blob: 795acc289fae2a8b388531a38e71c4ed53f192af [file] [log] [blame]
/*
* QEMU PowerPC PowerNV machine model
*
* Copyright (c) 2016, IBM Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/datadir.h"
#include "qemu/units.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#include "sysemu/qtest.h"
#include "sysemu/sysemu.h"
#include "sysemu/numa.h"
#include "sysemu/reset.h"
#include "sysemu/runstate.h"
#include "sysemu/cpus.h"
#include "sysemu/device_tree.h"
#include "sysemu/hw_accel.h"
#include "target/ppc/cpu.h"
#include "hw/ppc/fdt.h"
#include "hw/ppc/ppc.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_core.h"
#include "hw/loader.h"
#include "hw/nmi.h"
#include "qapi/visitor.h"
#include "hw/intc/intc.h"
#include "hw/ipmi/ipmi.h"
#include "target/ppc/mmu-hash64.h"
#include "hw/pci/msi.h"
#include "hw/pci-host/pnv_phb.h"
#include "hw/pci-host/pnv_phb3.h"
#include "hw/pci-host/pnv_phb4.h"
#include "hw/ppc/xics.h"
#include "hw/qdev-properties.h"
#include "hw/ppc/pnv_chip.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/ppc/pnv_pnor.h"
#include "hw/isa/isa.h"
#include "hw/char/serial-isa.h"
#include "hw/rtc/mc146818rtc.h"
#include <libfdt.h>
#define FDT_MAX_SIZE (1 * MiB)
#define FW_FILE_NAME "skiboot.lid"
#define FW_LOAD_ADDR 0x0
#define FW_MAX_SIZE (16 * MiB)
#define KERNEL_LOAD_ADDR 0x20000000
#define KERNEL_MAX_SIZE (128 * MiB)
#define INITRD_LOAD_ADDR 0x28000000
#define INITRD_MAX_SIZE (128 * MiB)
static const char *pnv_chip_core_typename(const PnvChip *o)
{
const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
const char *core_type = object_class_get_name(object_class_by_name(s));
g_free(s);
return core_type;
}
/*
* On Power Systems E880 (POWER8), the max cpus (threads) should be :
* 4 * 4 sockets * 12 cores * 8 threads = 1536
* Let's make it 2^11
*/
#define MAX_CPUS 2048
/*
* Memory nodes are created by hostboot, one for each range of memory
* that has a different "affinity". In practice, it means one range
* per chip.
*/
static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
{
char *mem_name;
uint64_t mem_reg_property[2];
int off;
mem_reg_property[0] = cpu_to_be64(start);
mem_reg_property[1] = cpu_to_be64(size);
mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
off = fdt_add_subnode(fdt, 0, mem_name);
g_free(mem_name);
_FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
_FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
sizeof(mem_reg_property))));
_FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
}
static int get_cpus_node(void *fdt)
{
int cpus_offset = fdt_path_offset(fdt, "/cpus");
if (cpus_offset < 0) {
cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
if (cpus_offset) {
_FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
_FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
}
}
_FDT(cpus_offset);
return cpus_offset;
}
/*
* The PowerNV cores (and threads) need to use real HW ids and not an
* incremental index like it has been done on other platforms. This HW
* id is stored in the CPU PIR, it is used to create cpu nodes in the
* device tree, used in XSCOM to address cores and in interrupt
* servers.
*/
static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
{
PowerPCCPU *cpu = pc->threads[0];
CPUState *cs = CPU(cpu);
DeviceClass *dc = DEVICE_GET_CLASS(cs);
int smt_threads = CPU_CORE(pc)->nr_threads;
CPUPPCState *env = &cpu->env;
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
uint32_t *servers_prop;
int i;
uint32_t pir, tir;
uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
0xffffffff, 0xffffffff};
uint32_t tbfreq = PNV_TIMEBASE_FREQ;
uint32_t cpufreq = 1000000000;
uint32_t page_sizes_prop[64];
size_t page_sizes_prop_size;
int offset;
char *nodename;
int cpus_offset = get_cpus_node(fdt);
pnv_cc->get_pir_tir(chip, pc->hwid, 0, &pir, &tir);
/* Only one DT node per (big) core */
g_assert(tir == 0);
nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
offset = fdt_add_subnode(fdt, cpus_offset, nodename);
_FDT(offset);
g_free(nodename);
_FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
_FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
_FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
_FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
_FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
env->dcache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
env->dcache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
env->icache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
env->icache_line_size)));
if (pcc->l1_dcache_size) {
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
pcc->l1_dcache_size)));
} else {
warn_report("Unknown L1 dcache size for cpu");
}
if (pcc->l1_icache_size) {
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
pcc->l1_icache_size)));
} else {
warn_report("Unknown L1 icache size for cpu");
}
_FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
_FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
_FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
cpu->hash64_opts->slb_size)));
_FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
_FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
if (ppc_has_spr(cpu, SPR_PURR)) {
_FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
}
if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
_FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
segs, sizeof(segs))));
}
/*
* Advertise VMX/VSX (vector extensions) if available
* 0 / no property == no vector extensions
* 1 == VMX / Altivec available
* 2 == VSX available
*/
if (env->insns_flags & PPC_ALTIVEC) {
uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
_FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
}
/*
* Advertise DFP (Decimal Floating Point) if available
* 0 / no property == no DFP
* 1 == DFP available
*/
if (env->insns_flags2 & PPC2_DFP) {
_FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
}
page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
sizeof(page_sizes_prop));
if (page_sizes_prop_size) {
_FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
page_sizes_prop, page_sizes_prop_size)));
}
/* Build interrupt servers properties */
if (pc->big_core) {
servers_prop = g_new(uint32_t, smt_threads * 2);
for (i = 0; i < smt_threads; i++) {
pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
servers_prop[i * 2] = cpu_to_be32(pir);
pnv_cc->get_pir_tir(chip, pc->hwid + 1, i, &pir, NULL);
servers_prop[i * 2 + 1] = cpu_to_be32(pir);
}
_FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
servers_prop, sizeof(*servers_prop) * smt_threads
* 2)));
} else {
servers_prop = g_new(uint32_t, smt_threads);
for (i = 0; i < smt_threads; i++) {
pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
servers_prop[i] = cpu_to_be32(pir);
}
_FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
servers_prop, sizeof(*servers_prop) * smt_threads)));
}
g_free(servers_prop);
return offset;
}
static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
uint32_t nr_threads)
{
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
uint32_t pir;
uint64_t addr;
char *name;
const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
uint32_t irange[2], i, rsize;
uint64_t *reg;
int offset;
pcc->get_pir_tir(chip, hwid, 0, &pir, NULL);
addr = PNV_ICP_BASE(chip) | (pir << 12);
irange[0] = cpu_to_be32(pir);
irange[1] = cpu_to_be32(nr_threads);
rsize = sizeof(uint64_t) * 2 * nr_threads;
reg = g_malloc(rsize);
for (i = 0; i < nr_threads; i++) {
/* We know P8 PIR is linear with thread id */
reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
reg[i * 2 + 1] = cpu_to_be64(0x1000);
}
name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
offset = fdt_add_subnode(fdt, 0, name);
_FDT(offset);
g_free(name);
_FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
_FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
_FDT((fdt_setprop_string(fdt, offset, "device_type",
"PowerPC-External-Interrupt-Presentation")));
_FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
_FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
irange, sizeof(irange))));
_FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
_FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
g_free(reg);
}
/*
* Adds a PnvPHB to the chip on P8.
* Implemented here, like for defaults PHBs
*/
PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
{
Pnv8Chip *chip8 = PNV8_CHIP(chip);
phb->chip = chip;
chip8->phbs[chip8->num_phbs] = phb;
chip8->num_phbs++;
return chip;
}
/*
* Same as spapr pa_features_207 except pnv always enables CI largepages bit.
* HTM is always enabled because TCG does implement HTM, it's just a
* degenerate implementation.
