blob: e82f5de9db7cb5cd015d9b8ea89a9724a0048843 [file] [log] [blame]
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "hw/hw.h"
#include "hw/boards.h"
#include "sysemu/kvm.h"
#include "helper_regs.h"
#include "mmu-hash64.h"
#include "migration/cpu.h"
#include "qapi/error.h"
#include "kvm_ppc.h"
#include "exec/helper-proto.h"
static int cpu_load_old(QEMUFile *f, void *opaque, int version_id)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
unsigned int i, j;
target_ulong sdr1;
uint32_t fpscr, vscr;
#if defined(TARGET_PPC64)
int32_t slb_nr;
#endif
target_ulong xer;
for (i = 0; i < 32; i++) {
qemu_get_betls(f, &env->gpr[i]);
}
#if !defined(TARGET_PPC64)
for (i = 0; i < 32; i++) {
qemu_get_betls(f, &env->gprh[i]);
}
#endif
qemu_get_betls(f, &env->lr);
qemu_get_betls(f, &env->ctr);
for (i = 0; i < 8; i++) {
qemu_get_be32s(f, &env->crf[i]);
}
qemu_get_betls(f, &xer);
cpu_write_xer(env, xer);
qemu_get_betls(f, &env->reserve_addr);
qemu_get_betls(f, &env->msr);
for (i = 0; i < 4; i++) {
qemu_get_betls(f, &env->tgpr[i]);
}
for (i = 0; i < 32; i++) {
union {
float64 d;
uint64_t l;
} u;
u.l = qemu_get_be64(f);
*cpu_fpr_ptr(env, i) = u.d;
}
qemu_get_be32s(f, &fpscr);
env->fpscr = fpscr;
qemu_get_sbe32s(f, &env->access_type);
#if defined(TARGET_PPC64)
qemu_get_betls(f, &env->spr[SPR_ASR]);
qemu_get_sbe32s(f, &slb_nr);
#endif
qemu_get_betls(f, &sdr1);
for (i = 0; i < 32; i++) {
qemu_get_betls(f, &env->sr[i]);
}
for (i = 0; i < 2; i++) {
for (j = 0; j < 8; j++) {
qemu_get_betls(f, &env->DBAT[i][j]);
}
}
for (i = 0; i < 2; i++) {
for (j = 0; j < 8; j++) {
qemu_get_betls(f, &env->IBAT[i][j]);
}
}
qemu_get_sbe32s(f, &env->nb_tlb);
qemu_get_sbe32s(f, &env->tlb_per_way);
qemu_get_sbe32s(f, &env->nb_ways);
qemu_get_sbe32s(f, &env->last_way);
qemu_get_sbe32s(f, &env->id_tlbs);
qemu_get_sbe32s(f, &env->nb_pids);
if (env->tlb.tlb6) {
/* XXX assumes 6xx */
for (i = 0; i < env->nb_tlb; i++) {
qemu_get_betls(f, &env->tlb.tlb6[i].pte0);
qemu_get_betls(f, &env->tlb.tlb6[i].pte1);
qemu_get_betls(f, &env->tlb.tlb6[i].EPN);
}
}
for (i = 0; i < 4; i++) {
qemu_get_betls(f, &env->pb[i]);
}
for (i = 0; i < 1024; i++) {
qemu_get_betls(f, &env->spr[i]);
}
if (!cpu->vhyp) {
ppc_store_sdr1(env, sdr1);
}
qemu_get_be32s(f, &vscr);
helper_mtvscr(env, vscr);
qemu_get_be64s(f, &env->spe_acc);
qemu_get_be32s(f, &env->spe_fscr);
qemu_get_betls(f, &env->msr_mask);
qemu_get_be32s(f, &env->flags);
qemu_get_sbe32s(f, &env->error_code);
qemu_get_be32s(f, &env->pending_interrupts);
qemu_get_be32s(f, &env->irq_input_state);
for (i = 0; i < POWERPC_EXCP_NB; i++) {
qemu_get_betls(f, &env->excp_vectors[i]);
}
qemu_get_betls(f, &env->excp_prefix);
qemu_get_betls(f, &env->ivor_mask);
qemu_get_betls(f, &env->ivpr_mask);
qemu_get_betls(f, &env->hreset_vector);
qemu_get_betls(f, &env->nip);
qemu_get_betls(f, &env->hflags);
qemu_get_betls(f, &env->hflags_nmsr);
qemu_get_sbe32(f); /* Discard unused mmu_idx */
qemu_get_sbe32(f); /* Discard unused power_mode */
/* Recompute mmu indices */
hreg_compute_mem_idx(env);
return 0;
}
static int get_avr(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
ppc_avr_t *v = pv;
v->u64[0] = qemu_get_be64(f);
v->u64[1] = qemu_get_be64(f);
return 0;
}
static int put_avr(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, QJSON *vmdesc)
{
ppc_avr_t *v = pv;
qemu_put_be64(f, v->u64[0]);
qemu_put_be64(f, v->u64[1]);
return 0;
}
