blob: e5f46d086e5161bcda49f8fa57497410539ab095 [file] [log] [blame]
/*
* QEMU Floppy disk emulator (Intel 82078)
*
* Copyright (c) 2003, 2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
* The controller is used in Sun4m systems in a slightly different
* way. There are changes in DOR register and DMA is not available.
*/
#include "hw.h"
#include "fdc.h"
#include "block.h"
#include "qemu-timer.h"
#include "isa.h"
/********************************************************/
/* debug Floppy devices */
//#define DEBUG_FLOPPY
#ifdef DEBUG_FLOPPY
#define FLOPPY_DPRINTF(fmt, args...) \
do { printf("FLOPPY: " fmt , ##args); } while (0)
#else
#define FLOPPY_DPRINTF(fmt, args...)
#endif
#define FLOPPY_ERROR(fmt, args...) \
do { printf("FLOPPY ERROR: %s: " fmt, __func__ , ##args); } while (0)
/********************************************************/
/* Floppy drive emulation */
/* Will always be a fixed parameter for us */
#define FD_SECTOR_LEN 512
#define FD_SECTOR_SC 2 /* Sector size code */
/* Floppy disk drive emulation */
typedef enum fdisk_type_t {
FDRIVE_DISK_288 = 0x01, /* 2.88 MB disk */
FDRIVE_DISK_144 = 0x02, /* 1.44 MB disk */
FDRIVE_DISK_720 = 0x03, /* 720 kB disk */
FDRIVE_DISK_USER = 0x04, /* User defined geometry */
FDRIVE_DISK_NONE = 0x05, /* No disk */
} fdisk_type_t;
typedef enum fdrive_type_t {
FDRIVE_DRV_144 = 0x00, /* 1.44 MB 3"5 drive */
FDRIVE_DRV_288 = 0x01, /* 2.88 MB 3"5 drive */
FDRIVE_DRV_120 = 0x02, /* 1.2 MB 5"25 drive */
FDRIVE_DRV_NONE = 0x03, /* No drive connected */
} fdrive_type_t;
typedef enum fdrive_flags_t {
FDRIVE_MOTOR_ON = 0x01, /* motor on/off */
} fdrive_flags_t;
typedef enum fdisk_flags_t {
FDISK_DBL_SIDES = 0x01,
} fdisk_flags_t;
typedef struct fdrive_t {
BlockDriverState *bs;
/* Drive status */
fdrive_type_t drive;
fdrive_flags_t drflags;
uint8_t perpendicular; /* 2.88 MB access mode */
/* Position */
uint8_t head;
uint8_t track;
uint8_t sect;
/* Last operation status */
uint8_t dir; /* Direction */
uint8_t rw; /* Read/write */
/* Media */
fdisk_flags_t flags;
uint8_t last_sect; /* Nb sector per track */
uint8_t max_track; /* Nb of tracks */
uint16_t bps; /* Bytes per sector */
uint8_t ro; /* Is read-only */
} fdrive_t;
static void fd_init (fdrive_t *drv, BlockDriverState *bs)
{
/* Drive */
drv->bs = bs;
drv->drive = FDRIVE_DRV_NONE;
drv->drflags = 0;
drv->perpendicular = 0;
/* Disk */
drv->last_sect = 0;
drv->max_track = 0;
}
static int _fd_sector (uint8_t head, uint8_t track,
uint8_t sect, uint8_t last_sect)
{
return (((track * 2) + head) * last_sect) + sect - 1;
}
/* Returns current position, in sectors, for given drive */
static int fd_sector (fdrive_t *drv)
{
return _fd_sector(drv->head, drv->track, drv->sect, drv->last_sect);
}
static int fd_seek (fdrive_t *drv, uint8_t head, uint8_t track, uint8_t sect,
int enable_seek)
{
uint32_t sector;
int ret;
if (track > drv->max_track ||
(head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
head, track, sect, 1,
(drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
drv->max_track, drv->last_sect);
return 2;
}
if (sect > drv->last_sect) {
FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
head, track, sect, 1,
(drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
drv->max_track, drv->last_sect);
return 3;
}
sector = _fd_sector(head, track, sect, drv->last_sect);
ret = 0;
if (sector != fd_sector(drv)) {
#if 0
if (!enable_seek) {
FLOPPY_ERROR("no implicit seek %d %02x %02x (max=%d %02x %02x)\n",
head, track, sect, 1, drv->max_track, drv->last_sect);
return 4;
}
#endif
drv->head = head;
if (drv->track != track)
ret = 1;
drv->track = track;
drv->sect = sect;
}
return ret;
}
/* Set drive back to track 0 */
static void fd_recalibrate (fdrive_t *drv)
{
FLOPPY_DPRINTF("recalibrate\n");
drv->head = 0;
drv->track = 0;
drv->sect = 1;
drv->dir = 1;
drv->rw = 0;
}
/* Recognize floppy formats */
typedef struct fd_format_t {
fdrive_type_t drive;
fdisk_type_t disk;
uint8_t last_sect;
uint8_t max_track;
uint8_t max_head;
const char *str;
} fd_format_t;
static const fd_format_t fd_formats[] = {
/* First entry is default format */
/* 1.44 MB 3"1/2 floppy disks */
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 18, 80, 1, "1.44 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 20, 80, 1, "1.6 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 80, 1, "1.68 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 82, 1, "1.72 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 83, 1, "1.74 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 22, 80, 1, "1.76 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 23, 80, 1, "1.84 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 24, 80, 1, "1.92 MB 3\"1/2", },
/* 2.88 MB 3"1/2 floppy disks */
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 36, 80, 1, "2.88 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 39, 80, 1, "3.12 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 40, 80, 1, "3.2 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 44, 80, 1, "3.52 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 48, 80, 1, "3.84 MB 3\"1/2", },
/* 720 kB 3"1/2 floppy disks */
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 9, 80, 1, "720 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 80, 1, "800 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 82, 1, "820 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 83, 1, "830 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 13, 80, 1, "1.04 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 14, 80, 1, "1.12 MB 3\"1/2", },
/* 1.2 MB 5"1/4 floppy disks */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 15, 80, 1, "1.2 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 80, 1, "1.44 MB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 82, 1, "1.48 MB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 83, 1, "1.49 MB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 20, 80, 1, "1.6 MB 5\"1/4", },
/* 720 kB 5"1/4 floppy disks */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 80, 1, "720 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 11, 80, 1, "880 kB 5\"1/4", },
/* 360 kB 5"1/4 floppy disks */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 40, 1, "360 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 40, 0, "180 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 10, 41, 1, "410 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 10, 42, 1, "420 kB 5\"1/4", },
