1) |
| { |
| set_HIT0_LO(t0, (int64_t)(int32_t)t0 * (int64_t)(int32_t)t1); |
| |
| return t0; |
| } |
| |
| target_ulong do_mulhiu (target_ulong t0, target_ulong t1) |
| { |
| set_HIT0_LO(t0, (uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1); |
| |
| return t0; |
| } |
| |
| target_ulong do_mulshi (target_ulong t0, target_ulong t1) |
| { |
| set_HIT0_LO(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1)); |
| |
| return t0; |
| } |
| |
| target_ulong do_mulshiu (target_ulong t0, target_ulong t1) |
| { |
| set_HIT0_LO(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1)); |
| |
| return t0; |
| } |
| |
| #ifdef TARGET_MIPS64 |
| void do_dmult (target_ulong t0, target_ulong t1) |
| { |
| muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1); |
| } |
| |
| void do_dmultu (target_ulong t0, target_ulong t1) |
| { |
| mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1); |
| } |
| #endif |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| #define GET_LMASK(v) ((v) & 3) |
| #define GET_OFFSET(addr, offset) (addr + (offset)) |
| #else |
| #define GET_LMASK(v) (((v) & 3) ^ 3) |
| #define GET_OFFSET(addr, offset) (addr - (offset)) |
| #endif |
| |
| target_ulong do_lwl(target_ulong t0, target_ulong t1, int mem_idx) |
| { |
| target_ulong tmp; |
| |
| #ifdef CONFIG_USER_ONLY |
| #define ldfun ldub_raw |
| #else |
| int (*ldfun)(target_ulong); |
| |
| switch (mem_idx) |
| { |
| case 0: ldfun = ldub_kernel; break; |
| case 1: ldfun = ldub_super; break; |
| default: |
| case 2: ldfun = ldub_user; break; |
| } |
| #endif |
| tmp = ldfun(t0); |
| t1 = (t1 & 0x00FFFFFF) | (tmp << 24); |
| |
| if (GET_LMASK(t0) <= 2) { |
| tmp = ldfun(GET_OFFSET(t0, 1)); |
| t1 = (t1 & 0xFF00FFFF) | (tmp << 16); |
| } |
| |
| if (GET_LMASK(t0) <= 1) { |
| tmp = ldfun(GET_OFFSET(t0, 2)); |
| t1 = (t1 & 0xFFFF00FF) | (tmp << 8); |
| } |
| |
| if (GET_LMASK(t0) == 0) { |
| tmp = ldfun(GET_OFFSET(t0, 3)); |
| t1 = (t1 & 0xFFFFFF00) | tmp; |
| } |
| return (int32_t)t1; |
| } |
| |
| target_ulong do_lwr(target_ulong t0, target_ulong t1, int mem_idx) |
| { |
| target_ulong tmp; |
| |
| #ifdef CONFIG_USER_ONLY |
| #define ldfun ldub_raw |
| #else |
| int (*ldfun)(target_ulong); |
| |
| switch (mem_idx) |
| { |
| case 0: ldfun = ldub_kernel; break; |
| case 1: ldfun = ldub_super; break; |
| default: |
| case 2: ldfun = ldub_user; break; |
| } |
| #endif |
| tmp = ldfun(t0); |
| t1 = (t1 & 0xFFFFFF00) | tmp; |
| |
| if (GET_LMASK(t0) >= 1) { |
| tmp = ldfun(GET_OFFSET(t0, -1)); |
| t1 = (t1 & 0xFFFF00FF) | (tmp << 8); |
| } |
| |
| if (GET_LMASK(t0) >= 2) { |
| tmp = ldfun(GET_OFFSET(t0, -2)); |
| t1 = (t1 & 0xFF00FFFF) | (tmp << 16); |
| } |
| |
| if (GET_LMASK(t0) == 3) { |
| tmp = ldfun(GET_OFFSET(t0, -3)); |
| t1 = (t1 & 0x00FFFFFF) | (tmp << 24); |
| } |
| return (int32_t)t1; |
| } |
| |
| void do_swl(target_ulong t0, target_ulong t1, int mem_idx) |
| { |
| #ifdef CONFIG_USER_ONLY |
| #define stfun stb_raw |
| #else |
| void (*stfun)(target_ulong, int); |
| |
| switch (mem_idx) |
| { |
| case 0: stfun = stb_kernel; break; |
| case 1: stfun = stb_super; break; |
| default: |
| case 2: stfun = stb_user; break; |
| } |
| #endif |
| stfun(t0, (uint8_t)(t1 >> 24)); |
| |
| if (GET_LMASK(t0) <= 2) |
| stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 16)); |
| |
| if (GET_LMASK(t0) <= 1) |
| stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 8)); |
| |
| if (GET_LMASK(t0) == 0) |
| stfun(GET_OFFSET(t0, 3), (uint8_t)t1); |
| } |
| |
| void do_swr(target_ulong t0, target_ulong t1, int mem_idx) |
| { |
| #ifdef CONFIG_USER_ONLY |
| #define stfun stb_raw |
| #else |
| void (*stfun)(target_ulong, int); |
| |
| switch (mem_idx) |
| { |
| case 0: stfun = stb_kernel; break; |
| case 1: stfun = stb_super; break; |
| default: |
| case 2: stfun = stb_user; break; |
| } |
| #endif |
| stfun(t0, (uint8_t)t1); |
| |
| if (GET_LMASK(t0) >= 1) |
| stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8)); |
| |
| if (GET_LMASK(t0) >= 2) |
| stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16)); |
| |
| if (GET_LMASK(t0) == 3) |
| stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24)); |
| } |
| |
| #if defined(TARGET_MIPS64) |
| /* "half" load and stores. We must do the memory access inline, |
| or fault handling won't work. */ |
| |
| #ifdef TARGET_WORDS_BIGENDIAN |
| #define GET_LMASK64(v) ((v) & 7) |
| #else |
| #define GET_LMASK64(v) (((v) & 7) ^ 7) |
| #endif |
| |
| target_ulong do_ldl(target_ulong t0, target_ulong t1, int mem_idx) |
| { |
| uint64_t tmp; |
| |
| #ifdef CONFIG_USER_ONLY |
| #define ldfun ldub_raw |
| #else |
| int (*ldfun)(target_ulong); |
| |
| switch (mem_idx) |
| { |
| case 0: ldfun = ldub_kernel; break; |
| case 1: ldfun = ldub_super; break; |
| default: |
| case 2: ldfun = ldub_user; break; |
| } |
| #endif |
| tmp = ldfun(t0); |
| t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56); |
| |
| if (GET_LMASK64(t0) <= 6) { |
| tmp = ldfun(GET_OFFSET(t0, 1)); |
| t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48); |
| } |
| |
| if (GET_LMASK64(t0) <= 5) { |
| tmp = ldfun(GET_OFFSET(t0, 2)); |
| t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40); |
| } |
| |
| if (GET_LMASK64(t0) <= 4) { |
| tmp = ldfun(GET_OFFSET(t0, 3)); |
| t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32); |
| } |
| |
| if (GET_LMASK64(t0) <= 3) { |
| tmp = ldfun(GET_OFFSET(t0, 4)); |
| t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24); |
| } |
| |
| if (GET_LMASK64(t0) <= 2) { |
| tmp = ldfun(GET_OFFSET(t0, 5)); |
| t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16); |
| } |
| |
| if (GET_LMASK64(t0) <= 1) { |
| tmp = ldfun(GET_OFFSET(t0, 6)); |
| t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8); |
| } |
| |
| if (GET_LMASK64(t0) == 0) { |
| tmp = ldfun(GET_OFFSET(t0, 7)); |
| t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp; |
| } |
| |
| return t1; |
| } |
| |
| target_ulong do_ldr(target_ulong t0, target_ulong t1, int mem_idx) |
| { |
| uint64_t tmp; |
| |
| #ifdef CONFIG_USER_ONLY |
| #define ldfun ldub_raw |
| #else |
| int (*ldfun)(target_ulong); |
| |
| switch (mem_idx) |
| { |
| case 0: ldfun = ldub_kernel; break; |
| case 1: ldfun = ldub_super; break; |
| default: |
| case 2: ldfun = ldub_user; break; |
| } |
| #endif |
| tmp = ldfun(t0); |
| t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp; |
| |
| if (GET_LMASK64(t0) >= 1) { |
| tmp = ldfun(GET_OFFSET(t0, -1)); |
| t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8); |
| } |
| |
| if (GET_LMASK64(t0) >= 2) { |
| tmp = ldfun(GET_OFFSET(t0, -2)); |
| t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16); |
| } |
| |
| if (GET_LMASK64(t0) >= 3) { |
| tmp = ldfun(GET_OFFSET(t0, -3)); |
| t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24); |
| } |
| |
| if (GET_LMASK64(t0) >= 4) { |
| tmp = ldfun(GET_OFFSET(t0, -4)); |
| t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32); |
| } |
| |
| if (GET_LMASK64(t0) >= 5) { |
| tmp = ldfun(GET_OFFSET(t0, -5)); |
| t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40); |
| } |
| |
| if (GET_LMASK64(t0) >= 6) { |
| tmp = ldfun(GET_OFFSET(t0, -6)); |
| t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48); |
| } |
| |
| if (GET_LMASK64(t0) == 7) { |
| tmp = ldfun(GET_OFFSET(t0, -7)); |
| t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56); |
| } |
| |
| return t1; |
| } |
| |
| void do_sdl(target_ulong t0, target_ulong t1, int mem_idx) |
| { |
| #ifdef CONFIG_USER_ONLY |
| #define stfun stb_raw |
| #else |
| void (*stfun)(target_ulong, int); |
| |
| switch (mem_idx) |
| { |
| case 0: stfun = stb_kernel; break; |
| case 1: stfun = stb_super; break; |
| default: |
| case 2: stfun = stb_user; break; |
| } |
| #endif |
| stfun(t0, (uint8_t)(t1 >> 56)); |
| |
| if (GET_LMASK64(t0) <= 6) |
| stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 48)); |
| |
| if (GET_LMASK64(t0) <= 5) |
| stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 40)); |
| |
| if (GET_LMASK64(t0) <= 4) |
| stfun(GET_OFFSET(t0, 3), (uint8_t)(t1 >> 32)); |
| |
| if (GET_LMASK64(t0) <= 3) |
| stfun(GET_OFFSET(t0, 4), (uint8_t)(t1 >> 24)); |
| |
| if (GET_LMASK64(t0) <= 2) |
| stfun(GET_OFFSET(t0, 5), (uint8_t)(t1 >> 16)); |
| |
| if (GET_LMASK64(t0) <= 1) |
| stfun(GET_OFFSET(t0, 6), (uint8_t)(t1 >> 8)); |
| |
| if (GET_LMASK64(t0) <= 0) |
| stfun(GET_OFFSET(t0, 7), (uint8_t)t1); |
| } |
| |
| void do_sdr(target_ulong t0, target_ulong t1, int mem_idx) |
| { |
| #ifdef CONFIG_USER_ONLY |
| #define stfun stb_raw |
| #else |
| void (*stfun)(target_ulong, int); |
| |
| switch (mem_idx) |
| { |
| case 0: stfun = stb_kernel; break; |
| case 1: stfun = stb_super; break; |
| default: |
| case 2: stfun = stb_user; break; |
| } |
| #endif |
| stfun(t0, (uint8_t)t1); |
| |
| if (GET_LMASK64(t0) >= 1) |
| stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8)); |
| |
| if (GET_LMASK64(t0) >= 2) |
| stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16)); |
| |
| if (GET_LMASK64(t0) >= 3) |
| stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24)); |
| |
| if (GET_LMASK64(t0) >= 4) |
| stfun(GET_OFFSET(t0, -4), (uint8_t)(t1 >> 32)); |
| |
| if (GET_LMASK64(t0) >= 5) |
| stfun(GET_OFFSET(t0, -5), (uint8_t)(t1 >> 40)); |
| |
| if (GET_LMASK64(t0) >= 6) |
| stfun(GET_OFFSET(t0, -6), (uint8_t)(t1 >> 48)); |
| |
| if (GET_LMASK64(t0) == 7) |
| stfun(GET_OFFSET(t0, -7), (uint8_t)(t1 >> 56)); |
| } |
| #endif /* TARGET_MIPS64 */ |
| |
| #ifndef CONFIG_USER_ONLY |
| /* CP0 helpers */ |
| target_ulong do_mfc0_mvpcontrol (void) |
| { |
| return env->mvp->CP0_MVPControl; |
| } |
| |
| target_ulong do_mfc0_mvpconf0 (void) |
| { |
| return env->mvp->CP0_MVPConf0; |
| } |
| |
| target_ulong do_mfc0_mvpconf1 (void) |
| { |
| return env->mvp->CP0_MVPConf1; |
| } |
| |
| target_ulong do_mfc0_random (void) |
| { |
| return (int32_t)cpu_mips_get_random(env); |
| } |
| |
| target_ulong do_mfc0_tcstatus (void) |
| { |
| return env->active_tc.CP0_TCStatus; |
| } |
| |
| target_ulong do_mftc0_tcstatus(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| return env->active_tc.CP0_TCStatus; |
| else |
| return env->tcs[other_tc].CP0_TCStatus; |
| } |
| |
| target_ulong do_mfc0_tcbind (void) |
| { |
| return env->active_tc.CP0_TCBind; |
| } |
| |
| target_ulong do_mftc0_tcbind(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| return env->active_tc.CP0_TCBind; |
| else |
| return env->tcs[other_tc].CP0_TCBind; |
| } |
| |
| target_ulong do_mfc0_tcrestart (void) |
| { |
| return env->active_tc.PC; |
| } |
| |
| target_ulong do_mftc0_tcrestart(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| return env->active_tc.PC; |
| else |
| return env->tcs[other_tc].PC; |
| } |
| |
| target_ulong do_mfc0_tchalt (void) |
| { |
| return env->active_tc.CP0_TCHalt; |
| } |
| |
| target_ulong do_mftc0_tchalt(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| return env->active_tc.CP0_TCHalt; |
| else |
| return env->tcs[other_tc].CP0_TCHalt; |
| } |
| |
| target_ulong do_mfc0_tccontext (void) |
| { |
| return env->active_tc.CP0_TCContext; |
| } |
| |
| target_ulong do_mftc0_tccontext(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| return env->active_tc.CP0_TCContext; |
| else |
| return env->tcs[other_tc].CP0_TCContext; |
| } |
| |
| target_ulong do_mfc0_tcschedule (void) |
| { |
| return env->active_tc.CP0_TCSchedule; |
| } |
| |
| target_ulong do_mftc0_tcschedule(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| return env->active_tc.CP0_TCSchedule; |
| else |
| return env->tcs[other_tc].CP0_TCSchedule; |
| } |
| |
| target_ulong do_mfc0_tcschefback (void) |
| { |
| return env->active_tc.CP0_TCScheFBack; |
| } |
| |
| target_ulong do_mftc0_tcschefback(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| return env->active_tc.CP0_TCScheFBack; |
| else |
| return env->tcs[other_tc].CP0_TCScheFBack; |
| } |
| |
| target_ulong do_mfc0_count (void) |
| { |
| return (int32_t)cpu_mips_get_count(env); |
| } |
| |
| target_ulong do_mftc0_entryhi(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| int32_t tcstatus; |
| |
| if (other_tc == env->current_tc) |
| tcstatus = env->active_tc.CP0_TCStatus; |
| else |
| tcstatus = env->tcs[other_tc].CP0_TCStatus; |
| |
| return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff); |
| } |
| |
| target_ulong do_mftc0_status(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| target_ulong t0; |
| int32_t tcstatus; |
| |
| if (other_tc == env->current_tc) |
| tcstatus = env->active_tc.CP0_TCStatus; |
| else |
| tcstatus = env->tcs[other_tc].CP0_TCStatus; |
| |
| t0 = env->CP0_Status & ~0xf1000018; |
| t0 |= tcstatus & (0xf << CP0TCSt_TCU0); |
| t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX); |
| t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU); |
| |
| return t0; |
| } |
| |
| target_ulong do_mfc0_lladdr (void) |
| { |
| return (int32_t)env->CP0_LLAddr >> 4; |
| } |
| |
| target_ulong do_mfc0_watchlo (uint32_t sel) |
| { |
| return (int32_t)env->CP0_WatchLo[sel]; |
| } |
| |
| target_ulong do_mfc0_watchhi (uint32_t sel) |
| { |
| return env->CP0_WatchHi[sel]; |
| } |
| |
| target_ulong do_mfc0_debug (void) |
| { |
| target_ulong t0 = env->CP0_Debug; |
| if (env->hflags & MIPS_HFLAG_DM) |
| t0 |= 1 << CP0DB_DM; |
| |
| return t0; |
| } |
| |
| target_ulong do_mftc0_debug(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| int32_t tcstatus; |
| |
| if (other_tc == env->current_tc) |
| tcstatus = env->active_tc.CP0_Debug_tcstatus; |
| else |
| tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus; |
| |
| /* XXX: Might be wrong, check with EJTAG spec. */ |
| return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | |
| (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); |
| } |
| |
| #if defined(TARGET_MIPS64) |
| target_ulong do_dmfc0_tcrestart (void) |
| { |
| return env->active_tc.PC; |
| } |
| |
| target_ulong do_dmfc0_tchalt (void) |
| { |
| return env->active_tc.CP0_TCHalt; |
| } |
| |
| target_ulong do_dmfc0_tccontext (void) |
| { |
| return env->active_tc.CP0_TCContext; |
| } |
| |
| target_ulong do_dmfc0_tcschedule (void) |
| { |
| return env->active_tc.CP0_TCSchedule; |
| } |
| |
| target_ulong do_dmfc0_tcschefback (void) |
| { |
| return env->active_tc.CP0_TCScheFBack; |
| } |
| |
| target_ulong do_dmfc0_lladdr (void) |
| { |
| return env->CP0_LLAddr >> 4; |
| } |
| |
| target_ulong do_dmfc0_watchlo (uint32_t sel) |
| { |
| return env->CP0_WatchLo[sel]; |
| } |
| #endif /* TARGET_MIPS64 */ |
| |
| void do_mtc0_index (target_ulong t0) |
| { |
| int num = 1; |
| unsigned int tmp = env->tlb->nb_tlb; |
| |
| do { |
| tmp >>= 1; |
| num <<= 1; |
| } while (tmp); |
| env->CP0_Index = (env->CP0_Index & 0x80000000) | (t0 & (num - 1)); |
| } |
| |
| void do_mtc0_mvpcontrol (target_ulong t0) |
| { |
| uint32_t mask = 0; |
| uint32_t newval; |
| |
| if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) |
| mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) | |
| (1 << CP0MVPCo_EVP); |
| if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) |
| mask |= (1 << CP0MVPCo_STLB); |
| newval = (env->mvp->CP0_MVPControl & ~mask) | (t0 & mask); |
| |
| // TODO: Enable/disable shared TLB, enable/disable VPEs. |
| |
| env->mvp->CP0_MVPControl = newval; |
| } |
| |
| void do_mtc0_vpecontrol (target_ulong t0) |
| { |
| uint32_t mask; |
| uint32_t newval; |
| |
| mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) | |
| (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC); |
| newval = (env->CP0_VPEControl & ~mask) | (t0 & mask); |
| |
| /* Yield scheduler intercept not implemented. */ |
| /* Gating storage scheduler intercept not implemented. */ |