static const VMStateInfo vmstate_info_avr = {
.name = "avr",
.get = get_avr,
.put = put_avr,
};
#define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v) \
VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)
#define VMSTATE_AVR_ARRAY(_f, _s, _n) \
VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)
static int get_fpr(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
ppc_vsr_t *v = pv;
v->VsrD(0) = qemu_get_be64(f);
return 0;
}
static int put_fpr(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, QJSON *vmdesc)
{
ppc_vsr_t *v = pv;
qemu_put_be64(f, v->VsrD(0));
return 0;
}
static const VMStateInfo vmstate_info_fpr = {
.name = "fpr",
.get = get_fpr,
.put = put_fpr,
};
#define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v) \
VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)
#define VMSTATE_FPR_ARRAY(_f, _s, _n) \
VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)
static int get_vsr(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
ppc_vsr_t *v = pv;
v->VsrD(1) = qemu_get_be64(f);
return 0;
}
static int put_vsr(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, QJSON *vmdesc)
{
ppc_vsr_t *v = pv;
qemu_put_be64(f, v->VsrD(1));
return 0;
}
static const VMStateInfo vmstate_info_vsr = {
.name = "vsr",
.get = get_vsr,
.put = put_vsr,
};
#define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v) \
VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)
#define VMSTATE_VSR_ARRAY(_f, _s, _n) \
VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)
static bool cpu_pre_2_8_migration(void *opaque, int version_id)
{
PowerPCCPU *cpu = opaque;
return cpu->pre_2_8_migration;
}
#if defined(TARGET_PPC64)
static bool cpu_pre_3_0_migration(void *opaque, int version_id)
{
PowerPCCPU *cpu = opaque;
return cpu->pre_3_0_migration;
}
#endif
static int cpu_pre_save(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
int i;
uint64_t insns_compat_mask =
PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
| PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
| PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
| PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
| PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
| PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
| PPC_64B | PPC_64BX | PPC_ALTIVEC
| PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
| PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
| PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;
env->spr[SPR_LR] = env->lr;
env->spr[SPR_CTR] = env->ctr;
env->spr[SPR_XER] = cpu_read_xer(env);
#if defined(TARGET_PPC64)
env->spr[SPR_CFAR] = env->cfar;
#endif
env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;
for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
}
for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
}
/* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
if (cpu->pre_2_8_migration) {
/*
* Mask out bits that got added to msr_mask since the versions
* which stupidly included it in the migration stream.
*/
target_ulong metamask = 0
#if defined(TARGET_PPC64)
| (1ULL << MSR_TS0)
| (1ULL << MSR_TS1)
#endif
;
cpu->mig_msr_mask = env->msr_mask & ~metamask;
cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
/*
* CPU models supported by old machines all have
* PPC_MEM_TLBIE, so we set it unconditionally to allow
* backward migration from a POWER9 host to a POWER8 host.