/* 320 kB 5"1/4 floppy disks */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 8, 40, 1, "320 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 8, 40, 0, "160 kB 5\"1/4", },
/* 360 kB must match 5"1/4 better than 3"1/2... */
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 9, 80, 0, "360 kB 3\"1/2", },
/* end */
{ FDRIVE_DRV_NONE, FDRIVE_DISK_NONE, -1, -1, 0, NULL, },
};
/* Revalidate a disk drive after a disk change */
static void fd_revalidate (fdrive_t *drv)
{
const fd_format_t *parse;
uint64_t nb_sectors, size;
int i, first_match, match;
int nb_heads, max_track, last_sect, ro;
FLOPPY_DPRINTF("revalidate\n");
if (drv->bs != NULL && bdrv_is_inserted(drv->bs)) {
ro = bdrv_is_read_only(drv->bs);
bdrv_get_geometry_hint(drv->bs, &nb_heads, &max_track, &last_sect);
if (nb_heads != 0 && max_track != 0 && last_sect != 0) {
FLOPPY_DPRINTF("User defined disk (%d %d %d)",
nb_heads - 1, max_track, last_sect);
} else {
bdrv_get_geometry(drv->bs, &nb_sectors);
match = -1;
first_match = -1;
for (i = 0;; i++) {
parse = &fd_formats[i];
if (parse->drive == FDRIVE_DRV_NONE)
break;
if (drv->drive == parse->drive ||
drv->drive == FDRIVE_DRV_NONE) {
size = (parse->max_head + 1) * parse->max_track *
parse->last_sect;
if (nb_sectors == size) {
match = i;
break;
}
if (first_match == -1)
first_match = i;
}
}
if (match == -1) {
if (first_match == -1)
match = 1;
else
match = first_match;
parse = &fd_formats[match];
}
nb_heads = parse->max_head + 1;
max_track = parse->max_track;
last_sect = parse->last_sect;
drv->drive = parse->drive;
FLOPPY_DPRINTF("%s floppy disk (%d h %d t %d s) %s\n", parse->str,
nb_heads, max_track, last_sect, ro ? "ro" : "rw");
}
if (nb_heads == 1) {
drv->flags &= ~FDISK_DBL_SIDES;
} else {
drv->flags |= FDISK_DBL_SIDES;
}
drv->max_track = max_track;
drv->last_sect = last_sect;
drv->ro = ro;
} else {
FLOPPY_DPRINTF("No disk in drive\n");
drv->last_sect = 0;
drv->max_track = 0;
drv->flags &= ~FDISK_DBL_SIDES;
}
}
/* Motor control */
static void fd_start (fdrive_t *drv)
{
drv->drflags |= FDRIVE_MOTOR_ON;
}
static void fd_stop (fdrive_t *drv)
{
drv->drflags &= ~FDRIVE_MOTOR_ON;
}
/* Re-initialise a drives (motor off, repositioned) */
static void fd_reset (fdrive_t *drv)
{
fd_stop(drv);
fd_recalibrate(drv);
}
/********************************************************/
/* Intel 82078 floppy disk controller emulation */
static void fdctrl_reset (fdctrl_t *fdctrl, int do_irq);
static void fdctrl_reset_fifo (fdctrl_t *fdctrl);
static int fdctrl_transfer_handler (void *opaque, int nchan,
int dma_pos, int dma_len);
static void fdctrl_raise_irq (fdctrl_t *fdctrl, uint8_t status);
static void fdctrl_result_timer(void *opaque);
static uint32_t fdctrl_read_statusB (fdctrl_t *fdctrl);
static uint32_t fdctrl_read_dor (fdctrl_t *fdctrl);
static void fdctrl_write_dor (fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_tape (fdctrl_t *fdctrl);
static void fdctrl_write_tape (fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_main_status (fdctrl_t *fdctrl);
static void fdctrl_write_rate (fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_data (fdctrl_t *fdctrl);
static void fdctrl_write_data (fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_dir (fdctrl_t *fdctrl);
enum {
FD_CTRL_ACTIVE = 0x01, /* XXX: suppress that */
FD_CTRL_RESET = 0x02,
FD_CTRL_SLEEP = 0x04, /* XXX: suppress that */
FD_CTRL_BUSY = 0x08, /* dma transfer in progress */
FD_CTRL_INTR = 0x10,
};
enum {
FD_DIR_WRITE = 0,
FD_DIR_READ = 1,
FD_DIR_SCANE = 2,
FD_DIR_SCANL = 3,
FD_DIR_SCANH = 4,
};
enum {
FD_STATE_CMD = 0x00,
FD_STATE_STATUS = 0x01,
FD_STATE_DATA = 0x02,
FD_STATE_STATE = 0x03,
FD_STATE_MULTI = 0x10,
FD_STATE_SEEK = 0x20,
FD_STATE_FORMAT = 0x40,
};
#define FD_STATE(state) ((state) & FD_STATE_STATE)
#define FD_SET_STATE(state, new_state) \
do { (state) = ((state) & ~FD_STATE_STATE) | (new_state); } while (0)
#define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
#define FD_DID_SEEK(state) ((state) & FD_STATE_SEEK)
#define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
struct fdctrl_t {
fdctrl_t *fdctrl;
/* Controller's identification */
uint8_t version;
/* HW */
qemu_irq irq;
int dma_chann;
target_phys_addr_t io_base;
/* Controller state */
QEMUTimer *result_timer;
uint8_t state;
uint8_t dma_en;
uint8_t cur_drv;
uint8_t bootsel;
/* Command FIFO */
uint8_t fifo[FD_SECTOR_LEN];
uint32_t data_pos;
uint32_t data_len;
uint8_t data_state;
uint8_t data_dir;
uint8_t int_status;
uint8_t eot; /* last wanted sector */
/* States kept only to be returned back */
/* Timers state */
uint8_t timer0;
uint8_t timer1;
/* precompensation */
uint8_t precomp_trk;
uint8_t config;
uint8_t lock;
/* Power down config (also with status regB access mode */
uint8_t pwrd;
/* Sun4m quirks? */
int sun4m;
/* Floppy drives */
fdrive_t drives[2];
};
static uint32_t fdctrl_read (void *opaque, uint32_t reg)
{
fdctrl_t *fdctrl = opaque;
uint32_t retval;
switch (reg & 0x07) {
case 0x00:
if (fdctrl->sun4m) {
// Identify to Linux as S82078B
retval = fdctrl_read_statusB(fdctrl);
} else {
retval = (uint32_t)(-1);
}
break;
case 0x01:
retval = fdctrl_read_statusB(fdctrl);
break;
case 0x02:
retval = fdctrl_read_dor(fdctrl);
break;
case 0x03:
retval = fdctrl_read_tape(fdctrl);
break;
case 0x04:
retval = fdctrl_read_main_status(fdctrl);
break;
case 0x05:
retval = fdctrl_read_data(fdctrl);
break;
case 0x07:
retval = fdctrl_read_dir(fdctrl);
break;
default:
retval = (uint32_t)(-1);
break;
}
FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
return retval;
}
static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
{
fdctrl_t *fdctrl = opaque;
FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
switch (reg & 0x07) {
case 0x02:
fdctrl_write_dor(fdctrl, value);
break;
case 0x03:
fdctrl_write_tape(fdctrl, value);
break;
case 0x04:
fdctrl_write_rate(fdctrl, value);
break;
case 0x05:
fdctrl_write_data(fdctrl, value);
break;
default:
break;
}
}
static uint32_t fdctrl_read_mem (void *opaque, target_phys_addr_t reg)
{
return fdctrl_read(opaque, (uint32_t)reg);
}
static void fdctrl_write_mem (void *opaque,
target_phys_addr_t reg, uint32_t value)
{
fdctrl_write(opaque, (uint32_t)reg, value);
}
static CPUReadMemoryFunc *fdctrl_mem_read[3] = {
fdctrl_read_mem,
fdctrl_read_mem,
fdctrl_read_mem,
};
static CPUWriteMemoryFunc *fdctrl_mem_write[3] = {