| |
| // TODO: Enable/disable TCs. |
| |
| env->CP0_VPEControl = newval; |
| } |
| |
| void do_mtc0_vpeconf0 (target_ulong t0) |
| { |
| uint32_t mask = 0; |
| uint32_t newval; |
| |
| if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) { |
| if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA)) |
| mask |= (0xff << CP0VPEC0_XTC); |
| mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA); |
| } |
| newval = (env->CP0_VPEConf0 & ~mask) | (t0 & mask); |
| |
| // TODO: TC exclusive handling due to ERL/EXL. |
| |
| env->CP0_VPEConf0 = newval; |
| } |
| |
| void do_mtc0_vpeconf1 (target_ulong t0) |
| { |
| uint32_t mask = 0; |
| uint32_t newval; |
| |
| if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) |
| mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) | |
| (0xff << CP0VPEC1_NCP1); |
| newval = (env->CP0_VPEConf1 & ~mask) | (t0 & mask); |
| |
| /* UDI not implemented. */ |
| /* CP2 not implemented. */ |
| |
| // TODO: Handle FPU (CP1) binding. |
| |
| env->CP0_VPEConf1 = newval; |
| } |
| |
| void do_mtc0_yqmask (target_ulong t0) |
| { |
| /* Yield qualifier inputs not implemented. */ |
| env->CP0_YQMask = 0x00000000; |
| } |
| |
| void do_mtc0_vpeopt (target_ulong t0) |
| { |
| env->CP0_VPEOpt = t0 & 0x0000ffff; |
| } |
| |
| void do_mtc0_entrylo0 (target_ulong t0) |
| { |
| /* Large physaddr (PABITS) not implemented */ |
| /* 1k pages not implemented */ |
| env->CP0_EntryLo0 = t0 & 0x3FFFFFFF; |
| } |
| |
| void do_mtc0_tcstatus (target_ulong t0) |
| { |
| uint32_t mask = env->CP0_TCStatus_rw_bitmask; |
| uint32_t newval; |
| |
| newval = (env->active_tc.CP0_TCStatus & ~mask) | (t0 & mask); |
| |
| // TODO: Sync with CP0_Status. |
| |
| env->active_tc.CP0_TCStatus = newval; |
| } |
| |
| void do_mttc0_tcstatus (target_ulong t0) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| // TODO: Sync with CP0_Status. |
| |
| if (other_tc == env->current_tc) |
| env->active_tc.CP0_TCStatus = t0; |
| else |
| env->tcs[other_tc].CP0_TCStatus = t0; |
| } |
| |
| void do_mtc0_tcbind (target_ulong t0) |
| { |
| uint32_t mask = (1 << CP0TCBd_TBE); |
| uint32_t newval; |
| |
| if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) |
| mask |= (1 << CP0TCBd_CurVPE); |
| newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask); |
| env->active_tc.CP0_TCBind = newval; |
| } |
| |
| void do_mttc0_tcbind (target_ulong t0) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| uint32_t mask = (1 << CP0TCBd_TBE); |
| uint32_t newval; |
| |
| if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) |
| mask |= (1 << CP0TCBd_CurVPE); |
| if (other_tc == env->current_tc) { |
| newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask); |
| env->active_tc.CP0_TCBind = newval; |
| } else { |
| newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (t0 & mask); |
| env->tcs[other_tc].CP0_TCBind = newval; |
| } |
| } |
| |
| void do_mtc0_tcrestart (target_ulong t0) |
| { |
| env->active_tc.PC = t0; |
| env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS); |
| env->CP0_LLAddr = 0ULL; |
| /* MIPS16 not implemented. */ |
| } |
| |
| void do_mttc0_tcrestart (target_ulong t0) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) { |
| env->active_tc.PC = t0; |
| env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS); |
| env->CP0_LLAddr = 0ULL; |
| /* MIPS16 not implemented. */ |
| } else { |
| env->tcs[other_tc].PC = t0; |
| env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS); |
| env->CP0_LLAddr = 0ULL; |
| /* MIPS16 not implemented. */ |
| } |
| } |
| |
| void do_mtc0_tchalt (target_ulong t0) |
| { |
| env->active_tc.CP0_TCHalt = t0 & 0x1; |
| |
| // TODO: Halt TC / Restart (if allocated+active) TC. |
| } |
| |
| void do_mttc0_tchalt (target_ulong t0) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| // TODO: Halt TC / Restart (if allocated+active) TC. |
| |
| if (other_tc == env->current_tc) |
| env->active_tc.CP0_TCHalt = t0; |
| else |
| env->tcs[other_tc].CP0_TCHalt = t0; |
| } |
| |
| void do_mtc0_tccontext (target_ulong t0) |
| { |
| env->active_tc.CP0_TCContext = t0; |
| } |
| |
| void do_mttc0_tccontext (target_ulong t0) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| env->active_tc.CP0_TCContext = t0; |
| else |
| env->tcs[other_tc].CP0_TCContext = t0; |
| } |
| |
| void do_mtc0_tcschedule (target_ulong t0) |
| { |
| env->active_tc.CP0_TCSchedule = t0; |
| } |
| |
| void do_mttc0_tcschedule (target_ulong t0) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| env->active_tc.CP0_TCSchedule = t0; |
| else |
| env->tcs[other_tc].CP0_TCSchedule = t0; |
| } |
| |
| void do_mtc0_tcschefback (target_ulong t0) |
| { |
| env->active_tc.CP0_TCScheFBack = t0; |
| } |
| |
| void do_mttc0_tcschefback (target_ulong t0) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| env->active_tc.CP0_TCScheFBack = t0; |
| else |
| env->tcs[other_tc].CP0_TCScheFBack = t0; |
| } |
| |
| void do_mtc0_entrylo1 (target_ulong t0) |
| { |
| /* Large physaddr (PABITS) not implemented */ |
| /* 1k pages not implemented */ |
| env->CP0_EntryLo1 = t0 & 0x3FFFFFFF; |
| } |
| |
| void do_mtc0_context (target_ulong t0) |
| { |
| env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (t0 & ~0x007FFFFF); |
| } |
| |
| void do_mtc0_pagemask (target_ulong t0) |
| { |
| /* 1k pages not implemented */ |
| env->CP0_PageMask = t0 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1)); |
| } |
| |
| void do_mtc0_pagegrain (target_ulong t0) |
| { |
| /* SmartMIPS not implemented */ |
| /* Large physaddr (PABITS) not implemented */ |
| /* 1k pages not implemented */ |
| env->CP0_PageGrain = 0; |
| } |
| |
| void do_mtc0_wired (target_ulong t0) |
| { |
| env->CP0_Wired = t0 % env->tlb->nb_tlb; |
| } |
| |
| void do_mtc0_srsconf0 (target_ulong t0) |
| { |
| env->CP0_SRSConf0 |= t0 & env->CP0_SRSConf0_rw_bitmask; |
| } |
| |
| void do_mtc0_srsconf1 (target_ulong t0) |
| { |
| env->CP0_SRSConf1 |= t0 & env->CP0_SRSConf1_rw_bitmask; |
| } |
| |
| void do_mtc0_srsconf2 (target_ulong t0) |
| { |
| env->CP0_SRSConf2 |= t0 & env->CP0_SRSConf2_rw_bitmask; |
| } |
| |
| void do_mtc0_srsconf3 (target_ulong t0) |
| { |
| env->CP0_SRSConf3 |= t0 & env->CP0_SRSConf3_rw_bitmask; |
| } |
| |
| void do_mtc0_srsconf4 (target_ulong t0) |
| { |
| env->CP0_SRSConf4 |= t0 & env->CP0_SRSConf4_rw_bitmask; |
| } |
| |
| void do_mtc0_hwrena (target_ulong t0) |
| { |
| env->CP0_HWREna = t0 & 0x0000000F; |
| } |
| |
| void do_mtc0_count (target_ulong t0) |
| { |
| cpu_mips_store_count(env, t0); |
| } |
| |
| void do_mtc0_entryhi (target_ulong t0) |
| { |
| target_ulong old, val; |
| |
| /* 1k pages not implemented */ |
| val = t0 & ((TARGET_PAGE_MASK << 1) | 0xFF); |
| #if defined(TARGET_MIPS64) |
| val &= env->SEGMask; |
| #endif |
| old = env->CP0_EntryHi; |
| env->CP0_EntryHi = val; |
| if (env->CP0_Config3 & (1 << CP0C3_MT)) { |
| uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff; |
| env->active_tc.CP0_TCStatus = tcst | (val & 0xff); |
| } |
| /* If the ASID changes, flush qemu's TLB. */ |
| if ((old & 0xFF) != (val & 0xFF)) |
| cpu_mips_tlb_flush(env, 1); |
| } |
| |
| void do_mttc0_entryhi(target_ulong t0) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| int32_t tcstatus; |
| |
| env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (t0 & ~0xff); |
| if (other_tc == env->current_tc) { |
| tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (t0 & 0xff); |
| env->active_tc.CP0_TCStatus = tcstatus; |
| } else { |
| tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (t0 & 0xff); |
| env->tcs[other_tc].CP0_TCStatus = tcstatus; |
| } |
| } |
| |
| void do_mtc0_compare (target_ulong t0) |
| { |
| cpu_mips_store_compare(env, t0); |
| } |
| |
| void do_mtc0_status (target_ulong t0) |
| { |
| uint32_t val, old; |
| uint32_t mask = env->CP0_Status_rw_bitmask; |