*/
static const uint8_t pa_features_207[] = { 24, 0,
0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
{
static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
int i;
pnv_dt_xscom(chip, fdt, 0,
cpu_to_be64(PNV_XSCOM_BASE(chip)),
cpu_to_be64(PNV_XSCOM_SIZE),
compat, sizeof(compat));
for (i = 0; i < chip->nr_cores; i++) {
PnvCore *pnv_core = chip->cores[i];
int offset;
offset = pnv_dt_core(chip, pnv_core, fdt);
_FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
pa_features_207, sizeof(pa_features_207))));
/* Interrupt Control Presenters (ICP). One per core. */
pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
}
if (chip->ram_size) {
pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
}
}
/*
* Same as spapr pa_features_300 except pnv always enables CI largepages bit.
*/
static const uint8_t pa_features_300[] = { 66, 0,
/* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
/* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
/* 6: DS207 */
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
/* 16: Vector */
0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
/* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
/* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
/* 32: LE atomic, 34: EBB + ext EBB */
0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
/* 40: Radix MMU */
0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
/* 42: PM, 44: PC RA, 46: SC vec'd */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
/* 48: SIMD, 50: QP BFP, 52: String */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
/* 54: DecFP, 56: DecI, 58: SHA */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
/* 60: NM atomic, 62: RNG */
0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
};
static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
{
static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
int i;
pnv_dt_xscom(chip, fdt, 0,
cpu_to_be64(PNV9_XSCOM_BASE(chip)),
cpu_to_be64(PNV9_XSCOM_SIZE),
compat, sizeof(compat));
for (i = 0; i < chip->nr_cores; i++) {
PnvCore *pnv_core = chip->cores[i];
int offset;
offset = pnv_dt_core(chip, pnv_core, fdt);
_FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
pa_features_300, sizeof(pa_features_300))));
if (pnv_core->big_core) {
i++; /* Big-core groups two QEMU cores */
}
}
if (chip->ram_size) {
pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
}
pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
}
/*
* Same as spapr pa_features_31 except pnv always enables CI largepages bit,
* always disables copy/paste.
*/
static const uint8_t pa_features_31[] = { 74, 0,
/* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
/* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
/* 6: DS207 */
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
/* 16: Vector */
0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
/* 18: Vec. Scalar, 20: Vec. XOR */
0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
/* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
/* 32: LE atomic, 34: EBB + ext EBB */
0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
/* 40: Radix MMU */
0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
/* 42: PM, 44: PC RA, 46: SC vec'd */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
/* 48: SIMD, 50: QP BFP, 52: String */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
/* 54: DecFP, 56: DecI, 58: SHA */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
/* 60: NM atomic, 62: RNG */
0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
/* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
/* 72: [P]HASHST/[P]HASHCHK */
0x80, 0x00, /* 72 - 73 */
};
static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
{
static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
int i;
pnv_dt_xscom(chip, fdt, 0,
cpu_to_be64(PNV10_XSCOM_BASE(chip)),
cpu_to_be64(PNV10_XSCOM_SIZE),
compat, sizeof(compat));
for (i = 0; i < chip->nr_cores; i++) {
PnvCore *pnv_core = chip->cores[i];
int offset;
offset = pnv_dt_core(chip, pnv_core, fdt);
_FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
pa_features_31, sizeof(pa_features_31))));
if (pnv_core->big_core) {
i++; /* Big-core groups two QEMU cores */
}
}
if (chip->ram_size) {
pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
}
pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
}
static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
{
uint32_t io_base = d->ioport_id;
uint32_t io_regs[] = {
cpu_to_be32(1),
cpu_to_be32(io_base),
cpu_to_be32(2)
};
char *name;
int node;
name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
node = fdt_add_subnode(fdt, lpc_off, name);
_FDT(node);
g_free(name);
_FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
_FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
}
static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
{
const char compatible[] = "ns16550\0pnpPNP,501";
uint32_t io_base = d->ioport_id;
uint32_t io_regs[] = {
cpu_to_be32(1),
cpu_to_be32(io_base),
cpu_to_be32(8)
};
uint32_t irq;
char *name;
int node;
irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
node = fdt_add_subnode(fdt, lpc_off, name);
_FDT(node);
g_free(name);
_FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
_FDT((fdt_setprop(fdt, node, "compatible", compatible,
sizeof(compatible))));
_FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
_FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
_FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
_FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
fdt_get_phandle(fdt, lpc_off))));
/* This is needed by Linux */
_FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
}
static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
{
const char compatible[] = "bt\0ipmi-bt";
uint32_t io_base;
uint32_t io_regs[] = {
cpu_to_be32(1),
0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
cpu_to_be32(3)
};
uint32_t irq;
char *name;
int node;
io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
io_regs[1] = cpu_to_be32(io_base);
irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
node = fdt_add_subnode(fdt, lpc_off, name);
_FDT(node);
g_free(name);
_FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
_FDT((fdt_setprop(fdt, node, "compatible", compatible,
sizeof(compatible))));
/* Mark it as reserved to avoid Linux trying to claim it */
_FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
_FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
_FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
fdt_get_phandle(fdt, lpc_off))));
}
typedef struct ForeachPopulateArgs {
void *fdt;
int offset;
} ForeachPopulateArgs;
static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
{
ForeachPopulateArgs *args = opaque;
ISADevice *d = ISA_DEVICE(dev);
if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
pnv_dt_rtc(d, args->fdt, args->offset);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
pnv_dt_serial(d, args->fdt, args->offset);
} else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
pnv_dt_ipmi_bt(d, args->fdt, args->offset);
} else {
error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
d->ioport_id);
}
return 0;
}
/*
* The default LPC bus of a multichip system is on chip 0. It's
* recognized by the firmware (skiboot) using a "primary" property.
*/
static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
{
int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
ForeachPopulateArgs args = {
.fdt = fdt,
.offset = isa_offset,
};
uint32_t phandle;
_FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
phandle = qemu_fdt_alloc_phandle(fdt);
assert(phandle > 0);
_FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
/*
* ISA devices are not necessarily parented to the ISA bus so we
* can not use object_child_foreach()
*/
qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
&args);
}
static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
{
int off;
off = fdt_add_subnode(fdt, 0, "ibm,opal");
off = fdt_add_subnode(fdt, off, "power-mgt");
_FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
}
static void *pnv_dt_create(MachineState *machine)
{
PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
PnvMachineState *pnv = PNV_MACHINE(machine);
void *fdt;
char *buf;
int off;
int i;
fdt = g_malloc0(FDT_MAX_SIZE);
_FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
/* /qemu node */
_FDT((fdt_add_subnode(fdt, 0, "qemu")));
/* Root node */
_FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
_FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
_FDT((fdt_setprop_string(fdt, 0, "model",
"IBM PowerNV (emulated by qemu)")));
_FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
buf = qemu_uuid_unparse_strdup(&qemu_uuid);
_FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
if (qemu_uuid_set) {
_FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
}
g_free(buf);
off = fdt_add_subnode(fdt, 0, "chosen");
if (machine->kernel_cmdline) {
_FDT((fdt_setprop_string(fdt, off, "bootargs",
machine->kernel_cmdline)));
}
if (pnv->initrd_size) {
uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
_FDT((fdt_setprop(fdt, off, "linux,initrd-start",
&start_prop, sizeof(start_prop))));
_FDT((fdt_setprop(fdt, off, "linux,initrd-end",
&end_prop, sizeof(end_prop))));
}
/* Populate device tree for each chip */
for (i = 0; i < pnv->num_chips; i++) {
PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
}
/* Populate ISA devices on chip 0 */
pnv_dt_isa(pnv, fdt);
if (pnv->bmc) {
pnv_dt_bmc_sensors(pnv->bmc, fdt);
}
/* Create an extra node for power management on machines that support it */
if (pmc->dt_power_mgt) {
pmc->dt_power_mgt(pnv, fdt);
}
return fdt;
}
static void pnv_powerdown_notify(Notifier *n, void *opaque)
{
PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
if (pnv->bmc) {
pnv_bmc_powerdown(pnv->bmc);
}
}
static void pnv_reset(MachineState *machine, ResetType type)
{
PnvMachineState *pnv = PNV_MACHINE(machine);
IPMIBmc *bmc;
void *fdt;
qemu_devices_reset(type);
/*
* The machine should provide by default an internal BMC simulator.
* If not, try to use the BMC device that was provided on the command
* line.