fdctrl_write_mem,
fdctrl_write_mem,
fdctrl_write_mem,
};
static void fd_save (QEMUFile *f, fdrive_t *fd)
{
uint8_t tmp;
tmp = fd->drflags;
qemu_put_8s(f, &tmp);
qemu_put_8s(f, &fd->head);
qemu_put_8s(f, &fd->track);
qemu_put_8s(f, &fd->sect);
qemu_put_8s(f, &fd->dir);
qemu_put_8s(f, &fd->rw);
}
static void fdc_save (QEMUFile *f, void *opaque)
{
fdctrl_t *s = opaque;
qemu_put_8s(f, &s->state);
qemu_put_8s(f, &s->dma_en);
qemu_put_8s(f, &s->cur_drv);
qemu_put_8s(f, &s->bootsel);
qemu_put_buffer(f, s->fifo, FD_SECTOR_LEN);
qemu_put_be32s(f, &s->data_pos);
qemu_put_be32s(f, &s->data_len);
qemu_put_8s(f, &s->data_state);
qemu_put_8s(f, &s->data_dir);
qemu_put_8s(f, &s->int_status);
qemu_put_8s(f, &s->eot);
qemu_put_8s(f, &s->timer0);
qemu_put_8s(f, &s->timer1);
qemu_put_8s(f, &s->precomp_trk);
qemu_put_8s(f, &s->config);
qemu_put_8s(f, &s->lock);
qemu_put_8s(f, &s->pwrd);
fd_save(f, &s->drives[0]);
fd_save(f, &s->drives[1]);
}
static int fd_load (QEMUFile *f, fdrive_t *fd)
{
uint8_t tmp;
qemu_get_8s(f, &tmp);
fd->drflags = tmp;
qemu_get_8s(f, &fd->head);
qemu_get_8s(f, &fd->track);
qemu_get_8s(f, &fd->sect);
qemu_get_8s(f, &fd->dir);
qemu_get_8s(f, &fd->rw);
return 0;
}
static int fdc_load (QEMUFile *f, void *opaque, int version_id)
{
fdctrl_t *s = opaque;
int ret;
if (version_id != 1)
return -EINVAL;
qemu_get_8s(f, &s->state);
qemu_get_8s(f, &s->dma_en);
qemu_get_8s(f, &s->cur_drv);
qemu_get_8s(f, &s->bootsel);
qemu_get_buffer(f, s->fifo, FD_SECTOR_LEN);
qemu_get_be32s(f, &s->data_pos);
qemu_get_be32s(f, &s->data_len);
qemu_get_8s(f, &s->data_state);
qemu_get_8s(f, &s->data_dir);
qemu_get_8s(f, &s->int_status);
qemu_get_8s(f, &s->eot);
qemu_get_8s(f, &s->timer0);
qemu_get_8s(f, &s->timer1);
qemu_get_8s(f, &s->precomp_trk);
qemu_get_8s(f, &s->config);
qemu_get_8s(f, &s->lock);
qemu_get_8s(f, &s->pwrd);
ret = fd_load(f, &s->drives[0]);
if (ret == 0)
ret = fd_load(f, &s->drives[1]);
return ret;
}
static void fdctrl_external_reset(void *opaque)
{
fdctrl_t *s = opaque;
fdctrl_reset(s, 0);
}
fdctrl_t *fdctrl_init (qemu_irq irq, int dma_chann, int mem_mapped,
target_phys_addr_t io_base,
BlockDriverState **fds)
{
fdctrl_t *fdctrl;
int io_mem;
int i;
FLOPPY_DPRINTF("init controller\n");
fdctrl = qemu_mallocz(sizeof(fdctrl_t));
if (!fdctrl)
return NULL;
fdctrl->result_timer = qemu_new_timer(vm_clock,
fdctrl_result_timer, fdctrl);
fdctrl->version = 0x90; /* Intel 82078 controller */
fdctrl->irq = irq;
fdctrl->dma_chann = dma_chann;
fdctrl->io_base = io_base;
fdctrl->config = 0x60; /* Implicit seek, polling & FIFO enabled */
fdctrl->sun4m = 0;
if (fdctrl->dma_chann != -1) {
fdctrl->dma_en = 1;
DMA_register_channel(dma_chann, &fdctrl_transfer_handler, fdctrl);
} else {
fdctrl->dma_en = 0;
}
for (i = 0; i < 2; i++) {
fd_init(&fdctrl->drives[i], fds[i]);
}
fdctrl_reset(fdctrl, 0);
fdctrl->state = FD_CTRL_ACTIVE;
if (mem_mapped) {
io_mem = cpu_register_io_memory(0, fdctrl_mem_read, fdctrl_mem_write,
fdctrl);
cpu_register_physical_memory(io_base, 0x08, io_mem);
} else {
register_ioport_read((uint32_t)io_base + 0x01, 5, 1, &fdctrl_read,
fdctrl);
register_ioport_read((uint32_t)io_base + 0x07, 1, 1, &fdctrl_read,
fdctrl);
register_ioport_write((uint32_t)io_base + 0x01, 5, 1, &fdctrl_write,
fdctrl);
register_ioport_write((uint32_t)io_base + 0x07, 1, 1, &fdctrl_write,
fdctrl);
}
register_savevm("fdc", io_base, 1, fdc_save, fdc_load, fdctrl);
qemu_register_reset(fdctrl_external_reset, fdctrl);
for (i = 0; i < 2; i++) {
fd_revalidate(&fdctrl->drives[i]);
}
return fdctrl;
}
fdctrl_t *sun4m_fdctrl_init (qemu_irq irq, target_phys_addr_t io_base,
BlockDriverState **fds)
{
fdctrl_t *fdctrl;
fdctrl = fdctrl_init(irq, 0, 1, io_base, fds);
fdctrl->sun4m = 1;
return fdctrl;
}
/* XXX: may change if moved to bdrv */
int fdctrl_get_drive_type(fdctrl_t *fdctrl, int drive_num)
{
return fdctrl->drives[drive_num].drive;
}
/* Change IRQ state */
static void fdctrl_reset_irq (fdctrl_t *fdctrl)
{
FLOPPY_DPRINTF("Reset interrupt\n");
qemu_set_irq(fdctrl->irq, 0);
fdctrl->state &= ~FD_CTRL_INTR;
}
static void fdctrl_raise_irq (fdctrl_t *fdctrl, uint8_t status)
{
// Sparc mutation
if (fdctrl->sun4m && !fdctrl->dma_en) {
fdctrl->state &= ~FD_CTRL_BUSY;
fdctrl->int_status = status;
return;
}
if (~(fdctrl->state & FD_CTRL_INTR)) {
qemu_set_irq(fdctrl->irq, 1);
fdctrl->state |= FD_CTRL_INTR;
}
FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", status);
fdctrl->int_status = status;
}
/* Reset controller */
static void fdctrl_reset (fdctrl_t *fdctrl, int do_irq)
{
int i;
FLOPPY_DPRINTF("reset controller\n");
fdctrl_reset_irq(fdctrl);
/* Initialise controller */
fdctrl->cur_drv = 0;
/* FIFO state */
fdctrl->data_pos = 0;
fdctrl->data_len = 0;
fdctrl->data_state = FD_STATE_CMD;
fdctrl->data_dir = FD_DIR_WRITE;
for (i = 0; i < MAX_FD; i++)
fd_reset(&fdctrl->drives[i]);
fdctrl_reset_fifo(fdctrl);
if (do_irq)
fdctrl_raise_irq(fdctrl, 0xc0);
}
static inline fdrive_t *drv0 (fdctrl_t *fdctrl)
{
return &fdctrl->drives[fdctrl->bootsel];
}
static inline fdrive_t *drv1 (fdctrl_t *fdctrl)
{
return &fdctrl->drives[1 - fdctrl->bootsel];
}
static fdrive_t *get_cur_drv (fdctrl_t *fdctrl)
{
return fdctrl->cur_drv == 0 ? drv0(fdctrl) : drv1(fdctrl);
}
/* Status B register : 0x01 (read-only) */
static uint32_t fdctrl_read_statusB (fdctrl_t *fdctrl)
{
FLOPPY_DPRINTF("status register: 0x00\n");
return 0;
}
/* Digital output register : 0x02 */
static uint32_t fdctrl_read_dor (fdctrl_t *fdctrl)
{
uint32_t retval = 0;
/* Drive motors state indicators */
if (drv0(fdctrl)->drflags & FDRIVE_MOTOR_ON)
retval |= 1 << 5;
if (drv1(fdctrl)->drflags & FDRIVE_MOTOR_ON)
retval |= 1 << 4;
/* DMA enable */
retval |= fdctrl->dma_en << 3;
/* Reset indicator */
retval |= (fdctrl->state & FD_CTRL_RESET) == 0 ? 0x04 : 0;
/* Selected drive */
retval |= fdctrl->cur_drv;
FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_write_dor (fdctrl_t *fdctrl, uint32_t value)
{
/* Reset mode */
if (fdctrl->state & FD_CTRL_RESET) {
if (!(value & 0x04)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
}
FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
/* Drive motors state indicators */
if (value & 0x20)
fd_start(drv1(fdctrl));
else
fd_stop(drv1(fdctrl));
if (value & 0x10)
fd_start(drv0(fdctrl));
else
fd_stop(drv0(fdctrl));
/* DMA enable */
#if 0
if (fdctrl->dma_chann != -1)
fdctrl->dma_en = 1 - ((value >> 3) & 1);
#endif
/* Reset */