| |
| val = t0 & mask; |
| old = env->CP0_Status; |
| env->CP0_Status = (env->CP0_Status & ~mask) | val; |
| compute_hflags(env); |
| if (loglevel & CPU_LOG_EXEC) |
| do_mtc0_status_debug(old, val); |
| cpu_mips_update_irq(env); |
| } |
| |
| void do_mttc0_status(target_ulong t0) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus; |
| |
| env->CP0_Status = t0 & ~0xf1000018; |
| tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (t0 & (0xf << CP0St_CU0)); |
| tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((t0 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX)); |
| tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((t0 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU)); |
| if (other_tc == env->current_tc) |
| env->active_tc.CP0_TCStatus = tcstatus; |
| else |
| env->tcs[other_tc].CP0_TCStatus = tcstatus; |
| } |
| |
| void do_mtc0_intctl (target_ulong t0) |
| { |
| /* vectored interrupts not implemented, no performance counters. */ |
| env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (t0 & 0x000002e0); |
| } |
| |
| void do_mtc0_srsctl (target_ulong t0) |
| { |
| uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS); |
| env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (t0 & mask); |
| } |
| |
| void do_mtc0_cause (target_ulong t0) |
| { |
| uint32_t mask = 0x00C00300; |
| uint32_t old = env->CP0_Cause; |
| |
| if (env->insn_flags & ISA_MIPS32R2) |
| mask |= 1 << CP0Ca_DC; |
| |
| env->CP0_Cause = (env->CP0_Cause & ~mask) | (t0 & mask); |
| |
| if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) { |
| if (env->CP0_Cause & (1 << CP0Ca_DC)) |
| cpu_mips_stop_count(env); |
| else |
| cpu_mips_start_count(env); |
| } |
| |
| /* Handle the software interrupt as an hardware one, as they |
| are very similar */ |
| if (t0 & CP0Ca_IP_mask) { |
| cpu_mips_update_irq(env); |
| } |
| } |
| |
| void do_mtc0_ebase (target_ulong t0) |
| { |
| /* vectored interrupts not implemented */ |
| /* Multi-CPU not implemented */ |
| env->CP0_EBase = 0x80000000 | (t0 & 0x3FFFF000); |
| } |
| |
| void do_mtc0_config0 (target_ulong t0) |
| { |
| env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (t0 & 0x00000007); |
| } |
| |
| void do_mtc0_config2 (target_ulong t0) |
| { |
| /* tertiary/secondary caches not implemented */ |
| env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF); |
| } |
| |
| void do_mtc0_watchlo (target_ulong t0, uint32_t sel) |
| { |
| /* Watch exceptions for instructions, data loads, data stores |
| not implemented. */ |
| env->CP0_WatchLo[sel] = (t0 & ~0x7); |
| } |
| |
| void do_mtc0_watchhi (target_ulong t0, uint32_t sel) |
| { |
| env->CP0_WatchHi[sel] = (t0 & 0x40FF0FF8); |
| env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & t0 & 0x7); |
| } |
| |
| void do_mtc0_xcontext (target_ulong t0) |
| { |
| target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1; |
| env->CP0_XContext = (env->CP0_XContext & mask) | (t0 & ~mask); |
| } |
| |
| void do_mtc0_framemask (target_ulong t0) |
| { |
| env->CP0_Framemask = t0; /* XXX */ |
| } |
| |
| void do_mtc0_debug (target_ulong t0) |
| { |
| env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (t0 & 0x13300120); |
| if (t0 & (1 << CP0DB_DM)) |
| env->hflags |= MIPS_HFLAG_DM; |
| else |
| env->hflags &= ~MIPS_HFLAG_DM; |
| } |
| |
| void do_mttc0_debug(target_ulong t0) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| uint32_t val = t0 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)); |
| |
| /* XXX: Might be wrong, check with EJTAG spec. */ |
| if (other_tc == env->current_tc) |
| env->active_tc.CP0_Debug_tcstatus = val; |
| else |
| env->tcs[other_tc].CP0_Debug_tcstatus = val; |
| env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) | |
| (t0 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))); |
| } |
| |
| void do_mtc0_performance0 (target_ulong t0) |
| { |
| env->CP0_Performance0 = t0 & 0x000007ff; |
| } |
| |
| void do_mtc0_taglo (target_ulong t0) |
| { |
| env->CP0_TagLo = t0 & 0xFFFFFCF6; |
| } |
| |
| void do_mtc0_datalo (target_ulong t0) |
| { |
| env->CP0_DataLo = t0; /* XXX */ |
| } |
| |
| void do_mtc0_taghi (target_ulong t0) |
| { |
| env->CP0_TagHi = t0; /* XXX */ |
| } |
| |
| void do_mtc0_datahi (target_ulong t0) |
| { |
| env->CP0_DataHi = t0; /* XXX */ |
| } |
| |
| void do_mtc0_status_debug(uint32_t old, uint32_t val) |
| { |
| fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x", |
| old, old & env->CP0_Cause & CP0Ca_IP_mask, |
| val, val & env->CP0_Cause & CP0Ca_IP_mask, |
| env->CP0_Cause); |
| switch (env->hflags & MIPS_HFLAG_KSU) { |
| case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break; |
| case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break; |
| case MIPS_HFLAG_KM: fputs("\n", logfile); break; |
| default: cpu_abort(env, "Invalid MMU mode!\n"); break; |
| } |
| } |
| |
| void do_mtc0_status_irqraise_debug(void) |
| { |
| fprintf(logfile, "Raise pending IRQs\n"); |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| /* MIPS MT functions */ |
| target_ulong do_mftgpr(uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| return env->active_tc.gpr[sel]; |
| else |
| return env->tcs[other_tc].gpr[sel]; |
| } |
| |
| target_ulong do_mftlo(uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| return env->active_tc.LO[sel]; |
| else |
| return env->tcs[other_tc].LO[sel]; |
| } |
| |
| target_ulong do_mfthi(uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| return env->active_tc.HI[sel]; |
| else |
| return env->tcs[other_tc].HI[sel]; |
| } |
| |
| target_ulong do_mftacx(uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| return env->active_tc.ACX[sel]; |
| else |
| return env->tcs[other_tc].ACX[sel]; |
| } |
| |
| target_ulong do_mftdsp(void) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| return env->active_tc.DSPControl; |
| else |
| return env->tcs[other_tc].DSPControl; |
| } |
| |
| void do_mttgpr(target_ulong t0, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| env->active_tc.gpr[sel] = t0; |
| else |
| env->tcs[other_tc].gpr[sel] = t0; |
| } |
| |
| void do_mttlo(target_ulong t0, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| env->active_tc.LO[sel] = t0; |
| else |
| env->tcs[other_tc].LO[sel] = t0; |
| } |
| |
| void do_mtthi(target_ulong t0, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| env->active_tc.HI[sel] = t0; |
| else |
| env->tcs[other_tc].HI[sel] = t0; |
| } |
| |
| void do_mttacx(target_ulong t0, uint32_t sel) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| env->active_tc.ACX[sel] = t0; |
| else |
| env->tcs[other_tc].ACX[sel] = t0; |
| } |
| |
| void do_mttdsp(target_ulong t0) |
| { |
| int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC); |
| |
| if (other_tc == env->current_tc) |
| env->active_tc.DSPControl = t0; |
| else |
| env->tcs[other_tc].DSPControl = t0; |
| } |
| |
| /* MIPS MT functions */ |
| target_ulong do_dmt(target_ulong t0) |
| { |
| // TODO |
| t0 = 0; |
| // rt = t0 |
| |
| return t0; |
| } |
| |
| target_ulong do_emt(target_ulong t0) |
| { |
| // TODO |
| t0 = 0; |
| // rt = t0 |
| |
| return t0; |
| } |
| |
| target_ulong do_dvpe(target_ulong t0) |
| { |
| // TODO |
| t0 = 0; |
| // rt = t0 |
| |
| return t0; |
| } |
| |
| target_ulong do_evpe(target_ulong t0) |
| { |
| // TODO |
| t0 = 0; |
| // rt = t0 |
| |
| return t0; |
| } |
| |
| void do_fork(target_ulong t0, target_ulong t1) |
| { |
| // t0 = rt, t1 = rs |
| t0 = 0; |
| // TODO: store to TC register |
| } |
| |
| target_ulong do_yield(target_ulong t0) |
| { |
| if (t0 < 0) { |
| /* No scheduling policy implemented. */ |
| if (t0 != -2) { |
| if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) && |
| env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) { |
| env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); |