*/
bmc = pnv_bmc_find(&error_fatal);
if (!pnv->bmc) {
if (!bmc) {
if (!qtest_enabled()) {
warn_report("machine has no BMC device. Use '-device "
"ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
"to define one");
}
} else {
pnv_bmc_set_pnor(bmc, pnv->pnor);
pnv->bmc = bmc;
}
}
fdt = pnv_dt_create(machine);
/* Pack resulting tree */
_FDT((fdt_pack(fdt)));
qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
/*
* Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
* the existing machine->fdt to avoid leaking it during
* a reset.
*/
g_free(machine->fdt);
machine->fdt = fdt;
}
static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
{
Pnv8Chip *chip8 = PNV8_CHIP(chip);
qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
return pnv_lpc_isa_create(&chip8->lpc, true, errp);
}
static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
{
Pnv8Chip *chip8 = PNV8_CHIP(chip);
qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
return pnv_lpc_isa_create(&chip8->lpc, false, errp);
}
static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
{
Pnv9Chip *chip9 = PNV9_CHIP(chip);
qemu_irq irq;
irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq);
irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0);
qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq);
irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1);
qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq);
irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2);
qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq);
irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3);
qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq);
return pnv_lpc_isa_create(&chip9->lpc, false, errp);
}
static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
{
Pnv10Chip *chip10 = PNV10_CHIP(chip);
qemu_irq irq;
irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq);
irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0);
qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq);
irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1);
qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq);
irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2);
qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq);
irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3);
qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq);
return pnv_lpc_isa_create(&chip10->lpc, false, errp);
}
static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
{
return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
}
static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf)
{
Pnv8Chip *chip8 = PNV8_CHIP(chip);
int i;
ics_pic_print_info(&chip8->psi.ics, buf);
for (i = 0; i < chip8->num_phbs; i++) {
PnvPHB *phb = chip8->phbs[i];
PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
ics_pic_print_info(&phb3->lsis, buf);
}
}
static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
{
GString *buf = opaque;
PnvPHB *phb = (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
if (!phb) {
return 0;
}
pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
return 0;
}
static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf)
{
Pnv9Chip *chip9 = PNV9_CHIP(chip);
pnv_xive_pic_print_info(&chip9->xive, buf);
pnv_psi_pic_print_info(&chip9->psi, buf);
object_child_foreach_recursive(OBJECT(chip),
pnv_chip_power9_pic_print_info_child, buf);
}
static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
uint32_t core_id)
{
return PNV_XSCOM_EX_BASE(core_id);
}
static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
uint32_t core_id)
{
return PNV9_XSCOM_EC_BASE(core_id);
}
static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
uint32_t core_id)
{
return PNV10_XSCOM_EC_BASE(core_id);
}
static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
{
PowerPCCPUClass *ppc_default =
POWERPC_CPU_CLASS(object_class_by_name(default_type));
PowerPCCPUClass *ppc =
POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
}
static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
{
ISADevice *dev = isa_new("isa-ipmi-bt");
object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
isa_realize_and_unref(dev, bus, &error_fatal);
}
static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf)
{
Pnv10Chip *chip10 = PNV10_CHIP(chip);
pnv_xive2_pic_print_info(&chip10->xive, buf);
pnv_psi_pic_print_info(&chip10->psi, buf);
object_child_foreach_recursive(OBJECT(chip),
pnv_chip_power9_pic_print_info_child, buf);
}
/* Always give the first 1GB to chip 0 else we won't boot */
static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
{
MachineState *machine = MACHINE(pnv);
uint64_t ram_per_chip;
assert(machine->ram_size >= 1 * GiB);
ram_per_chip = machine->ram_size / pnv->num_chips;
if (ram_per_chip >= 1 * GiB) {
return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
}
assert(pnv->num_chips > 1);
ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
}
static void pnv_init(MachineState *machine)
{
const char *bios_name = machine->firmware ?: FW_FILE_NAME;
PnvMachineState *pnv = PNV_MACHINE(machine);
MachineClass *mc = MACHINE_GET_CLASS(machine);
PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
int max_smt_threads = pmc->max_smt_threads;
char *fw_filename;
long fw_size;
uint64_t chip_ram_start = 0;
int i;
char *chip_typename;
DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
DeviceState *dev;
if (kvm_enabled()) {
error_report("machine %s does not support the KVM accelerator",
mc->name);
exit(EXIT_FAILURE);
}
/* allocate RAM */
if (machine->ram_size < mc->default_ram_size) {
char *sz = size_to_str(mc->default_ram_size);
error_report("Invalid RAM size, should be bigger than %s", sz);
g_free(sz);
exit(EXIT_FAILURE);
}
memory_region_add_subregion(get_system_memory(), 0, machine->ram);
/*
* Create our simple PNOR device
*/
dev = qdev_new(TYPE_PNV_PNOR);
if (pnor) {
qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
}
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
pnv->pnor = PNV_PNOR(dev);
/* load skiboot firmware */
fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (!fw_filename) {
error_report("Could not find OPAL firmware '%s'", bios_name);
exit(1);
}
fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
if (fw_size < 0) {
error_report("Could not load OPAL firmware '%s'", fw_filename);
exit(1);
}
g_free(fw_filename);
/* load kernel */
if (machine->kernel_filename) {
long kernel_size;
kernel_size = load_image_targphys(machine->kernel_filename,
KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
if (kernel_size < 0) {
error_report("Could not load kernel '%s'",
machine->kernel_filename);
exit(1);
}
}
/* load initrd */
if (machine->initrd_filename) {
pnv->initrd_base = INITRD_LOAD_ADDR;
pnv->initrd_size = load_image_targphys(machine->initrd_filename,
pnv->initrd_base, INITRD_MAX_SIZE);
if (pnv->initrd_size < 0) {
error_report("Could not load initial ram disk '%s'",
machine->initrd_filename);
exit(1);
}
}
/* MSIs are supported on this platform */
msi_nonbroken = true;
/*
* Check compatibility of the specified CPU with the machine
* default.
*/
if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
error_report("invalid CPU model '%s' for %s machine",
machine->cpu_type, mc->name);
exit(1);
}
/* Create the processor chips */
i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
i, machine->cpu_type);
if (!object_class_by_name(chip_typename)) {
error_report("invalid chip model '%.*s' for %s machine",
i, machine->cpu_type, mc->name);
exit(1);
}
/* Set lpar-per-core mode if lpar-per-thread is not supported */
if (!pmc->has_lpar_per_thread) {
pnv->lpar_per_core = true;
}
pnv->num_chips =
machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
if (pnv->big_core) {
if (machine->smp.threads % 2 == 1) {
error_report("Cannot support %d threads with big-core option "
"because it must be an even number",
machine->smp.threads);
exit(1);
}
max_smt_threads *= 2;
}
if (machine->smp.threads > max_smt_threads) {
error_report("Cannot support more than %d threads/core "
"on %s machine", max_smt_threads, mc->desc);
if (pmc->max_smt_threads == 4) {
error_report("(use big-core=on for 8 threads per core)");
}
exit(1);
}
if (pnv->big_core) {
/*
* powernv models PnvCore as a SMT4 core. Big-core requires 2xPnvCore
* per core, so adjust topology here. pnv_dt_core() processor
* device-tree and TCG SMT code make the 2 cores appear as one big core
* from software point of view. pnv pervasive models and xscoms tend to
* see the big core as 2 small core halves.
*/
machine->smp.cores *= 2;
machine->smp.threads /= 2;
}
if (!is_power_of_2(machine->smp.threads)) {
error_report("Cannot support %d threads/core on a powernv "
"machine because it must be a power of 2",
machine->smp.threads);
exit(1);
}
/*
* TODO: should we decide on how many chips we can create based
* on #cores and Venice vs. Murano vs. Naples chip type etc...,
*/
if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
error_report("invalid number of chips: '%d'", pnv->num_chips);
error_printf(
"Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
exit(1);
}
pnv->chips = g_new0(PnvChip *, pnv->num_chips);
for (i = 0; i < pnv->num_chips; i++) {
char chip_name[32];
Object *chip = OBJECT(qdev_new(chip_typename));
uint64_t chip_ram_size = pnv_chip_get_ram_size(pnv, i);
pnv->chips[i] = PNV_CHIP(chip);
/* Distribute RAM among the chips */
object_property_set_int(chip, "ram-start", chip_ram_start,
&error_fatal);
object_property_set_int(chip, "ram-size", chip_ram_size,
&error_fatal);
chip_ram_start += chip_ram_size;
snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
object_property_add_child(OBJECT(pnv), chip_name, chip);
object_property_set_int(chip, "chip-id", i, &error_fatal);
object_property_set_int(chip, "nr-cores", machine->smp.cores,
&error_fatal);
object_property_set_int(chip, "nr-threads", machine->smp.threads,
&error_fatal);
object_property_set_bool(chip, "big-core", pnv->big_core,
&error_fatal);
object_property_set_bool(chip, "lpar-per-core", pnv->lpar_per_core,
&error_fatal);
/*
* The POWER8 machine use the XICS interrupt interface.