if (!(value & 0x04)) {
if (!(fdctrl->state & FD_CTRL_RESET)) {
FLOPPY_DPRINTF("controller enter RESET state\n");
fdctrl->state |= FD_CTRL_RESET;
}
} else {
if (fdctrl->state & FD_CTRL_RESET) {
FLOPPY_DPRINTF("controller out of RESET state\n");
fdctrl_reset(fdctrl, 1);
fdctrl->state &= ~(FD_CTRL_RESET | FD_CTRL_SLEEP);
}
}
/* Selected drive */
fdctrl->cur_drv = value & 1;
}
/* Tape drive register : 0x03 */
static uint32_t fdctrl_read_tape (fdctrl_t *fdctrl)
{
uint32_t retval = 0;
/* Disk boot selection indicator */
retval |= fdctrl->bootsel << 2;
/* Tape indicators: never allowed */
FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_write_tape (fdctrl_t *fdctrl, uint32_t value)
{
/* Reset mode */
if (fdctrl->state & FD_CTRL_RESET) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
/* Disk boot selection indicator */
fdctrl->bootsel = (value >> 2) & 1;
/* Tape indicators: never allow */
}
/* Main status register : 0x04 (read) */
static uint32_t fdctrl_read_main_status (fdctrl_t *fdctrl)
{
uint32_t retval = 0;
fdctrl->state &= ~(FD_CTRL_SLEEP | FD_CTRL_RESET);
if (!(fdctrl->state & FD_CTRL_BUSY)) {
/* Data transfer allowed */
retval |= 0x80;
/* Data transfer direction indicator */
if (fdctrl->data_dir == FD_DIR_READ)
retval |= 0x40;
}
/* Should handle 0x20 for SPECIFY command */
/* Command busy indicator */
if (FD_STATE(fdctrl->data_state) == FD_STATE_DATA ||
FD_STATE(fdctrl->data_state) == FD_STATE_STATUS)
retval |= 0x10;
FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
return retval;
}
/* Data select rate register : 0x04 (write) */
static void fdctrl_write_rate (fdctrl_t *fdctrl, uint32_t value)
{
/* Reset mode */
if (fdctrl->state & FD_CTRL_RESET) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
/* Reset: autoclear */
if (value & 0x80) {
fdctrl->state |= FD_CTRL_RESET;
fdctrl_reset(fdctrl, 1);
fdctrl->state &= ~FD_CTRL_RESET;
}
if (value & 0x40) {
fdctrl->state |= FD_CTRL_SLEEP;
fdctrl_reset(fdctrl, 1);
}
// fdctrl.precomp = (value >> 2) & 0x07;
}
static int fdctrl_media_changed(fdrive_t *drv)
{
int ret;
if (!drv->bs)
return 0;
ret = bdrv_media_changed(drv->bs);
if (ret) {
fd_revalidate(drv);
}
return ret;
}
/* Digital input register : 0x07 (read-only) */
static uint32_t fdctrl_read_dir (fdctrl_t *fdctrl)
{
uint32_t retval = 0;
if (fdctrl_media_changed(drv0(fdctrl)) ||
fdctrl_media_changed(drv1(fdctrl)))
retval |= 0x80;
if (retval != 0)
FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
return retval;
}
/* FIFO state control */
static void fdctrl_reset_fifo (fdctrl_t *fdctrl)
{
fdctrl->data_dir = FD_DIR_WRITE;
fdctrl->data_pos = 0;
FD_SET_STATE(fdctrl->data_state, FD_STATE_CMD);
}
/* Set FIFO status for the host to read */
static void fdctrl_set_fifo (fdctrl_t *fdctrl, int fifo_len, int do_irq)
{
fdctrl->data_dir = FD_DIR_READ;
fdctrl->data_len = fifo_len;
fdctrl->data_pos = 0;
FD_SET_STATE(fdctrl->data_state, FD_STATE_STATUS);
if (do_irq)
fdctrl_raise_irq(fdctrl, 0x00);
}
/* Set an error: unimplemented/unknown command */
static void fdctrl_unimplemented (fdctrl_t *fdctrl)
{
#if 0
fdrive_t *cur_drv;
cur_drv = get_cur_drv(fdctrl);
fdctrl->fifo[0] = 0x60 | (cur_drv->head << 2) | fdctrl->cur_drv;
fdctrl->fifo[1] = 0x00;
fdctrl->fifo[2] = 0x00;
fdctrl_set_fifo(fdctrl, 3, 1);
#else
// fdctrl_reset_fifo(fdctrl);
fdctrl->fifo[0] = 0x80;
fdctrl_set_fifo(fdctrl, 1, 0);
#endif
}
/* Callback for transfer end (stop or abort) */
static void fdctrl_stop_transfer (fdctrl_t *fdctrl, uint8_t status0,
uint8_t status1, uint8_t status2)
{
fdrive_t *cur_drv;
cur_drv = get_cur_drv(fdctrl);
FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
status0, status1, status2,
status0 | (cur_drv->head << 2) | fdctrl->cur_drv);
fdctrl->fifo[0] = status0 | (cur_drv->head << 2) | fdctrl->cur_drv;
fdctrl->fifo[1] = status1;
fdctrl->fifo[2] = status2;
fdctrl->fifo[3] = cur_drv->track;
fdctrl->fifo[4] = cur_drv->head;
fdctrl->fifo[5] = cur_drv->sect;
fdctrl->fifo[6] = FD_SECTOR_SC;
fdctrl->data_dir = FD_DIR_READ;
if (fdctrl->state & FD_CTRL_BUSY) {
DMA_release_DREQ(fdctrl->dma_chann);
fdctrl->state &= ~FD_CTRL_BUSY;
}
fdctrl_set_fifo(fdctrl, 7, 1);
}
/* Prepare a data transfer (either DMA or FIFO) */
static void fdctrl_start_transfer (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
uint8_t kh, kt, ks;
int did_seek;
fdctrl->cur_drv = fdctrl->fifo[1] & 1;
cur_drv = get_cur_drv(fdctrl);
kt = fdctrl->fifo[2];
kh = fdctrl->fifo[3];
ks = fdctrl->fifo[4];
FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
fdctrl->cur_drv, kh, kt, ks,
_fd_sector(kh, kt, ks, cur_drv->last_sect));
did_seek = 0;
switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & 0x40)) {
case 2:
/* sect too big */
fdctrl_stop_transfer(fdctrl, 0x40, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 3:
/* track too big */
fdctrl_stop_transfer(fdctrl, 0x40, 0x80, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 4:
/* No seek enabled */
fdctrl_stop_transfer(fdctrl, 0x40, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 1:
did_seek = 1;
break;
default:
break;
}
/* Set the FIFO state */
fdctrl->data_dir = direction;
fdctrl->data_pos = 0;
FD_SET_STATE(fdctrl->data_state, FD_STATE_DATA); /* FIFO ready for data */
if (fdctrl->fifo[0] & 0x80)
fdctrl->data_state |= FD_STATE_MULTI;
else
fdctrl->data_state &= ~FD_STATE_MULTI;
if (did_seek)
fdctrl->data_state |= FD_STATE_SEEK;
else
fdctrl->data_state &= ~FD_STATE_SEEK;
if (fdctrl->fifo[5] == 00) {
fdctrl->data_len = fdctrl->fifo[8];
} else {
int tmp;
fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
tmp = (cur_drv->last_sect - ks + 1);
if (fdctrl->fifo[0] & 0x80)
tmp += cur_drv->last_sect;
fdctrl->data_len *= tmp;
}
fdctrl->eot = fdctrl->fifo[6];
if (fdctrl->dma_en) {
int dma_mode;
/* DMA transfer are enabled. Check if DMA channel is well programmed */
dma_mode = DMA_get_channel_mode(fdctrl->dma_chann);
dma_mode = (dma_mode >> 2) & 3;
FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
dma_mode, direction,
(128 << fdctrl->fifo[5]) *
(cur_drv->last_sect - ks + 1), fdctrl->data_len);
if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL ||
direction == FD_DIR_SCANH) && dma_mode == 0) ||
(direction == FD_DIR_WRITE && dma_mode == 2) ||
(direction == FD_DIR_READ && dma_mode == 1)) {
/* No access is allowed until DMA transfer has completed */
fdctrl->state |= FD_CTRL_BUSY;
/* Now, we just have to wait for the DMA controller to
* recall us...