| env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT; |
| do_raise_exception(EXCP_THREAD); |
| } |
| } |
| } else if (t0 == 0) { |
| if (0 /* TODO: TC underflow */) { |
| env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); |
| do_raise_exception(EXCP_THREAD); |
| } else { |
| // TODO: Deallocate TC |
| } |
| } else if (t0 > 0) { |
| /* Yield qualifier inputs not implemented. */ |
| env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT); |
| env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT; |
| do_raise_exception(EXCP_THREAD); |
| } |
| return env->CP0_YQMask; |
| } |
| |
| #ifndef CONFIG_USER_ONLY |
| /* TLB management */ |
| void cpu_mips_tlb_flush (CPUState *env, int flush_global) |
| { |
| /* Flush qemu's TLB and discard all shadowed entries. */ |
| tlb_flush (env, flush_global); |
| env->tlb->tlb_in_use = env->tlb->nb_tlb; |
| } |
| |
| static void r4k_mips_tlb_flush_extra (CPUState *env, int first) |
| { |
| /* Discard entries from env->tlb[first] onwards. */ |
| while (env->tlb->tlb_in_use > first) { |
| r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0); |
| } |
| } |
| |
| static void r4k_fill_tlb (int idx) |
| { |
| r4k_tlb_t *tlb; |
| |
| /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */ |
| tlb = &env->tlb->mmu.r4k.tlb[idx]; |
| tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1); |
| #if defined(TARGET_MIPS64) |
| tlb->VPN &= env->SEGMask; |
| #endif |
| tlb->ASID = env->CP0_EntryHi & 0xFF; |
| tlb->PageMask = env->CP0_PageMask; |
| tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1; |
| tlb->V0 = (env->CP0_EntryLo0 & 2) != 0; |
| tlb->D0 = (env->CP0_EntryLo0 & 4) != 0; |
| tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7; |
| tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12; |
| tlb->V1 = (env->CP0_EntryLo1 & 2) != 0; |
| tlb->D1 = (env->CP0_EntryLo1 & 4) != 0; |
| tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7; |
| tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12; |
| } |
| |
| void r4k_do_tlbwi (void) |
| { |
| int idx; |
| |
| idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb; |
| |
| /* Discard cached TLB entries. We could avoid doing this if the |
| tlbwi is just upgrading access permissions on the current entry; |
| that might be a further win. */ |
| r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb); |
| |
| r4k_invalidate_tlb(env, idx, 0); |
| r4k_fill_tlb(idx); |
| } |
| |
| void r4k_do_tlbwr (void) |
| { |
| int r = cpu_mips_get_random(env); |
| |
| r4k_invalidate_tlb(env, r, 1); |
| r4k_fill_tlb(r); |
| } |
| |
| void r4k_do_tlbp (void) |
| { |
| r4k_tlb_t *tlb; |
| target_ulong mask; |
| target_ulong tag; |
| target_ulong VPN; |
| uint8_t ASID; |
| int i; |
| |
| ASID = env->CP0_EntryHi & 0xFF; |
| for (i = 0; i < env->tlb->nb_tlb; i++) { |
| tlb = &env->tlb->mmu.r4k.tlb[i]; |
| /* 1k pages are not supported. */ |
| mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); |
| tag = env->CP0_EntryHi & ~mask; |
| VPN = tlb->VPN & ~mask; |
| /* Check ASID, virtual page number & size */ |
| if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { |
| /* TLB match */ |
| env->CP0_Index = i; |
| break; |
| } |
| } |
| if (i == env->tlb->nb_tlb) { |
| /* No match. Discard any shadow entries, if any of them match. */ |
| for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) { |
| tlb = &env->tlb->mmu.r4k.tlb[i]; |
| /* 1k pages are not supported. */ |
| mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1); |
| tag = env->CP0_EntryHi & ~mask; |
| VPN = tlb->VPN & ~mask; |
| /* Check ASID, virtual page number & size */ |
| if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { |
| r4k_mips_tlb_flush_extra (env, i); |
| break; |
| } |
| } |
| |
| env->CP0_Index |= 0x80000000; |
| } |
| } |
| |
| void r4k_do_tlbr (void) |
| { |
| r4k_tlb_t *tlb; |
| uint8_t ASID; |
| int idx; |
| |
| ASID = env->CP0_EntryHi & 0xFF; |
| idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb; |
| tlb = &env->tlb->mmu.r4k.tlb[idx]; |
| |
| /* If this will change the current ASID, flush qemu's TLB. */ |
| if (ASID != tlb->ASID) |
| cpu_mips_tlb_flush (env, 1); |
| |
| r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb); |
| |
| env->CP0_EntryHi = tlb->VPN | tlb->ASID; |
| env->CP0_PageMask = tlb->PageMask; |
| env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) | |
| (tlb->C0 << 3) | (tlb->PFN[0] >> 6); |
| env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) | |
| (tlb->C1 << 3) | (tlb->PFN[1] >> 6); |
| } |
| |
| /* Specials */ |
| target_ulong do_di (void) |
| { |
| target_ulong t0 = env->CP0_Status; |
| |
| env->CP0_Status = t0 & ~(1 << CP0St_IE); |
| cpu_mips_update_irq(env); |
| |
| return t0; |
| } |
| |
| target_ulong do_ei (void) |
| { |
| target_ulong t0 = env->CP0_Status; |
| |
| env->CP0_Status = t0 | (1 << CP0St_IE); |
| cpu_mips_update_irq(env); |
| |
| return t0; |
| } |
| |
| void debug_pre_eret (void) |
| { |
| fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, |
| env->active_tc.PC, env->CP0_EPC); |
| if (env->CP0_Status & (1 << CP0St_ERL)) |
| fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); |
| if (env->hflags & MIPS_HFLAG_DM) |
| fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC); |
| fputs("\n", logfile); |
| } |
| |
| void debug_post_eret (void) |
| { |
| fprintf(logfile, " => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, |
| env->active_tc.PC, env->CP0_EPC); |
| if (env->CP0_Status & (1 << CP0St_ERL)) |
| fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC); |
| if (env->hflags & MIPS_HFLAG_DM) |
| fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC); |
| switch (env->hflags & MIPS_HFLAG_KSU) { |
| case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break; |
| case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break; |
| case MIPS_HFLAG_KM: fputs("\n", logfile); break; |
| default: cpu_abort(env, "Invalid MMU mode!\n"); break; |
| } |
| } |
| |
| void do_eret (void) |
| { |
| if (loglevel & CPU_LOG_EXEC) |
| debug_pre_eret(); |
| if (env->CP0_Status & (1 << CP0St_ERL)) { |
| env->active_tc.PC = env->CP0_ErrorEPC; |
| env->CP0_Status &= ~(1 << CP0St_ERL); |
| } else { |
| env->active_tc.PC = env->CP0_EPC; |
| env->CP0_Status &= ~(1 << CP0St_EXL); |
| } |
| compute_hflags(env); |
| if (loglevel & CPU_LOG_EXEC) |
| debug_post_eret(); |
| env->CP0_LLAddr = 1; |
| } |
| |
| void do_deret (void) |
| { |
| if (loglevel & CPU_LOG_EXEC) |
| debug_pre_eret(); |
| env->active_tc.PC = env->CP0_DEPC; |
| env->hflags &= MIPS_HFLAG_DM; |
| compute_hflags(env); |
| if (loglevel & CPU_LOG_EXEC) |
| debug_post_eret(); |
| env->CP0_LLAddr = 1; |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| target_ulong do_rdhwr_cpunum(void) |
| { |
| if ((env->hflags & MIPS_HFLAG_CP0) || |
| (env->CP0_HWREna & (1 << 0))) |
| return env->CP0_EBase & 0x3ff; |
| else |
| do_raise_exception(EXCP_RI); |
| |
| return 0; |
| } |
| |
| target_ulong do_rdhwr_synci_step(void) |
| { |
| if ((env->hflags & MIPS_HFLAG_CP0) || |
| (env->CP0_HWREna & (1 << 1))) |
| return env->SYNCI_Step; |
| else |
| do_raise_exception(EXCP_RI); |
| |
| return 0; |
| } |
| |
| target_ulong do_rdhwr_cc(void) |
| { |
| if ((env->hflags & MIPS_HFLAG_CP0) || |
| (env->CP0_HWREna & (1 << 2))) |
| return env->CP0_Count; |
| else |
| do_raise_exception(EXCP_RI); |
| |
| return 0; |
| } |
| |
| target_ulong do_rdhwr_ccres(void) |
| { |
| if ((env->hflags & MIPS_HFLAG_CP0) || |
| (env->CP0_HWREna & (1 << 3))) |
| return env->CCRes; |
| else |
| do_raise_exception(EXCP_RI); |
| |
| return 0; |
| } |
| |
| void do_pmon (int function) |
| { |
| function /= 2; |
| switch (function) { |
| case 2: /* TODO: char inbyte(int waitflag); */ |
| if (env->active_tc.gpr[4] == 0) |
| env->active_tc.gpr[2] = -1; |
| /* Fall through */ |
| case 11: /* TODO: char inbyte (void); */ |