* Propagate the XICS fabric to the chip and its controllers.
*/
if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
}
if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
&error_abort);
}
sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
}
g_free(chip_typename);
/* Instantiate ISA bus on chip 0 */
pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
/* Create serial port */
serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
/* Create an RTC ISA device too */
mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
/*
* Create the machine BMC simulator and the IPMI BT device for
* communication with the BMC
*/
if (defaults_enabled()) {
pnv->bmc = pnv_bmc_create(pnv->pnor);
pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
}
/*
* The PNOR is mapped on the LPC FW address space by the BMC.
* Since we can not reach the remote BMC machine with LPC memops,
* map it always for now.
*/
memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
&pnv->pnor->mmio);
/*
* OpenPOWER systems use a IPMI SEL Event message to notify the
* host to powerdown
*/
pnv->powerdown_notifier.notify = pnv_powerdown_notify;
qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
/*
* Create/Connect any machine-specific I2C devices
*/
if (pmc->i2c_init) {
pmc->i2c_init(pnv);
}
}
/*
* 0:21 Reserved - Read as zeros
* 22:24 Chip ID
* 25:28 Core number
* 29:31 Thread ID
*/
static void pnv_get_pir_tir_p8(PnvChip *chip,
uint32_t core_id, uint32_t thread_id,
uint32_t *pir, uint32_t *tir)
{
if (pir) {
*pir = (chip->chip_id << 7) | (core_id << 3) | thread_id;
}
if (tir) {
*tir = thread_id;
}
}
static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
Error **errp)
{
Pnv8Chip *chip8 = PNV8_CHIP(chip);
Error *local_err = NULL;
Object *obj;
PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
pnv_cpu->intc = obj;
}
static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
{
PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
icp_reset(ICP(pnv_cpu->intc));
}
static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
{
PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
icp_destroy(ICP(pnv_cpu->intc));
pnv_cpu->intc = NULL;
}
static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
GString *buf)
{
icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
}
/*
* 0:48 Reserved - Read as zeroes
* 49:52 Node ID
* 53:55 Chip ID
* 56 Reserved - Read as zero
* 57:61 Core number
* 62:63 Thread ID
*
* We only care about the lower bits. uint32_t is fine for the moment.
*/
static void pnv_get_pir_tir_p9(PnvChip *chip,
uint32_t core_id, uint32_t thread_id,
uint32_t *pir, uint32_t *tir)
{
if (chip->big_core) {
/* Big-core interleaves thread ID between small-cores */
thread_id <<= 1;
thread_id |= core_id & 1;
core_id >>= 1;
if (pir) {
*pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
}
} else {
if (pir) {
*pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
}
}
if (tir) {
*tir = thread_id;
}
}
/*
* 0:48 Reserved - Read as zeroes
* 49:52 Node ID
* 53:55 Chip ID
* 56 Reserved - Read as zero
* 57:59 Quad ID
* 60 Core Chiplet Pair ID
* 61:63 Thread/Core Chiplet ID t0-t2
*
* We only care about the lower bits. uint32_t is fine for the moment.
*/
static void pnv_get_pir_tir_p10(PnvChip *chip,
uint32_t core_id, uint32_t thread_id,
uint32_t *pir, uint32_t *tir)
{
if (chip->big_core) {
/* Big-core interleaves thread ID between small-cores */
thread_id <<= 1;
thread_id |= core_id & 1;
core_id >>= 1;
if (pir) {
*pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
}
} else {
if (pir) {
*pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
}
}
if (tir) {
*tir = thread_id;
}
}
static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
Error **errp)
{
Pnv9Chip *chip9 = PNV9_CHIP(chip);
Error *local_err = NULL;
Object *obj;
PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
/*
* The core creates its interrupt presenter but the XIVE interrupt
* controller object is initialized afterwards. Hopefully, it's
* only used at runtime.
*/
obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
&local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
pnv_cpu->intc = obj;
}
static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
{
PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
}
static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
{
PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
pnv_cpu->intc = NULL;
}
static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
GString *buf)
{
xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
}
static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
Error **errp)
{
Pnv10Chip *chip10 = PNV10_CHIP(chip);
Error *local_err = NULL;
Object *obj;
PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
/*
* The core creates its interrupt presenter but the XIVE2 interrupt
* controller object is initialized afterwards. Hopefully, it's
* only used at runtime.
*/
obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
&local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
pnv_cpu->intc = obj;
}
static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
{
PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
}
static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
{
PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
pnv_cpu->intc = NULL;
}
static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
GString *buf)
{
xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
}
/*
* Allowed core identifiers on a POWER8 Processor Chip :
*
* <EX0 reserved>
* EX1 - Venice only
* EX2 - Venice only
* EX3 - Venice only
* EX4
* EX5
* EX6
* <EX7,8 reserved> <reserved>
* EX9 - Venice only
* EX10 - Venice only
* EX11 - Venice only
* EX12
* EX13
* EX14
* <EX15 reserved>
*/
#define POWER8E_CORE_MASK (0x7070ull)
#define POWER8_CORE_MASK (0x7e7eull)
/*
* POWER9 has 24 cores, ids starting at 0x0
*/
#define POWER9_CORE_MASK (0xffffffffffffffull)
#define POWER10_CORE_MASK (0xffffffffffffffull)
static void pnv_chip_power8_instance_init(Object *obj)
{
Pnv8Chip *chip8 = PNV8_CHIP(obj);
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
int i;
object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
(Object **)&chip8->xics,
object_property_allow_set_link,
OBJ_PROP_LINK_STRONG);
object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
if (defaults_enabled()) {
chip8->num_phbs = pcc->num_phbs;
for (i = 0; i < chip8->num_phbs; i++) {
Object *phb = object_new(TYPE_PNV_PHB);
/*
* We need the chip to parent the PHB to allow the DT
* to build correctly (via pnv_xscom_dt()).
*
* TODO: the PHB should be parented by a PEC device that, at
* this moment, is not modelled powernv8/phb3.