*/
DMA_hold_DREQ(fdctrl->dma_chann);
DMA_schedule(fdctrl->dma_chann);
return;
} else {
FLOPPY_ERROR("dma_mode=%d direction=%d\n", dma_mode, direction);
}
}
FLOPPY_DPRINTF("start non-DMA transfer\n");
/* IO based transfer: calculate len */
fdctrl_raise_irq(fdctrl, 0x00);
return;
}
/* Prepare a transfer of deleted data */
static void fdctrl_start_transfer_del (fdctrl_t *fdctrl, int direction)
{
/* We don't handle deleted data,
* so we don't return *ANYTHING*
*/
fdctrl_stop_transfer(fdctrl, 0x60, 0x00, 0x00);
}
/* handlers for DMA transfers */
static int fdctrl_transfer_handler (void *opaque, int nchan,
int dma_pos, int dma_len)
{
fdctrl_t *fdctrl;
fdrive_t *cur_drv;
int len, start_pos, rel_pos;
uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
fdctrl = opaque;
if (!(fdctrl->state & FD_CTRL_BUSY)) {
FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
return 0;
}
cur_drv = get_cur_drv(fdctrl);
if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
fdctrl->data_dir == FD_DIR_SCANH)
status2 = 0x04;
if (dma_len > fdctrl->data_len)
dma_len = fdctrl->data_len;
if (cur_drv->bs == NULL) {
if (fdctrl->data_dir == FD_DIR_WRITE)
fdctrl_stop_transfer(fdctrl, 0x60, 0x00, 0x00);
else
fdctrl_stop_transfer(fdctrl, 0x40, 0x00, 0x00);
len = 0;
goto transfer_error;
}
rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
len = dma_len - fdctrl->data_pos;
if (len + rel_pos > FD_SECTOR_LEN)
len = FD_SECTOR_LEN - rel_pos;
FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
"(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
fdctrl->data_len, fdctrl->cur_drv, cur_drv->head,
cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
fd_sector(cur_drv) * 512);
if (fdctrl->data_dir != FD_DIR_WRITE ||
len < FD_SECTOR_LEN || rel_pos != 0) {
/* READ & SCAN commands and realign to a sector for WRITE */
if (bdrv_read(cur_drv->bs, fd_sector(cur_drv),
fdctrl->fifo, 1) < 0) {
FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
fd_sector(cur_drv));
/* Sure, image size is too small... */
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
}
}
switch (fdctrl->data_dir) {
case FD_DIR_READ:
/* READ commands */
DMA_write_memory (nchan, fdctrl->fifo + rel_pos,
fdctrl->data_pos, len);
break;
case FD_DIR_WRITE:
/* WRITE commands */
DMA_read_memory (nchan, fdctrl->fifo + rel_pos,
fdctrl->data_pos, len);
if (bdrv_write(cur_drv->bs, fd_sector(cur_drv),
fdctrl->fifo, 1) < 0) {
FLOPPY_ERROR("writting sector %d\n", fd_sector(cur_drv));
fdctrl_stop_transfer(fdctrl, 0x60, 0x00, 0x00);
goto transfer_error;
}
break;
default:
/* SCAN commands */
{
uint8_t tmpbuf[FD_SECTOR_LEN];
int ret;
DMA_read_memory (nchan, tmpbuf, fdctrl->data_pos, len);
ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
if (ret == 0) {
status2 = 0x08;
goto end_transfer;
}
if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
(ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
status2 = 0x00;
goto end_transfer;
}
}
break;
}
fdctrl->data_pos += len;
rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
if (rel_pos == 0) {
/* Seek to next sector */
FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d) (%d)\n",
cur_drv->head, cur_drv->track, cur_drv->sect,
fd_sector(cur_drv),
fdctrl->data_pos - len);
/* XXX: cur_drv->sect >= cur_drv->last_sect should be an
error in fact */
if (cur_drv->sect >= cur_drv->last_sect ||
cur_drv->sect == fdctrl->eot) {
cur_drv->sect = 1;
if (FD_MULTI_TRACK(fdctrl->data_state)) {
if (cur_drv->head == 0 &&
(cur_drv->flags & FDISK_DBL_SIDES) != 0) {
cur_drv->head = 1;
} else {
cur_drv->head = 0;
cur_drv->track++;
if ((cur_drv->flags & FDISK_DBL_SIDES) == 0)
break;
}
} else {
cur_drv->track++;
break;
}
FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
cur_drv->head, cur_drv->track,
cur_drv->sect, fd_sector(cur_drv));
} else {
cur_drv->sect++;
}
}
}
end_transfer:
len = fdctrl->data_pos - start_pos;
FLOPPY_DPRINTF("end transfer %d %d %d\n",
fdctrl->data_pos, len, fdctrl->data_len);
if (fdctrl->data_dir == FD_DIR_SCANE ||
fdctrl->data_dir == FD_DIR_SCANL ||
fdctrl->data_dir == FD_DIR_SCANH)
status2 = 0x08;
if (FD_DID_SEEK(fdctrl->data_state))
status0 |= 0x20;
fdctrl->data_len -= len;
// if (fdctrl->data_len == 0)
fdctrl_stop_transfer(fdctrl, status0, status1, status2);
transfer_error:
return len;
}
/* Data register : 0x05 */
static uint32_t fdctrl_read_data (fdctrl_t *fdctrl)
{
fdrive_t *cur_drv;
uint32_t retval = 0;
int pos, len;
cur_drv = get_cur_drv(fdctrl);
fdctrl->state &= ~FD_CTRL_SLEEP;
if (FD_STATE(fdctrl->data_state) == FD_STATE_CMD) {
FLOPPY_ERROR("can't read data in CMD state\n");
return 0;
}
pos = fdctrl->data_pos;
if (FD_STATE(fdctrl->data_state) == FD_STATE_DATA) {
pos %= FD_SECTOR_LEN;
if (pos == 0) {
len = fdctrl->data_len - fdctrl->data_pos;
if (len > FD_SECTOR_LEN)
len = FD_SECTOR_LEN;
bdrv_read(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1);
}
}
retval = fdctrl->fifo[pos];
if (++fdctrl->data_pos == fdctrl->data_len) {
fdctrl->data_pos = 0;
/* Switch from transfer mode to status mode
* then from status mode to command mode
*/
if (FD_STATE(fdctrl->data_state) == FD_STATE_DATA) {
fdctrl_stop_transfer(fdctrl, 0x20, 0x00, 0x00);
} else {
fdctrl_reset_fifo(fdctrl);
fdctrl_reset_irq(fdctrl);
}
}
FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_format_sector (fdctrl_t *fdctrl)
{
fdrive_t *cur_drv;