| env->active_tc.gpr[2] = -1; |
| break; |
| case 3: |
| case 12: |
| printf("%c", (char)(env->active_tc.gpr[4] & 0xFF)); |
| break; |
| case 17: |
| break; |
| case 158: |
| { |
| unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4]; |
| printf("%s", fmt); |
| } |
| break; |
| } |
| } |
| |
| void do_wait (void) |
| { |
| env->halted = 1; |
| do_raise_exception(EXCP_HLT); |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr); |
| |
| #define MMUSUFFIX _mmu |
| #define ALIGNED_ONLY |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr) |
| { |
| env->CP0_BadVAddr = addr; |
| do_restore_state (retaddr); |
| do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL); |
| } |
| |
| void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
| { |
| TranslationBlock *tb; |
| CPUState *saved_env; |
| unsigned long pc; |
| int ret; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
| if (ret) { |
| if (retaddr) { |
| /* now we have a real cpu fault */ |
| pc = (unsigned long)retaddr; |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, NULL); |
| } |
| } |
| do_raise_exception_err(env->exception_index, env->error_code); |
| } |
| env = saved_env; |
| } |
| |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, |
| int unused, int size) |
| { |
| if (is_exec) |
| do_raise_exception(EXCP_IBE); |
| else |
| do_raise_exception(EXCP_DBE); |
| } |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| /* Complex FPU operations which may need stack space. */ |
| |
| #define FLOAT_ONE32 make_float32(0x3f8 << 20) |
| #define FLOAT_ONE64 make_float64(0x3ffULL << 52) |
| #define FLOAT_TWO32 make_float32(1 << 30) |
| #define FLOAT_TWO64 make_float64(1ULL << 62) |
| #define FLOAT_QNAN32 0x7fbfffff |
| #define FLOAT_QNAN64 0x7ff7ffffffffffffULL |
| #define FLOAT_SNAN32 0x7fffffff |
| #define FLOAT_SNAN64 0x7fffffffffffffffULL |
| |
| /* convert MIPS rounding mode in FCR31 to IEEE library */ |
| unsigned int ieee_rm[] = { |
| float_round_nearest_even, |
| float_round_to_zero, |
| float_round_up, |
| float_round_down |
| }; |
| |
| #define RESTORE_ROUNDING_MODE \ |
| set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status) |
| |
| target_ulong do_cfc1 (uint32_t reg) |
| { |
| target_ulong t0; |
| |
| switch (reg) { |
| case 0: |
| t0 = (int32_t)env->active_fpu.fcr0; |
| break; |
| case 25: |
| t0 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1); |
| break; |
| case 26: |
| t0 = env->active_fpu.fcr31 & 0x0003f07c; |
| break; |
| case 28: |
| t0 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4); |
| break; |
| default: |
| t0 = (int32_t)env->active_fpu.fcr31; |
| break; |
| } |
| |
| return t0; |
| } |
| |
| void do_ctc1 (target_ulong t0, uint32_t reg) |
| { |
| switch(reg) { |
| case 25: |
| if (t0 & 0xffffff00) |
| return; |
| env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((t0 & 0xfe) << 24) | |
| ((t0 & 0x1) << 23); |
| break; |
| case 26: |
| if (t0 & 0x007c0000) |
| return; |
| env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (t0 & 0x0003f07c); |
| break; |
| case 28: |
| if (t0 & 0x007c0000) |
| return; |
| env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (t0 & 0x00000f83) | |
| ((t0 & 0x4) << 22); |
| break; |
| case 31: |
| if (t0 & 0x007c0000) |
| return; |
| env->active_fpu.fcr31 = t0; |
| break; |
| default: |
| return; |
| } |
| /* set rounding mode */ |
| RESTORE_ROUNDING_MODE; |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31)) |
| do_raise_exception(EXCP_FPE); |
| } |
| |
| static inline char ieee_ex_to_mips(char xcpt) |
| { |
| return (xcpt & float_flag_inexact) >> 5 | |
| (xcpt & float_flag_underflow) >> 3 | |
| (xcpt & float_flag_overflow) >> 1 | |
| (xcpt & float_flag_divbyzero) << 1 | |
| (xcpt & float_flag_invalid) << 4; |
| } |
| |
| static inline char mips_ex_to_ieee(char xcpt) |
| { |
| return (xcpt & FP_INEXACT) << 5 | |
| (xcpt & FP_UNDERFLOW) << 3 | |
| (xcpt & FP_OVERFLOW) << 1 | |
| (xcpt & FP_DIV0) >> 1 | |
| (xcpt & FP_INVALID) >> 4; |
| } |
| |
| static inline void update_fcr31(void) |
| { |
| int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status)); |
| |
| SET_FP_CAUSE(env->active_fpu.fcr31, tmp); |
| if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) |
| do_raise_exception(EXCP_FPE); |
| else |
| UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp); |
| } |
| |
| /* Float support. |
| Single precition routines have a "s" suffix, double precision a |
| "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps", |
| paired single lower "pl", paired single upper "pu". */ |
| |
| /* unary operations, modifying fp status */ |
| uint64_t do_float_sqrt_d(uint64_t fdt0) |
| { |
| return float64_sqrt(fdt0, &env->active_fpu.fp_status); |
| } |
| |
| uint32_t do_float_sqrt_s(uint32_t fst0) |
| { |
| return float32_sqrt(fst0, &env->active_fpu.fp_status); |
| } |
| |
| uint64_t do_float_cvtd_s(uint32_t fst0) |
| { |
| uint64_t fdt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint64_t do_float_cvtd_w(uint32_t wt0) |
| { |
| uint64_t fdt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint64_t do_float_cvtd_l(uint64_t dt0) |
| { |
| uint64_t fdt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint64_t do_float_cvtl_d(uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint64_t do_float_cvtl_s(uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint64_t do_float_cvtps_pw(uint64_t dt0) |
| { |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t do_float_cvtpw_ps(uint64_t fdt0) |
| { |
| uint32_t wt2; |
| uint32_t wth2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) { |
| wt2 = FLOAT_SNAN32; |
| wth2 = FLOAT_SNAN32; |
| } |
| return ((uint64_t)wth2 << 32) | wt2; |
| } |
| |
| uint32_t do_float_cvts_d(uint64_t fdt0) |
| { |
| uint32_t fst2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint32_t do_float_cvts_w(uint32_t wt0) |
| { |
| uint32_t fst2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint32_t do_float_cvts_l(uint64_t dt0) |
| { |
| uint32_t fst2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint32_t do_float_cvts_pl(uint32_t wt0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| wt2 = wt0; |
| update_fcr31(); |
| return wt2; |
| } |
| |
| uint32_t do_float_cvts_pu(uint32_t wth0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| wt2 = wth0; |
| update_fcr31(); |
| return wt2; |
| } |
| |
| uint32_t do_float_cvtw_s(uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint32_t do_float_cvtw_d(uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint64_t do_float_roundl_d(uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint64_t do_float_roundl_s(uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint32_t do_float_roundw_d(uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint32_t do_float_roundw_s(uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint64_t do_float_truncl_d(uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint64_t do_float_truncl_s(uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint32_t do_float_truncw_d(uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint32_t do_float_truncw_s(uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint64_t do_float_ceill_d(uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint64_t do_float_ceill_s(uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint32_t do_float_ceilw_d(uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint32_t do_float_ceilw_s(uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint64_t do_float_floorl_d(uint64_t fdt0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint64_t do_float_floorl_s(uint32_t fst0) |
| { |
| uint64_t dt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| dt2 = FLOAT_SNAN64; |
| return dt2; |
| } |
| |
| uint32_t do_float_floorw_d(uint64_t fdt0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| uint32_t do_float_floorw_s(uint32_t fst0) |