*/
object_property_add_child(obj, "phb[*]", phb);
chip8->phbs[i] = PNV_PHB(phb);
}
}
}
static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
{
PnvChip *chip = PNV_CHIP(chip8);
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
int i, j;
char *name;
name = g_strdup_printf("icp-%x", chip->chip_id);
memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
g_free(name);
memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
&chip8->icp_mmio);
/* Map the ICP registers for each thread */
for (i = 0; i < chip->nr_cores; i++) {
PnvCore *pnv_core = chip->cores[i];
int core_hwid = CPU_CORE(pnv_core)->core_id;
for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
uint32_t pir;
PnvICPState *icp;
pcc->get_pir_tir(chip, core_hwid, j, &pir, NULL);
icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
&icp->mmio);
}
}
}
static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
{
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
PnvChip *chip = PNV_CHIP(dev);
Pnv8Chip *chip8 = PNV8_CHIP(dev);
Pnv8Psi *psi8 = &chip8->psi;
Error *local_err = NULL;
int i;
assert(chip8->xics);
/* XSCOM bridge is first */
pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
pcc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* Processor Service Interface (PSI) Host Bridge */
object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
&error_fatal);
object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
OBJECT(chip8->xics), &error_abort);
if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
&PNV_PSI(psi8)->xscom_regs);
/* Create LPC controller */
qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
chip->fw_mr = &chip8->lpc.isa_fw;
chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
(uint64_t) PNV_XSCOM_BASE(chip),
PNV_XSCOM_LPC_BASE);
/*
* Interrupt Management Area. This is the memory region holding
* all the Interrupt Control Presenter (ICP) registers
*/
pnv_chip_icp_realize(chip8, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* Create the simplified OCC model */
if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
/* OCC SRAM model */
memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
&chip8->occ.sram_regs);
/* HOMER */
object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
&error_abort);
if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
return;
}
/* Homer Xscom region */
pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
/* Homer mmio region */
memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
&chip8->homer.regs);
/* PHB controllers */
for (i = 0; i < chip8->num_phbs; i++) {
PnvPHB *phb = chip8->phbs[i];
object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
&error_fatal);
object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
&error_fatal);
if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
return;
}
}
}
static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
{
addr &= (PNV_XSCOM_SIZE - 1);
return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
}
static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvChipClass *k = PNV_CHIP_CLASS(klass);
k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
k->cores_mask = POWER8E_CORE_MASK;
k->num_phbs = 3;
k->get_pir_tir = pnv_get_pir_tir_p8;
k->intc_create = pnv_chip_power8_intc_create;
k->intc_reset = pnv_chip_power8_intc_reset;
k->intc_destroy = pnv_chip_power8_intc_destroy;
k->intc_print_info = pnv_chip_power8_intc_print_info;
k->isa_create = pnv_chip_power8_isa_create;
k->dt_populate = pnv_chip_power8_dt_populate;
k->pic_print_info = pnv_chip_power8_pic_print_info;
k->xscom_core_base = pnv_chip_power8_xscom_core_base;
k->xscom_pcba = pnv_chip_power8_xscom_pcba;
dc->desc = "PowerNV Chip POWER8E";
device_class_set_parent_realize(dc, pnv_chip_power8_realize,
&k->parent_realize);
}
static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvChipClass *k = PNV_CHIP_CLASS(klass);
k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
k->cores_mask = POWER8_CORE_MASK;
k->num_phbs = 3;
k->get_pir_tir = pnv_get_pir_tir_p8;
k->intc_create = pnv_chip_power8_intc_create;
k->intc_reset = pnv_chip_power8_intc_reset;
k->intc_destroy = pnv_chip_power8_intc_destroy;
k->intc_print_info = pnv_chip_power8_intc_print_info;
k->isa_create = pnv_chip_power8_isa_create;
k->dt_populate = pnv_chip_power8_dt_populate;
k->pic_print_info = pnv_chip_power8_pic_print_info;
k->xscom_core_base = pnv_chip_power8_xscom_core_base;
k->xscom_pcba = pnv_chip_power8_xscom_pcba;
dc->desc = "PowerNV Chip POWER8";
device_class_set_parent_realize(dc, pnv_chip_power8_realize,
&k->parent_realize);
}
static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvChipClass *k = PNV_CHIP_CLASS(klass);
k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
k->cores_mask = POWER8_CORE_MASK;
k->num_phbs = 4;
k->get_pir_tir = pnv_get_pir_tir_p8;
k->intc_create = pnv_chip_power8_intc_create;
k->intc_reset = pnv_chip_power8_intc_reset;
k->intc_destroy = pnv_chip_power8_intc_destroy;
k->intc_print_info = pnv_chip_power8_intc_print_info;
k->isa_create = pnv_chip_power8nvl_isa_create;
k->dt_populate = pnv_chip_power8_dt_populate;
k->pic_print_info = pnv_chip_power8_pic_print_info;
k->xscom_core_base = pnv_chip_power8_xscom_core_base;
k->xscom_pcba = pnv_chip_power8_xscom_pcba;
dc->desc = "PowerNV Chip POWER8NVL";
device_class_set_parent_realize(dc, pnv_chip_power8_realize,
&k->parent_realize);
}
static void pnv_chip_power9_instance_init(Object *obj)
{
PnvChip *chip = PNV_CHIP(obj);
Pnv9Chip *chip9 = PNV9_CHIP(obj);
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
int i;
object_initialize_child(obj, "adu", &chip9->adu, TYPE_PNV_ADU);
object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
"xive-fabric");
object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
/* Number of PECs is the chip default */
chip->num_pecs = pcc->num_pecs;
for (i = 0; i < chip->num_pecs; i++) {
object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
TYPE_PNV_PHB4_PEC);
}
for (i = 0; i < pcc->i2c_num_engines; i++) {
object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
}
}
static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
PnvCore *pnv_core,
const char *type)
{
char eq_name[32];
int core_id = CPU_CORE(pnv_core)->core_id;
snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
sizeof(*eq), type,
&error_fatal, NULL);
object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
qdev_realize(DEVICE(eq), NULL, &error_fatal);
}
static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
{
PnvChip *chip = PNV_CHIP(chip9);
int i;
chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
for (i = 0; i < chip9->nr_quads; i++) {
PnvQuad *eq = &chip9->quads[i];
pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
PNV_QUAD_TYPE_NAME("power9"));
pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
&eq->xscom_regs);
}
}
static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
{
Pnv9Chip *chip9 = PNV9_CHIP(chip);
int i;
for (i = 0; i < chip->num_pecs; i++) {
PnvPhb4PecState *pec = &chip9->pecs[i];
PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
uint32_t pec_nest_base;
uint32_t pec_pci_base;
object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
&error_fatal);
object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
&error_fatal);
if (!qdev_realize(DEVICE(pec), NULL, errp)) {
return;
}
pec_nest_base = pecc->xscom_nest_base(pec);
pec_pci_base = pecc->xscom_pci_base(pec);
pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
}
}
static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
{
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
Pnv9Chip *chip9 = PNV9_CHIP(dev);
PnvChip *chip = PNV_CHIP(dev);
Pnv9Psi *psi9 = &chip9->psi;
Error *local_err = NULL;
int i;
/* XSCOM bridge is first */
pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
pcc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* ADU */
object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc),
&error_abort);
if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE,
&chip9->adu.xscom_regs);
pnv_chip_quad_realize(chip9, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* XIVE interrupt controller (POWER9) */
object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
PNV9_XIVE_IC_BASE(chip), &error_fatal);
object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
PNV9_XIVE_VC_BASE(chip), &error_fatal);
object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
PNV9_XIVE_PC_BASE(chip), &error_fatal);
object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
PNV9_XIVE_TM_BASE(chip), &error_fatal);
object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
&error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
&chip9->xive.xscom_regs);
/* Processor Service Interface (PSI) Host Bridge */
object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
&error_fatal);
/* This is the only device with 4k ESB pages */
object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
&error_fatal);
if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
&PNV_PSI(psi9)->xscom_regs);
/* LPC */
if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
return;
}
memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
&chip9->lpc.xscom_regs);
chip->fw_mr = &chip9->lpc.isa_fw;
chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
(uint64_t) PNV9_LPCM_BASE(chip));
/* ChipTOD */
object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
chip->chip_id == 0, &error_abort);
object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
chip->chip_id == 1, &error_abort);
object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
&error_abort);
if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
&chip9->chiptod.xscom_regs);
/* Create the simplified OCC model */
if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
DEVICE(psi9), PSIHB9_IRQ_OCC));