uint8_t kh, kt, ks;
int did_seek;
fdctrl->cur_drv = fdctrl->fifo[1] & 1;
cur_drv = get_cur_drv(fdctrl);
kt = fdctrl->fifo[6];
kh = fdctrl->fifo[7];
ks = fdctrl->fifo[8];
FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
fdctrl->cur_drv, kh, kt, ks,
_fd_sector(kh, kt, ks, cur_drv->last_sect));
did_seek = 0;
switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & 0x40)) {
case 2:
/* sect too big */
fdctrl_stop_transfer(fdctrl, 0x40, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 3:
/* track too big */
fdctrl_stop_transfer(fdctrl, 0x40, 0x80, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 4:
/* No seek enabled */
fdctrl_stop_transfer(fdctrl, 0x40, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 1:
did_seek = 1;
fdctrl->data_state |= FD_STATE_SEEK;
break;
default:
break;
}
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
if (cur_drv->bs == NULL ||
bdrv_write(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
FLOPPY_ERROR("formatting sector %d\n", fd_sector(cur_drv));
fdctrl_stop_transfer(fdctrl, 0x60, 0x00, 0x00);
} else {
if (cur_drv->sect == cur_drv->last_sect) {
fdctrl->data_state &= ~FD_STATE_FORMAT;
/* Last sector done */
if (FD_DID_SEEK(fdctrl->data_state))
fdctrl_stop_transfer(fdctrl, 0x20, 0x00, 0x00);
else
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
} else {
/* More to do */
fdctrl->data_pos = 0;
fdctrl->data_len = 4;
}
}
}
static void fdctrl_write_data (fdctrl_t *fdctrl, uint32_t value)
{
fdrive_t *cur_drv;
cur_drv = get_cur_drv(fdctrl);
/* Reset mode */
if (fdctrl->state & FD_CTRL_RESET) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
fdctrl->state &= ~FD_CTRL_SLEEP;
if (FD_STATE(fdctrl->data_state) == FD_STATE_STATUS) {
FLOPPY_ERROR("can't write data in status mode\n");
return;
}
/* Is it write command time ? */
if (FD_STATE(fdctrl->data_state) == FD_STATE_DATA) {
/* FIFO data write */
fdctrl->fifo[fdctrl->data_pos++] = value;
if (fdctrl->data_pos % FD_SECTOR_LEN == (FD_SECTOR_LEN - 1) ||
fdctrl->data_pos == fdctrl->data_len) {
bdrv_write(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1);
}
/* Switch from transfer mode to status mode
* then from status mode to command mode
*/
if (FD_STATE(fdctrl->data_state) == FD_STATE_DATA)
fdctrl_stop_transfer(fdctrl, 0x20, 0x00, 0x00);
return;
}
if (fdctrl->data_pos == 0) {
/* Command */
switch (value & 0x5F) {
case 0x46:
/* READ variants */
FLOPPY_DPRINTF("READ command\n");
/* 8 parameters cmd */
fdctrl->data_len = 9;
goto enqueue;
case 0x4C:
/* READ_DELETED variants */
FLOPPY_DPRINTF("READ_DELETED command\n");
/* 8 parameters cmd */
fdctrl->data_len = 9;
goto enqueue;
case 0x50:
/* SCAN_EQUAL variants */
FLOPPY_DPRINTF("SCAN_EQUAL command\n");
/* 8 parameters cmd */
fdctrl->data_len = 9;
goto enqueue;
case 0x56:
/* VERIFY variants */
FLOPPY_DPRINTF("VERIFY command\n");
/* 8 parameters cmd */
fdctrl->data_len = 9;
goto enqueue;
case 0x59:
/* SCAN_LOW_OR_EQUAL variants */
FLOPPY_DPRINTF("SCAN_LOW_OR_EQUAL command\n");
/* 8 parameters cmd */
fdctrl->data_len = 9;
goto enqueue;
case 0x5D:
/* SCAN_HIGH_OR_EQUAL variants */
FLOPPY_DPRINTF("SCAN_HIGH_OR_EQUAL command\n");
/* 8 parameters cmd */
fdctrl->data_len = 9;
goto enqueue;
default:
break;
}
switch (value & 0x7F) {
case 0x45:
/* WRITE variants */
FLOPPY_DPRINTF("WRITE command\n");
/* 8 parameters cmd */
fdctrl->data_len = 9;
goto enqueue;
case 0x49:
/* WRITE_DELETED variants */
FLOPPY_DPRINTF("WRITE_DELETED command\n");
/* 8 parameters cmd */
fdctrl->data_len = 9;
goto enqueue;
default:
break;
}
switch (value) {
case 0x03:
/* SPECIFY */
FLOPPY_DPRINTF("SPECIFY command\n");
/* 1 parameter cmd */
fdctrl->data_len = 3;
goto enqueue;
case 0x04:
/* SENSE_DRIVE_STATUS */
FLOPPY_DPRINTF("SENSE_DRIVE_STATUS command\n");
/* 1 parameter cmd */
fdctrl->data_len = 2;
goto enqueue;
case 0x07:
/* RECALIBRATE */
FLOPPY_DPRINTF("RECALIBRATE command\n");
/* 1 parameter cmd */
fdctrl->data_len = 2;
goto enqueue;
case 0x08:
/* SENSE_INTERRUPT_STATUS */
FLOPPY_DPRINTF("SENSE_INTERRUPT_STATUS command (%02x)\n",
fdctrl->int_status);
/* No parameters cmd: returns status if no interrupt */
#if 0
fdctrl->fifo[0] =
fdctrl->int_status | (cur_drv->head << 2) | fdctrl->cur_drv;
#else
/* XXX: int_status handling is broken for read/write
commands, so we do this hack. It should be suppressed
ASAP */
fdctrl->fifo[0] =
0x20 | (cur_drv->head << 2) | fdctrl->cur_drv;
#endif
fdctrl->fifo[1] = cur_drv->track;
fdctrl_set_fifo(fdctrl, 2, 0);
fdctrl_reset_irq(fdctrl);
fdctrl->int_status = 0xC0;
return;
case 0x0E:
/* DUMPREG */
FLOPPY_DPRINTF("DUMPREG command\n");
/* Drives position */
fdctrl->fifo[0] = drv0(fdctrl)->track;
fdctrl->fifo[1] = drv1(fdctrl)->track;
fdctrl->fifo[2] = 0;
fdctrl->fifo[3] = 0;
/* timers */
fdctrl->fifo[4] = fdctrl->timer0;
fdctrl->fifo[5] = (fdctrl->timer1 << 1) | fdctrl->dma_en;
fdctrl->fifo[6] = cur_drv->last_sect;
fdctrl->fifo[7] = (fdctrl->lock << 7) |
(cur_drv->perpendicular << 2);
fdctrl->fifo[8] = fdctrl->config;
fdctrl->fifo[9] = fdctrl->precomp_trk;
fdctrl_set_fifo(fdctrl, 10, 0);
return;
case 0x0F:
/* SEEK */
FLOPPY_DPRINTF("SEEK command\n");
/* 2 parameters cmd */
fdctrl->data_len = 3;
goto enqueue;
case 0x10:
/* VERSION */
FLOPPY_DPRINTF("VERSION command\n");
/* No parameters cmd */
/* Controller's version */
fdctrl->fifo[0] = fdctrl->version;