| { |
| uint32_t wt2; |
| |
| set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status); |
| wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status); |
| RESTORE_ROUNDING_MODE; |
| update_fcr31(); |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) |
| wt2 = FLOAT_SNAN32; |
| return wt2; |
| } |
| |
| /* unary operations, not modifying fp status */ |
| #define FLOAT_UNOP(name) \ |
| uint64_t do_float_ ## name ## _d(uint64_t fdt0) \ |
| { \ |
| return float64_ ## name(fdt0); \ |
| } \ |
| uint32_t do_float_ ## name ## _s(uint32_t fst0) \ |
| { \ |
| return float32_ ## name(fst0); \ |
| } \ |
| uint64_t do_float_ ## name ## _ps(uint64_t fdt0) \ |
| { \ |
| uint32_t wt0; \ |
| uint32_t wth0; \ |
| \ |
| wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \ |
| wth0 = float32_ ## name(fdt0 >> 32); \ |
| return ((uint64_t)wth0 << 32) | wt0; \ |
| } |
| FLOAT_UNOP(abs) |
| FLOAT_UNOP(chs) |
| #undef FLOAT_UNOP |
| |
| /* MIPS specific unary operations */ |
| uint64_t do_float_recip_d(uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint32_t do_float_recip_s(uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint64_t do_float_rsqrt_d(uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); |
| fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint32_t do_float_rsqrt_s(uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); |
| fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint64_t do_float_recip1_d(uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint32_t do_float_recip1_s(uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint64_t do_float_recip1_ps(uint64_t fdt0) |
| { |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t do_float_rsqrt1_d(uint64_t fdt0) |
| { |
| uint64_t fdt2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status); |
| fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint32_t do_float_rsqrt1_s(uint32_t fst0) |
| { |
| uint32_t fst2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status); |
| fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint64_t do_float_rsqrt1_ps(uint64_t fdt0) |
| { |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status); |
| fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status); |
| fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status); |
| fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| #define FLOAT_OP(name, p) void do_float_##name##_##p(void) |
| |
| /* binary operations */ |
| #define FLOAT_BINOP(name) \ |
| uint64_t do_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \ |
| { \ |
| uint64_t dt2; \ |
| \ |
| set_float_exception_flags(0, &env->active_fpu.fp_status); \ |
| dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \ |
| update_fcr31(); \ |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \ |
| dt2 = FLOAT_QNAN64; \ |
| return dt2; \ |
| } \ |
| \ |
| uint32_t do_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \ |
| { \ |
| uint32_t wt2; \ |
| \ |
| set_float_exception_flags(0, &env->active_fpu.fp_status); \ |
| wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \ |
| update_fcr31(); \ |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \ |
| wt2 = FLOAT_QNAN32; \ |
| return wt2; \ |
| } \ |
| \ |
| uint64_t do_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \ |
| { \ |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; \ |
| uint32_t fsth0 = fdt0 >> 32; \ |
| uint32_t fst1 = fdt1 & 0XFFFFFFFF; \ |
| uint32_t fsth1 = fdt1 >> 32; \ |
| uint32_t wt2; \ |
| uint32_t wth2; \ |
| \ |
| set_float_exception_flags(0, &env->active_fpu.fp_status); \ |
| wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \ |
| wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \ |
| update_fcr31(); \ |
| if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \ |
| wt2 = FLOAT_QNAN32; \ |
| wth2 = FLOAT_QNAN32; \ |
| } \ |
| return ((uint64_t)wth2 << 32) | wt2; \ |
| } |
| |
| FLOAT_BINOP(add) |
| FLOAT_BINOP(sub) |
| FLOAT_BINOP(mul) |
| FLOAT_BINOP(div) |
| #undef FLOAT_BINOP |
| |
| /* ternary operations */ |
| #define FLOAT_TERNOP(name1, name2) \ |
| uint64_t do_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \ |
| uint64_t fdt2) \ |
| { \ |
| fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \ |
| return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \ |
| } \ |
| \ |
| uint32_t do_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \ |
| uint32_t fst2) \ |
| { \ |
| fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \ |
| return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \ |
| } \ |
| \ |
| uint64_t do_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \ |
| uint64_t fdt2) \ |
| { \ |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; \ |
| uint32_t fsth0 = fdt0 >> 32; \ |
| uint32_t fst1 = fdt1 & 0XFFFFFFFF; \ |
| uint32_t fsth1 = fdt1 >> 32; \ |
| uint32_t fst2 = fdt2 & 0XFFFFFFFF; \ |
| uint32_t fsth2 = fdt2 >> 32; \ |
| \ |
| fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \ |
| fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \ |
| fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \ |
| fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \ |
| return ((uint64_t)fsth2 << 32) | fst2; \ |
| } |
| |
| FLOAT_TERNOP(mul, add) |
| FLOAT_TERNOP(mul, sub) |
| #undef FLOAT_TERNOP |
| |
| /* negated ternary operations */ |
| #define FLOAT_NTERNOP(name1, name2) \ |
| uint64_t do_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \ |
| uint64_t fdt2) \ |
| { \ |
| fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \ |
| fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \ |
| return float64_chs(fdt2); \ |
| } \ |
| \ |
| uint32_t do_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \ |
| uint32_t fst2) \ |
| { \ |
| fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \ |
| fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \ |
| return float32_chs(fst2); \ |
| } \ |
| \ |
| uint64_t do_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\ |
| uint64_t fdt2) \ |
| { \ |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; \ |
| uint32_t fsth0 = fdt0 >> 32; \ |
| uint32_t fst1 = fdt1 & 0XFFFFFFFF; \ |
| uint32_t fsth1 = fdt1 >> 32; \ |
| uint32_t fst2 = fdt2 & 0XFFFFFFFF; \ |
| uint32_t fsth2 = fdt2 >> 32; \ |
| \ |
| fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \ |
| fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \ |
| fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \ |
| fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \ |
| fst2 = float32_chs(fst2); \ |
| fsth2 = float32_chs(fsth2); \ |
| return ((uint64_t)fsth2 << 32) | fst2; \ |
| } |
| |
| FLOAT_NTERNOP(mul, add) |
| FLOAT_NTERNOP(mul, sub) |
| #undef FLOAT_NTERNOP |
| |
| /* MIPS specific binary operations */ |
| uint64_t do_float_recip2_d(uint64_t fdt0, uint64_t fdt2) |
| { |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); |
| fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status)); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint32_t do_float_recip2_s(uint32_t fst0, uint32_t fst2) |
| { |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); |
| fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status)); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint64_t do_float_recip2_ps(uint64_t fdt0, uint64_t fdt2) |
| { |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fst2 = fdt2 & 0XFFFFFFFF; |
| uint32_t fsth2 = fdt2 >> 32; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); |
| fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); |
| fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status)); |
| fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status)); |
| update_fcr31(); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t do_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2) |