/* OCC SRAM model */
memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
&chip9->occ.sram_regs);
/* SBE */
if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
&chip9->sbe.xscom_ctrl_regs);
pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
&chip9->sbe.xscom_mbox_regs);
qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
DEVICE(psi9), PSIHB9_IRQ_PSU));
/* HOMER */
object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
&error_abort);
if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
return;
}
/* Homer Xscom region */
pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
/* Homer mmio region */
memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
&chip9->homer.regs);
/* PEC PHBs */
pnv_chip_power9_pec_realize(chip, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/*
* I2C
*/
for (i = 0; i < pcc->i2c_num_engines; i++) {
Object *obj = OBJECT(&chip9->i2c[i]);
object_property_set_int(obj, "engine", i + 1, &error_fatal);
object_property_set_int(obj, "num-busses",
pcc->i2c_ports_per_engine[i],
&error_fatal);
object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
if (!qdev_realize(DEVICE(obj), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
(chip9->i2c[i].engine - 1) *
PNV9_XSCOM_I2CM_SIZE,
&chip9->i2c[i].xscom_regs);
qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
qdev_get_gpio_in(DEVICE(psi9),
PSIHB9_IRQ_SBE_I2C));
}
}
static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
{
addr &= (PNV9_XSCOM_SIZE - 1);
return addr >> 3;
}
static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvChipClass *k = PNV_CHIP_CLASS(klass);
static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
k->cores_mask = POWER9_CORE_MASK;
k->get_pir_tir = pnv_get_pir_tir_p9;
k->intc_create = pnv_chip_power9_intc_create;
k->intc_reset = pnv_chip_power9_intc_reset;
k->intc_destroy = pnv_chip_power9_intc_destroy;
k->intc_print_info = pnv_chip_power9_intc_print_info;
k->isa_create = pnv_chip_power9_isa_create;
k->dt_populate = pnv_chip_power9_dt_populate;
k->pic_print_info = pnv_chip_power9_pic_print_info;
k->xscom_core_base = pnv_chip_power9_xscom_core_base;
k->xscom_pcba = pnv_chip_power9_xscom_pcba;
dc->desc = "PowerNV Chip POWER9";
k->num_pecs = PNV9_CHIP_MAX_PEC;
k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
k->i2c_ports_per_engine = i2c_ports_per_engine;
device_class_set_parent_realize(dc, pnv_chip_power9_realize,
&k->parent_realize);
}
static void pnv_chip_power10_instance_init(Object *obj)
{
PnvChip *chip = PNV_CHIP(obj);
Pnv10Chip *chip10 = PNV10_CHIP(obj);
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
int i;
object_initialize_child(obj, "adu", &chip10->adu, TYPE_PNV_ADU);
object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
"xive-fabric");
object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
object_initialize_child(obj, "chiptod", &chip10->chiptod,
TYPE_PNV10_CHIPTOD);
object_initialize_child(obj, "occ", &chip10->occ, TYPE_PNV10_OCC);
object_initialize_child(obj, "sbe", &chip10->sbe, TYPE_PNV10_SBE);
object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
TYPE_PNV_N1_CHIPLET);
chip->num_pecs = pcc->num_pecs;
for (i = 0; i < chip->num_pecs; i++) {
object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
TYPE_PNV_PHB5_PEC);
}
for (i = 0; i < pcc->i2c_num_engines; i++) {
object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
}
for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
object_initialize_child(obj, "pib_spic[*]", &chip10->pib_spic[i],
TYPE_PNV_SPI);
}
}
static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
{
PnvChip *chip = PNV_CHIP(chip10);
int i;
chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
for (i = 0; i < chip10->nr_quads; i++) {
PnvQuad *eq = &chip10->quads[i];
pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
PNV_QUAD_TYPE_NAME("power10"));
pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
&eq->xscom_regs);
pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
&eq->xscom_qme_regs);
}
}
static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
{
Pnv10Chip *chip10 = PNV10_CHIP(chip);
int i;
for (i = 0; i < chip->num_pecs; i++) {
PnvPhb4PecState *pec = &chip10->pecs[i];
PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
uint32_t pec_nest_base;
uint32_t pec_pci_base;
object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
&error_fatal);
object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
&error_fatal);
if (!qdev_realize(DEVICE(pec), NULL, errp)) {
return;
}
pec_nest_base = pecc->xscom_nest_base(pec);
pec_pci_base = pecc->xscom_pci_base(pec);
pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
}
}
static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
{
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
PnvChip *chip = PNV_CHIP(dev);
Pnv10Chip *chip10 = PNV10_CHIP(dev);
Error *local_err = NULL;
int i;
/* XSCOM bridge is first */
pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
pcc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* ADU */
object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc),
&error_abort);
if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE,
&chip10->adu.xscom_regs);
pnv_chip_power10_quad_realize(chip10, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* XIVE2 interrupt controller (POWER10) */
object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
PNV10_XIVE2_IC_BASE(chip), &error_fatal);
object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
object_property_set_int(OBJECT(&chip10->xive), "end-bar",
PNV10_XIVE2_END_BASE(chip), &error_fatal);
object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
PNV10_XIVE2_TM_BASE(chip), &error_fatal);
object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
&error_abort);
if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
&chip10->xive.xscom_regs);
/* Processor Service Interface (PSI) Host Bridge */
object_property_set_int(OBJECT(&chip10->psi), "bar",
PNV10_PSIHB_BASE(chip), &error_fatal);
/* PSI can now be configured to use 64k ESB pages on POWER10 */
object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
&error_fatal);
if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
&PNV_PSI(&chip10->psi)->xscom_regs);
/* LPC */
if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
return;
}
memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
&chip10->lpc.xscom_regs);
chip->fw_mr = &chip10->lpc.isa_fw;
chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
(uint64_t) PNV10_LPCM_BASE(chip));
/* ChipTOD */
object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
chip->chip_id == 0, &error_abort);
object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
chip->chip_id == 1, &error_abort);
object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
&error_abort);
if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
&chip10->chiptod.xscom_regs);
/* Create the simplified OCC model */
if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
&chip10->occ.xscom_regs);
qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
/* OCC SRAM model */
memory_region_add_subregion(get_system_memory(),
PNV10_OCC_SENSOR_BASE(chip),
&chip10->occ.sram_regs);
/* SBE */
if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
&chip10->sbe.xscom_ctrl_regs);
pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
&chip10->sbe.xscom_mbox_regs);
qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
/* HOMER */
object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
&error_abort);
if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
return;
}
/* Homer Xscom region */
pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
&chip10->homer.pba_regs);
/* Homer mmio region */
memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
&chip10->homer.regs);
/* N1 chiplet */
if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
&chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
&chip10->n1_chiplet.xscom_pb_eq_mr);
pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
&chip10->n1_chiplet.xscom_pb_es_mr);
/* PHBs */
pnv_chip_power10_phb_realize(chip, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/*
* I2C
*/
for (i = 0; i < pcc->i2c_num_engines; i++) {
Object *obj = OBJECT(&chip10->i2c[i]);
object_property_set_int(obj, "engine", i + 1, &error_fatal);
object_property_set_int(obj, "num-busses",
pcc->i2c_ports_per_engine[i],
&error_fatal);
object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
if (!qdev_realize(DEVICE(obj), NULL, errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
(chip10->i2c[i].engine - 1) *
PNV10_XSCOM_I2CM_SIZE,
&chip10->i2c[i].xscom_regs);
qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
qdev_get_gpio_in(DEVICE(&chip10->psi),
PSIHB9_IRQ_SBE_I2C));
}
/* PIB SPI Controller */
for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
object_property_set_int(OBJECT(&chip10->pib_spic[i]), "spic_num",
i, &error_fatal);
/* pib_spic[2] connected to 25csm04 which implements 1 byte transfer */
object_property_set_int(OBJECT(&chip10->pib_spic[i]), "transfer_len",
(i == 2) ? 1 : 4, &error_fatal);
if (!sysbus_realize(SYS_BUS_DEVICE(OBJECT
(&chip10->pib_spic[i])), errp)) {
return;
}
pnv_xscom_add_subregion(chip, PNV10_XSCOM_PIB_SPIC_BASE +
i * PNV10_XSCOM_PIB_SPIC_SIZE,
&chip10->pib_spic[i].xscom_spic_regs);
}
}
static void pnv_rainier_i2c_init(PnvMachineState *pnv)
{
int i;
for (i = 0; i < pnv->num_chips; i++) {
Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
/*
* Add a PCA9552 I2C device for PCIe hotplug control
* to engine 2, bus 1, address 0x63
*/
I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
"pca9552", 0x63);
/*
* Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
* (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
* after hypervisor code sets a SLOTx_EN pin high.