fdctrl_set_fifo(fdctrl, 1, 1);
return;
case 0x12:
/* PERPENDICULAR_MODE */
FLOPPY_DPRINTF("PERPENDICULAR_MODE command\n");
/* 1 parameter cmd */
fdctrl->data_len = 2;
goto enqueue;
case 0x13:
/* CONFIGURE */
FLOPPY_DPRINTF("CONFIGURE command\n");
/* 3 parameters cmd */
fdctrl->data_len = 4;
goto enqueue;
case 0x14:
/* UNLOCK */
FLOPPY_DPRINTF("UNLOCK command\n");
/* No parameters cmd */
fdctrl->lock = 0;
fdctrl->fifo[0] = 0;
fdctrl_set_fifo(fdctrl, 1, 0);
return;
case 0x17:
/* POWERDOWN_MODE */
FLOPPY_DPRINTF("POWERDOWN_MODE command\n");
/* 2 parameters cmd */
fdctrl->data_len = 3;
goto enqueue;
case 0x18:
/* PART_ID */
FLOPPY_DPRINTF("PART_ID command\n");
/* No parameters cmd */
fdctrl->fifo[0] = 0x41; /* Stepping 1 */
fdctrl_set_fifo(fdctrl, 1, 0);
return;
case 0x2C:
/* SAVE */
FLOPPY_DPRINTF("SAVE command\n");
/* No parameters cmd */
fdctrl->fifo[0] = 0;
fdctrl->fifo[1] = 0;
/* Drives position */
fdctrl->fifo[2] = drv0(fdctrl)->track;
fdctrl->fifo[3] = drv1(fdctrl)->track;
fdctrl->fifo[4] = 0;
fdctrl->fifo[5] = 0;
/* timers */
fdctrl->fifo[6] = fdctrl->timer0;
fdctrl->fifo[7] = fdctrl->timer1;
fdctrl->fifo[8] = cur_drv->last_sect;
fdctrl->fifo[9] = (fdctrl->lock << 7) |
(cur_drv->perpendicular << 2);
fdctrl->fifo[10] = fdctrl->config;
fdctrl->fifo[11] = fdctrl->precomp_trk;
fdctrl->fifo[12] = fdctrl->pwrd;
fdctrl->fifo[13] = 0;
fdctrl->fifo[14] = 0;
fdctrl_set_fifo(fdctrl, 15, 1);
return;
case 0x33:
/* OPTION */
FLOPPY_DPRINTF("OPTION command\n");
/* 1 parameter cmd */
fdctrl->data_len = 2;
goto enqueue;
case 0x42:
/* READ_TRACK */
FLOPPY_DPRINTF("READ_TRACK command\n");
/* 8 parameters cmd */
fdctrl->data_len = 9;
goto enqueue;
case 0x4A:
/* READ_ID */
FLOPPY_DPRINTF("READ_ID command\n");
/* 1 parameter cmd */
fdctrl->data_len = 2;
goto enqueue;
case 0x4C:
/* RESTORE */
FLOPPY_DPRINTF("RESTORE command\n");
/* 17 parameters cmd */
fdctrl->data_len = 18;
goto enqueue;
case 0x4D:
/* FORMAT_TRACK */
FLOPPY_DPRINTF("FORMAT_TRACK command\n");
/* 5 parameters cmd */
fdctrl->data_len = 6;
goto enqueue;
case 0x8E:
/* DRIVE_SPECIFICATION_COMMAND */
FLOPPY_DPRINTF("DRIVE_SPECIFICATION_COMMAND command\n");
/* 5 parameters cmd */
fdctrl->data_len = 6;
goto enqueue;
case 0x8F:
/* RELATIVE_SEEK_OUT */
FLOPPY_DPRINTF("RELATIVE_SEEK_OUT command\n");
/* 2 parameters cmd */
fdctrl->data_len = 3;
goto enqueue;
case 0x94:
/* LOCK */
FLOPPY_DPRINTF("LOCK command\n");
/* No parameters cmd */
fdctrl->lock = 1;
fdctrl->fifo[0] = 0x10;
fdctrl_set_fifo(fdctrl, 1, 1);
return;
case 0xCD:
/* FORMAT_AND_WRITE */
FLOPPY_DPRINTF("FORMAT_AND_WRITE command\n");
/* 10 parameters cmd */
fdctrl->data_len = 11;
goto enqueue;
case 0xCF:
/* RELATIVE_SEEK_IN */
FLOPPY_DPRINTF("RELATIVE_SEEK_IN command\n");
/* 2 parameters cmd */
fdctrl->data_len = 3;
goto enqueue;
default:
/* Unknown command */
FLOPPY_ERROR("unknown command: 0x%02x\n", value);
fdctrl_unimplemented(fdctrl);
return;
}
}
enqueue:
FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
fdctrl->fifo[fdctrl->data_pos] = value;
if (++fdctrl->data_pos == fdctrl->data_len) {
/* We now have all parameters
* and will be able to treat the command
*/
if (fdctrl->data_state & FD_STATE_FORMAT) {
fdctrl_format_sector(fdctrl);
return;
}
switch (fdctrl->fifo[0] & 0x1F) {
case 0x06:
{
/* READ variants */
FLOPPY_DPRINTF("treat READ command\n");
fdctrl_start_transfer(fdctrl, FD_DIR_READ);
return;
}
case 0x0C:
/* READ_DELETED variants */
// FLOPPY_DPRINTF("treat READ_DELETED command\n");
FLOPPY_ERROR("treat READ_DELETED command\n");
fdctrl_start_transfer_del(fdctrl, FD_DIR_READ);
return;
case 0x16:
/* VERIFY variants */
// FLOPPY_DPRINTF("treat VERIFY command\n");
FLOPPY_ERROR("treat VERIFY command\n");
fdctrl_stop_transfer(fdctrl, 0x20, 0x00, 0x00);
return;
case 0x10:
/* SCAN_EQUAL variants */
// FLOPPY_DPRINTF("treat SCAN_EQUAL command\n");
FLOPPY_ERROR("treat SCAN_EQUAL command\n");
fdctrl_start_transfer(fdctrl, FD_DIR_SCANE);
return;
case 0x19:
/* SCAN_LOW_OR_EQUAL variants */
// FLOPPY_DPRINTF("treat SCAN_LOW_OR_EQUAL command\n");
FLOPPY_ERROR("treat SCAN_LOW_OR_EQUAL command\n");
fdctrl_start_transfer(fdctrl, FD_DIR_SCANL);
return;
case 0x1D:
/* SCAN_HIGH_OR_EQUAL variants */
// FLOPPY_DPRINTF("treat SCAN_HIGH_OR_EQUAL command\n");
FLOPPY_ERROR("treat SCAN_HIGH_OR_EQUAL command\n");
fdctrl_start_transfer(fdctrl, FD_DIR_SCANH);
return;
default:
break;
}
switch (fdctrl->fifo[0] & 0x3F) {
case 0x05:
/* WRITE variants */
FLOPPY_DPRINTF("treat WRITE command (%02x)\n", fdctrl->fifo[0]);
fdctrl_start_transfer(fdctrl, FD_DIR_WRITE);
return;
case 0x09:
/* WRITE_DELETED variants */
// FLOPPY_DPRINTF("treat WRITE_DELETED command\n");
FLOPPY_ERROR("treat WRITE_DELETED command\n");
fdctrl_start_transfer_del(fdctrl, FD_DIR_WRITE);
return;
default:
break;
}
switch (fdctrl->fifo[0]) {
case 0x03:
/* SPECIFY */
FLOPPY_DPRINTF("treat SPECIFY command\n");
fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
fdctrl->timer1 = fdctrl->fifo[2] >> 1;
fdctrl->dma_en = 1 - (fdctrl->fifo[2] & 1) ;
/* No result back */
fdctrl_reset_fifo(fdctrl);
break;
case 0x04:
/* SENSE_DRIVE_STATUS */
FLOPPY_DPRINTF("treat SENSE_DRIVE_STATUS command\n");
fdctrl->cur_drv = fdctrl->fifo[1] & 1;
cur_drv = get_cur_drv(fdctrl);
cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
/* 1 Byte status back */