| { |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status); |
| fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status); |
| fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status)); |
| update_fcr31(); |
| return fdt2; |
| } |
| |
| uint32_t do_float_rsqrt2_s(uint32_t fst0, uint32_t fst2) |
| { |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); |
| fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status); |
| fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status)); |
| update_fcr31(); |
| return fst2; |
| } |
| |
| uint64_t do_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2) |
| { |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fst2 = fdt2 & 0XFFFFFFFF; |
| uint32_t fsth2 = fdt2 >> 32; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status); |
| fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status); |
| fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status); |
| fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status); |
| fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status)); |
| fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status)); |
| update_fcr31(); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t do_float_addr_ps(uint64_t fdt0, uint64_t fdt1) |
| { |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fst1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status); |
| fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| uint64_t do_float_mulr_ps(uint64_t fdt0, uint64_t fdt1) |
| { |
| uint32_t fst0 = fdt0 & 0XFFFFFFFF; |
| uint32_t fsth0 = fdt0 >> 32; |
| uint32_t fst1 = fdt1 & 0XFFFFFFFF; |
| uint32_t fsth1 = fdt1 >> 32; |
| uint32_t fst2; |
| uint32_t fsth2; |
| |
| set_float_exception_flags(0, &env->active_fpu.fp_status); |
| fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status); |
| fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status); |
| update_fcr31(); |
| return ((uint64_t)fsth2 << 32) | fst2; |
| } |
| |
| /* compare operations */ |
| #define FOP_COND_D(op, cond) \ |
| void do_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \ |
| { \ |
| int c = cond; \ |
| update_fcr31(); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } \ |
| void do_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \ |
| { \ |
| int c; \ |
| fdt0 = float64_abs(fdt0); \ |
| fdt1 = float64_abs(fdt1); \ |
| c = cond; \ |
| update_fcr31(); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } |
| |
| int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM) |
| { |
| if (float64_is_signaling_nan(a) || |
| float64_is_signaling_nan(b) || |
| (sig && (float64_is_nan(a) || float64_is_nan(b)))) { |
| float_raise(float_flag_invalid, status); |
| return 1; |
| } else if (float64_is_nan(a) || float64_is_nan(b)) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float*_is_unordered() is still called. */ |
| FOP_COND_D(f, (float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_D(un, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status)) |
| FOP_COND_D(eq, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float*_is_unordered() is still called. */ |
| FOP_COND_D(sf, (float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status)) |
| FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(lt, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(le, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) |
| FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status)) |
| |
| #define FOP_COND_S(op, cond) \ |
| void do_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \ |
| { \ |
| int c = cond; \ |
| update_fcr31(); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } \ |
| void do_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \ |
| { \ |
| int c; \ |
| fst0 = float32_abs(fst0); \ |
| fst1 = float32_abs(fst1); \ |
| c = cond; \ |
| update_fcr31(); \ |
| if (c) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| } |
| |
| flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM) |
| { |
| if (float32_is_signaling_nan(a) || |
| float32_is_signaling_nan(b) || |
| (sig && (float32_is_nan(a) || float32_is_nan(b)))) { |
| float_raise(float_flag_invalid, status); |
| return 1; |
| } else if (float32_is_nan(a) || float32_is_nan(b)) { |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float*_is_unordered() is still called. */ |
| FOP_COND_S(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_S(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)) |
| FOP_COND_S(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status)) |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float*_is_unordered() is still called. */ |
| FOP_COND_S(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)) |
| FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status)) |
| FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status)) |
| |
| #define FOP_COND_PS(op, condl, condh) \ |
| void do_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \ |
| { \ |
| uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \ |
| uint32_t fsth0 = float32_abs(fdt0 >> 32); \ |
| uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \ |
| uint32_t fsth1 = float32_abs(fdt1 >> 32); \ |
| int cl = condl; \ |
| int ch = condh; \ |
| \ |
| update_fcr31(); \ |
| if (cl) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| if (ch) \ |
| SET_FP_COND(cc + 1, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc + 1, env->active_fpu); \ |
| } \ |
| void do_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \ |
| { \ |
| uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \ |
| uint32_t fsth0 = float32_abs(fdt0 >> 32); \ |
| uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \ |
| uint32_t fsth1 = float32_abs(fdt1 >> 32); \ |
| int cl = condl; \ |
| int ch = condh; \ |
| \ |
| update_fcr31(); \ |
| if (cl) \ |
| SET_FP_COND(cc, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc, env->active_fpu); \ |
| if (ch) \ |
| SET_FP_COND(cc + 1, env->active_fpu); \ |
| else \ |
| CLEAR_FP_COND(cc + 1, env->active_fpu); \ |
| } |
| |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float*_is_unordered() is still called. */ |
| FOP_COND_PS(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0), |
| (float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_PS(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), |
| float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status)) |
| FOP_COND_PS(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status), |
| !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status), |
| float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status), |
| !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status), |
| float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status), |
| !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status), |
| float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) |
| /* NOTE: the comma operator will make "cond" to eval to false, |
| * but float*_is_unordered() is still called. */ |
| FOP_COND_PS(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0), |
| (float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status), 0)) |
| FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), |
| float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status)) |
| FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status), |
| !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status), |
| float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status), |
| !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status), |
| float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status), |
| !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) |
| FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status), |
| float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status)) |