*/
qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
/*
* Add a PCA9554 I2C device for cable card presence detection
* to engine 2, bus 1, address 0x25
*/
i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
}
}
static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
{
addr &= (PNV10_XSCOM_SIZE - 1);
return addr >> 3;
}
static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvChipClass *k = PNV_CHIP_CLASS(klass);
static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */
k->cores_mask = POWER10_CORE_MASK;
k->get_pir_tir = pnv_get_pir_tir_p10;
k->intc_create = pnv_chip_power10_intc_create;
k->intc_reset = pnv_chip_power10_intc_reset;
k->intc_destroy = pnv_chip_power10_intc_destroy;
k->intc_print_info = pnv_chip_power10_intc_print_info;
k->isa_create = pnv_chip_power10_isa_create;
k->dt_populate = pnv_chip_power10_dt_populate;
k->pic_print_info = pnv_chip_power10_pic_print_info;
k->xscom_core_base = pnv_chip_power10_xscom_core_base;
k->xscom_pcba = pnv_chip_power10_xscom_pcba;
dc->desc = "PowerNV Chip POWER10";
k->num_pecs = PNV10_CHIP_MAX_PEC;
k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
k->i2c_ports_per_engine = i2c_ports_per_engine;
device_class_set_parent_realize(dc, pnv_chip_power10_realize,
&k->parent_realize);
}
static void pnv_chip_core_sanitize(PnvMachineState *pnv, PnvChip *chip,
Error **errp)
{
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
int cores_max;
/*
* No custom mask for this chip, let's use the default one from *
* the chip class
*/
if (!chip->cores_mask) {
chip->cores_mask = pcc->cores_mask;
}
/* filter alien core ids ! some are reserved */
if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
chip->cores_mask);
return;
}
chip->cores_mask &= pcc->cores_mask;
/* Ensure small-cores a paired up in big-core mode */
if (pnv->big_core) {
uint64_t even_cores = chip->cores_mask & 0x5555555555555555ULL;
uint64_t odd_cores = chip->cores_mask & 0xaaaaaaaaaaaaaaaaULL;
if (even_cores ^ (odd_cores >> 1)) {
error_setg(errp, "warning: unpaired cores in big-core mode !");
return;
}
}
/* now that we have a sane layout, let check the number of cores */
cores_max = ctpop64(chip->cores_mask);
if (chip->nr_cores > cores_max) {
error_setg(errp, "warning: too many cores for chip ! Limit is %d",
cores_max);
return;
}
}
static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
{
PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(pnv);
Error *error = NULL;
PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
const char *typename = pnv_chip_core_typename(chip);
int i, core_hwid;
if (!object_class_by_name(typename)) {
error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
return;
}
/* Cores */
pnv_chip_core_sanitize(pnv, chip, &error);
if (error) {
error_propagate(errp, error);
return;
}
chip->cores = g_new0(PnvCore *, chip->nr_cores);
for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
&& (i < chip->nr_cores); core_hwid++) {
char core_name[32];
PnvCore *pnv_core;
uint64_t xscom_core_base;
if (!(chip->cores_mask & (1ull << core_hwid))) {
continue;
}
pnv_core = PNV_CORE(object_new(typename));
snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
chip->cores[i] = pnv_core;
object_property_set_int(OBJECT(pnv_core), "nr-threads",
chip->nr_threads, &error_fatal);
object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
core_hwid, &error_fatal);
object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
&error_fatal);
object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
&error_fatal);
object_property_set_bool(OBJECT(pnv_core), "big-core", chip->big_core,
&error_fatal);
object_property_set_bool(OBJECT(pnv_core), "quirk-tb-big-core",
pmc->quirk_tb_big_core, &error_fatal);
object_property_set_bool(OBJECT(pnv_core), "lpar-per-core",
chip->lpar_per_core, &error_fatal);
object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
&error_abort);
qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
/* Each core has an XSCOM MMIO region */
xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
pnv_xscom_add_subregion(chip, xscom_core_base,
&pnv_core->xscom_regs);
i++;
}
}
static void pnv_chip_realize(DeviceState *dev, Error **errp)
{
PnvChip *chip = PNV_CHIP(dev);
Error *error = NULL;
/* Cores */
pnv_chip_core_realize(chip, &error);
if (error) {
error_propagate(errp, error);
return;
}
}
static Property pnv_chip_properties[] = {
DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
DEFINE_PROP_BOOL("big-core", PnvChip, big_core, false),
DEFINE_PROP_BOOL("lpar-per-core", PnvChip, lpar_per_core, false),
DEFINE_PROP_END_OF_LIST(),
};
static void pnv_chip_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
set_bit(DEVICE_CATEGORY_CPU, dc->categories);
dc->realize = pnv_chip_realize;
device_class_set_props(dc, pnv_chip_properties);
dc->desc = "PowerNV Chip";
}
PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
{
int i;
for (i = 0; i < chip->nr_cores; i++) {
PnvCore *pc = chip->cores[i];
CPUCore *cc = CPU_CORE(pc);
if (cc->core_id == core_id) {
return pc;
}
}
return NULL;
}
PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
{
int i, j;
for (i = 0; i < chip->nr_cores; i++) {
PnvCore *pc = chip->cores[i];
CPUCore *cc = CPU_CORE(pc);
for (j = 0; j < cc->nr_threads; j++) {
if (ppc_cpu_pir(pc->threads[j]) == pir) {
return pc->threads[j];
}
}
}
return NULL;
}
static void pnv_chip_foreach_cpu(PnvChip *chip,
void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque),
void *opaque)
{
int i, j;
for (i = 0; i < chip->nr_cores; i++) {
PnvCore *pc = chip->cores[i];
for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) {
fn(chip, pc->threads[j], opaque);
}
}
}
static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
{
PnvMachineState *pnv = PNV_MACHINE(xi);
int i, j;
for (i = 0; i < pnv->num_chips; i++) {
Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
if (ics_valid_irq(&chip8->psi.ics, irq)) {
return &chip8->psi.ics;
}
for (j = 0; j < chip8->num_phbs; j++) {
PnvPHB *phb = chip8->phbs[j];
PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
if (ics_valid_irq(&phb3->lsis, irq)) {
return &phb3->lsis;
}
if (ics_valid_irq(ICS(&phb3->msis), irq)) {
return ICS(&phb3->msis);
}
}
}
return NULL;
}
PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
{
int i;
for (i = 0; i < pnv->num_chips; i++) {
PnvChip *chip = pnv->chips[i];
if (chip->chip_id == chip_id) {
return chip;
}
}
return NULL;
}
static void pnv_ics_resend(XICSFabric *xi)
{
PnvMachineState *pnv = PNV_MACHINE(xi);
int i, j;
for (i = 0; i < pnv->num_chips; i++) {
Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
ics_resend(&chip8->psi.ics);
for (j = 0; j < chip8->num_phbs; j++) {
PnvPHB *phb = chip8->phbs[j];
PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
ics_resend(&phb3->lsis);
ics_resend(ICS(&phb3->msis));
}
}
}
static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
{
PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
}
static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
void *opaque)
{
PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque);
}
static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf)
{
PnvMachineState *pnv = PNV_MACHINE(obj);
int i;
for (i = 0; i < pnv->num_chips; i++) {
PnvChip *chip = pnv->chips[i];
/* First CPU presenters */
pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf);
/* Then other devices, PHB, PSI, XIVE */
PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf);
}
}
static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
uint8_t nvt_blk, uint32_t nvt_idx,
bool cam_ignore, uint8_t priority,
uint32_t logic_serv,
XiveTCTXMatch *match)
{
PnvMachineState *pnv = PNV_MACHINE(xfb);
int total_count = 0;
int i;
for (i = 0; i < pnv->num_chips; i++) {
Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
int count;
count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
priority, logic_serv, match);
if (count < 0) {
return count;
}
total_count += count;
}
return total_count;
}
static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
uint8_t nvt_blk, uint32_t nvt_idx,
bool cam_ignore, uint8_t priority,
uint32_t logic_serv,
XiveTCTXMatch *match)
{
PnvMachineState *pnv = PNV_MACHINE(xfb);
int total_count = 0;
int i;
for (i = 0; i < pnv->num_chips; i++) {
Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
int count;
count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
priority, logic_serv, match);
if (count < 0) {
return count;
}
total_count += count;
}
return total_count;