fdctrl->fifo[0] = (cur_drv->ro << 6) |
(cur_drv->track == 0 ? 0x10 : 0x00) |
(cur_drv->head << 2) |
fdctrl->cur_drv |
0x28;
fdctrl_set_fifo(fdctrl, 1, 0);
break;
case 0x07:
/* RECALIBRATE */
FLOPPY_DPRINTF("treat RECALIBRATE command\n");
fdctrl->cur_drv = fdctrl->fifo[1] & 1;
cur_drv = get_cur_drv(fdctrl);
fd_recalibrate(cur_drv);
fdctrl_reset_fifo(fdctrl);
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, 0x20);
break;
case 0x0F:
/* SEEK */
FLOPPY_DPRINTF("treat SEEK command\n");
fdctrl->cur_drv = fdctrl->fifo[1] & 1;
cur_drv = get_cur_drv(fdctrl);
fd_start(cur_drv);
if (fdctrl->fifo[2] <= cur_drv->track)
cur_drv->dir = 1;
else
cur_drv->dir = 0;
fdctrl_reset_fifo(fdctrl);
if (fdctrl->fifo[2] > cur_drv->max_track) {
fdctrl_raise_irq(fdctrl, 0x60);
} else {
cur_drv->track = fdctrl->fifo[2];
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, 0x20);
}
break;
case 0x12:
/* PERPENDICULAR_MODE */
FLOPPY_DPRINTF("treat PERPENDICULAR_MODE command\n");
if (fdctrl->fifo[1] & 0x80)
cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
/* No result back */
fdctrl_reset_fifo(fdctrl);
break;
case 0x13:
/* CONFIGURE */
FLOPPY_DPRINTF("treat CONFIGURE command\n");
fdctrl->config = fdctrl->fifo[2];
fdctrl->precomp_trk = fdctrl->fifo[3];
/* No result back */
fdctrl_reset_fifo(fdctrl);
break;
case 0x17:
/* POWERDOWN_MODE */
FLOPPY_DPRINTF("treat POWERDOWN_MODE command\n");
fdctrl->pwrd = fdctrl->fifo[1];
fdctrl->fifo[0] = fdctrl->fifo[1];
fdctrl_set_fifo(fdctrl, 1, 1);
break;
case 0x33:
/* OPTION */
FLOPPY_DPRINTF("treat OPTION command\n");
/* No result back */
fdctrl_reset_fifo(fdctrl);
break;
case 0x42:
/* READ_TRACK */
// FLOPPY_DPRINTF("treat READ_TRACK command\n");
FLOPPY_ERROR("treat READ_TRACK command\n");
fdctrl_start_transfer(fdctrl, FD_DIR_READ);
break;
case 0x4A:
/* READ_ID */
FLOPPY_DPRINTF("treat READ_ID command\n");
/* XXX: should set main status register to busy */
cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
qemu_mod_timer(fdctrl->result_timer,
qemu_get_clock(vm_clock) + (ticks_per_sec / 50));
break;
case 0x4C:
/* RESTORE */
FLOPPY_DPRINTF("treat RESTORE command\n");
/* Drives position */
drv0(fdctrl)->track = fdctrl->fifo[3];
drv1(fdctrl)->track = fdctrl->fifo[4];
/* timers */
fdctrl->timer0 = fdctrl->fifo[7];
fdctrl->timer1 = fdctrl->fifo[8];
cur_drv->last_sect = fdctrl->fifo[9];
fdctrl->lock = fdctrl->fifo[10] >> 7;
cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
fdctrl->config = fdctrl->fifo[11];
fdctrl->precomp_trk = fdctrl->fifo[12];
fdctrl->pwrd = fdctrl->fifo[13];
fdctrl_reset_fifo(fdctrl);
break;
case 0x4D:
/* FORMAT_TRACK */
FLOPPY_DPRINTF("treat FORMAT_TRACK command\n");
fdctrl->cur_drv = fdctrl->fifo[1] & 1;
cur_drv = get_cur_drv(fdctrl);
fdctrl->data_state |= FD_STATE_FORMAT;
if (fdctrl->fifo[0] & 0x80)
fdctrl->data_state |= FD_STATE_MULTI;
else
fdctrl->data_state &= ~FD_STATE_MULTI;
fdctrl->data_state &= ~FD_STATE_SEEK;
cur_drv->bps =
fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
#if 0
cur_drv->last_sect =
cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
fdctrl->fifo[3] / 2;
#else
cur_drv->last_sect = fdctrl->fifo[3];
#endif
/* TODO: implement format using DMA expected by the Bochs BIOS
* and Linux fdformat (read 3 bytes per sector via DMA and fill
* the sector with the specified fill byte
*/
fdctrl->data_state &= ~FD_STATE_FORMAT;
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
break;
case 0x8E:
/* DRIVE_SPECIFICATION_COMMAND */
FLOPPY_DPRINTF("treat DRIVE_SPECIFICATION_COMMAND command\n");
if (fdctrl->fifo[fdctrl->data_pos - 1] & 0x80) {
/* Command parameters done */
if (fdctrl->fifo[fdctrl->data_pos - 1] & 0x40) {
fdctrl->fifo[0] = fdctrl->fifo[1];
fdctrl->fifo[2] = 0;
fdctrl->fifo[3] = 0;
fdctrl_set_fifo(fdctrl, 4, 1);
} else {
fdctrl_reset_fifo(fdctrl);
}
} else if (fdctrl->data_len > 7) {
/* ERROR */
fdctrl->fifo[0] = 0x80 |
(cur_drv->head << 2) | fdctrl->cur_drv;
fdctrl_set_fifo(fdctrl, 1, 1);
}
break;
case 0x8F:
/* RELATIVE_SEEK_OUT */
FLOPPY_DPRINTF("treat RELATIVE_SEEK_OUT command\n");
fdctrl->cur_drv = fdctrl->fifo[1] & 1;
cur_drv = get_cur_drv(fdctrl);
fd_start(cur_drv);
cur_drv->dir = 0;
if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
cur_drv->track = cur_drv->max_track - 1;
} else {
cur_drv->track += fdctrl->fifo[2];
}
fdctrl_reset_fifo(fdctrl);
fdctrl_raise_irq(fdctrl, 0x20);
break;
case 0xCD:
/* FORMAT_AND_WRITE */
// FLOPPY_DPRINTF("treat FORMAT_AND_WRITE command\n");
FLOPPY_ERROR("treat FORMAT_AND_WRITE command\n");
fdctrl_unimplemented(fdctrl);
break;
case 0xCF:
/* RELATIVE_SEEK_IN */
FLOPPY_DPRINTF("treat RELATIVE_SEEK_IN command\n");
fdctrl->cur_drv = fdctrl->fifo[1] & 1;
cur_drv = get_cur_drv(fdctrl);
fd_start(cur_drv);
cur_drv->dir = 1;
if (fdctrl->fifo[2] > cur_drv->track) {
cur_drv->track = 0;
} else {
cur_drv->track -= fdctrl->fifo[2];
}
fdctrl_reset_fifo(fdctrl);
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, 0x20);
break;
}
}
}
static void fdctrl_result_timer(void *opaque)
{
fdctrl_t *fdctrl = opaque;
fdrive_t *cur_drv = get_cur_drv(fdctrl);
/* Pretend we are spinning.
* This is needed for Coherent, which uses READ ID to check for
* sector interleaving.
*/
if (cur_drv->last_sect != 0) {
cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
}
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
}