}
static bool pnv_machine_get_big_core(Object *obj, Error **errp)
{
PnvMachineState *pnv = PNV_MACHINE(obj);
return pnv->big_core;
}
static void pnv_machine_set_big_core(Object *obj, bool value, Error **errp)
{
PnvMachineState *pnv = PNV_MACHINE(obj);
pnv->big_core = value;
}
static bool pnv_machine_get_lpar_per_core(Object *obj, Error **errp)
{
PnvMachineState *pnv = PNV_MACHINE(obj);
return pnv->lpar_per_core;
}
static void pnv_machine_set_lpar_per_core(Object *obj, bool value, Error **errp)
{
PnvMachineState *pnv = PNV_MACHINE(obj);
pnv->lpar_per_core = value;
}
static bool pnv_machine_get_hb(Object *obj, Error **errp)
{
PnvMachineState *pnv = PNV_MACHINE(obj);
return !!pnv->fw_load_addr;
}
static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
{
PnvMachineState *pnv = PNV_MACHINE(obj);
if (value) {
pnv->fw_load_addr = 0x8000000;
}
}
static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
static GlobalProperty phb_compat[] = {
{ TYPE_PNV_PHB, "version", "3" },
{ TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
};
mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
xic->icp_get = pnv_icp_get;
xic->ics_get = pnv_ics_get;
xic->ics_resend = pnv_ics_resend;
pmc->compat = compat;
pmc->compat_size = sizeof(compat);
pmc->max_smt_threads = 8;
/* POWER8 is always lpar-per-core mode */
pmc->has_lpar_per_thread = false;
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
}
static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
static const char compat[] = "qemu,powernv9\0ibm,powernv";
static GlobalProperty phb_compat[] = {
{ TYPE_PNV_PHB, "version", "4" },
{ TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
};
mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
xfc->match_nvt = pnv_match_nvt;
pmc->compat = compat;
pmc->compat_size = sizeof(compat);
pmc->max_smt_threads = 4;
pmc->has_lpar_per_thread = true;
pmc->dt_power_mgt = pnv_dt_power_mgt;
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
object_class_property_add_bool(oc, "big-core",
pnv_machine_get_big_core,
pnv_machine_set_big_core);
object_class_property_set_description(oc, "big-core",
"Use big-core (aka fused-core) mode");
object_class_property_add_bool(oc, "lpar-per-core",
pnv_machine_get_lpar_per_core,
pnv_machine_set_lpar_per_core);
object_class_property_set_description(oc, "lpar-per-core",
"Use 1 LPAR per core mode");
}
static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
static const char compat[] = "qemu,powernv10\0ibm,powernv";
static GlobalProperty phb_compat[] = {
{ TYPE_PNV_PHB, "version", "5" },
{ TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
};
mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
mc->alias = "powernv";
pmc->compat = compat;
pmc->compat_size = sizeof(compat);
pmc->max_smt_threads = 4;
pmc->has_lpar_per_thread = true;
pmc->quirk_tb_big_core = true;
pmc->dt_power_mgt = pnv_dt_power_mgt;
xfc->match_nvt = pnv10_xive_match_nvt;
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
}
static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
pnv_machine_p10_common_class_init(oc, data);
mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
/*
* This is the parent of POWER10 Rainier class, so properies go here
* rather than common init (which would add them to both parent and
* child which is invalid).
*/
object_class_property_add_bool(oc, "big-core",
pnv_machine_get_big_core,
pnv_machine_set_big_core);
object_class_property_set_description(oc, "big-core",
"Use big-core (aka fused-core) mode");
object_class_property_add_bool(oc, "lpar-per-core",
pnv_machine_get_lpar_per_core,
pnv_machine_set_lpar_per_core);
object_class_property_set_description(oc, "lpar-per-core",
"Use 1 LPAR per core mode");
}
static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
pnv_machine_p10_common_class_init(oc, data);
mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
pmc->i2c_init = pnv_rainier_i2c_init;
}
static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
{
CPUPPCState *env = cpu_env(cs);
cpu_synchronize_state(cs);
ppc_cpu_do_system_reset(cs);
if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
/*
* Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
* wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
* (PPC_BIT(43)).
*/
if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
env->spr[SPR_SRR1] |= SRR1_WAKERESET;
}
} else {
/*
* For non-powersave system resets, SRR1[42:45] are defined to be
* implementation-dependent. The POWER9 User Manual specifies that
* an external (SCOM driven, which may come from a BMC nmi command or
* another CPU requesting a NMI IPI) system reset exception should be
* 0b0010 (PPC_BIT(44)).
*/
env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
}
if (arg.host_int == 1) {
cpu_resume(cs);
}
}
/*
* Send a SRESET (NMI) interrupt to the CPU, and resume execution if it was
* paused.
*/
void pnv_cpu_do_nmi_resume(CPUState *cs)
{
async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(1));
}
static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque)
{
async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(0));
}
static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
{
PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
int i;
for (i = 0; i < pnv->num_chips; i++) {
pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL);
}
}
static void pnv_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
NMIClass *nc = NMI_CLASS(oc);
mc->desc = "IBM PowerNV (Non-Virtualized)";
mc->init = pnv_init;
mc->reset = pnv_reset;
mc->max_cpus = MAX_CPUS;
/* Pnv provides a AHCI device for storage */
mc->block_default_type = IF_IDE;
mc->no_parallel = 1;
mc->default_boot_order = NULL;
/*
* RAM defaults to less than 2048 for 32-bit hosts, and large
* enough to fit the maximum initrd size at it's load address
*/
mc->default_ram_size = 1 * GiB;
mc->default_ram_id = "pnv.ram";
ispc->print_info = pnv_pic_print_info;
nc->nmi_monitor_handler = pnv_nmi;
object_class_property_add_bool(oc, "hb-mode",
pnv_machine_get_hb, pnv_machine_set_hb);
object_class_property_set_description(oc, "hb-mode",
"Use a hostboot like boot loader");
}
#define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
{ \
.name = type, \
.class_init = class_initfn, \
.parent = TYPE_PNV8_CHIP, \
}
#define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
{ \
.name = type, \
.class_init = class_initfn, \
.parent = TYPE_PNV9_CHIP, \
}
#define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
{ \
.name = type, \
.class_init = class_initfn, \
.parent = TYPE_PNV10_CHIP, \
}
static const TypeInfo types[] = {
{
.name = MACHINE_TYPE_NAME("powernv10-rainier"),
.parent = MACHINE_TYPE_NAME("powernv10"),
.class_init = pnv_machine_p10_rainier_class_init,
},
{
.name = MACHINE_TYPE_NAME("powernv10"),
.parent = TYPE_PNV_MACHINE,
.class_init = pnv_machine_power10_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_XIVE_FABRIC },
{ },
},
},
{
.name = MACHINE_TYPE_NAME("powernv9"),
.parent = TYPE_PNV_MACHINE,
.class_init = pnv_machine_power9_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_XIVE_FABRIC },
{ },
},
},
{
.name = MACHINE_TYPE_NAME("powernv8"),
.parent = TYPE_PNV_MACHINE,
.class_init = pnv_machine_power8_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_XICS_FABRIC },
{ },
},
},
{
.name = TYPE_PNV_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(PnvMachineState),
.class_init = pnv_machine_class_init,
.class_size = sizeof(PnvMachineClass),
.interfaces = (InterfaceInfo[]) {
{ TYPE_INTERRUPT_STATS_PROVIDER },
{ TYPE_NMI },
{ },
},
},
{
.name = TYPE_PNV_CHIP,
.parent = TYPE_SYS_BUS_DEVICE,
.class_init = pnv_chip_class_init,
.instance_size = sizeof(PnvChip),
.class_size = sizeof(PnvChipClass),
.abstract = true,
},
/*
* P10 chip and variants
*/
{
.name = TYPE_PNV10_CHIP,
.parent = TYPE_PNV_CHIP,
.instance_init = pnv_chip_power10_instance_init,
.instance_size = sizeof(Pnv10Chip),
},
DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
/*
* P9 chip and variants
*/
{
.name = TYPE_PNV9_CHIP,
.parent = TYPE_PNV_CHIP,
.instance_init = pnv_chip_power9_instance_init,
.instance_size = sizeof(Pnv9Chip),
},
DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
/*
* P8 chip and variants
*/
{
.name = TYPE_PNV8_CHIP,
.parent = TYPE_PNV_CHIP,
.instance_init = pnv_chip_power8_instance_init,
.instance_size = sizeof(Pnv8Chip),
},
DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
pnv_chip_power8nvl_class_init),
};
DEFINE_TYPES(types)