*/
cpu->mig_insns_flags |= PPC_MEM_TLBIE;
cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
cpu->mig_nb_BATs = env->nb_BATs;
}
if (cpu->pre_3_0_migration) {
if (cpu->hash64_opts) {
cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
}
}
return 0;
}
/*
* Determine if a given PVR is a "close enough" match to the CPU
* object. For TCG and KVM PR it would probably be sufficient to
* require an exact PVR match. However for KVM HV the user is
* restricted to a PVR exactly matching the host CPU. The correct way
* to handle this is to put the guest into an architected
* compatibility mode. However, to allow a more forgiving transition
* and migration from before this was widely done, we allow migration
* between sufficiently similar PVRs, as determined by the CPU class's
* pvr_match() hook.
*/
static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
{
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
if (pvr == pcc->pvr) {
return true;
}
return pcc->pvr_match(pcc, pvr);
}
static int cpu_post_load(void *opaque, int version_id)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
int i;
target_ulong msr;
/*
* If we're operating in compat mode, we should be ok as long as
* the destination supports the same compatiblity mode.
*
* Otherwise, however, we require that the destination has exactly
* the same CPU model as the source.
*/
#if defined(TARGET_PPC64)
if (cpu->compat_pvr) {
uint32_t compat_pvr = cpu->compat_pvr;
Error *local_err = NULL;
cpu->compat_pvr = 0;
ppc_set_compat(cpu, compat_pvr, &local_err);
if (local_err) {
error_report_err(local_err);
return -1;
}
} else
#endif
{
if (!pvr_match(cpu, env->spr[SPR_PVR])) {
return -1;
}
}
/*
* If we're running with KVM HV, there is a chance that the guest
* is running with KVM HV and its kernel does not have the
* capability of dealing with a different PVR other than this
* exact host PVR in KVM_SET_SREGS. If that happens, the
* guest freezes after migration.
*
* The function kvmppc_pvr_workaround_required does this verification
* by first checking if the kernel has the cap, returning true immediately
* if that is the case. Otherwise, it checks if we're running in KVM PR.
* If the guest kernel does not have the cap and we're not running KVM-PR
* (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
* receive the PVR it expects as a workaround.
*
*/
if (kvmppc_pvr_workaround_required(cpu)) {
env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
}
env->lr = env->spr[SPR_LR];
env->ctr = env->spr[SPR_CTR];
cpu_write_xer(env, env->spr[SPR_XER]);
#if defined(TARGET_PPC64)
env->cfar = env->spr[SPR_CFAR];
#endif
env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];
for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
}
for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
}
if (!cpu->vhyp) {
ppc_store_sdr1(env, env->spr[SPR_SDR1]);
}
/*
* Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
* before restoring
*/
msr = env->msr;
env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
ppc_store_msr(env, msr);
hreg_compute_mem_idx(env);
return 0;
}
static bool fpu_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
return cpu->env.insns_flags & PPC_FLOAT;
}
static const VMStateDescription vmstate_fpu = {
.name = "cpu/fpu",
.version_id = 1,
.minimum_version_id = 1,
.needed = fpu_needed,
.fields = (VMStateField[]) {
VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
VMSTATE_END_OF_LIST()
},
};
static bool altivec_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
return cpu->env.insns_flags & PPC_ALTIVEC;
}
static int get_vscr(QEMUFile *f, void *opaque, size_t size,
const VMStateField *field)
{
PowerPCCPU *cpu = opaque;
helper_mtvscr(&cpu->env, qemu_get_be32(f));
return 0;
}
static int put_vscr(QEMUFile *f, void *opaque, size_t size,
const VMStateField *field, QJSON *vmdesc)
{
PowerPCCPU *cpu = opaque;
qemu_put_be32(f, helper_mfvscr(&cpu->env));
return 0;
}
static const VMStateInfo vmstate_vscr = {
.name = "cpu/altivec/vscr",
.get = get_vscr,
.put = put_vscr,
};
static const VMStateDescription vmstate_altivec = {
.name = "cpu/altivec",
.version_id = 1,
.minimum_version_id = 1,
.needed = altivec_needed,
.fields = (VMStateField[]) {
VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
/*
* Save the architecture value of the vscr, not the internally
* expanded version. Since this architecture value does not
* exist in memory to be stored, this requires a but of hoop
* jumping. We want OFFSET=0 so that we effectively pass CPU
* to the helper functions.
*/
{
.name = "vscr",
.version_id = 0,
.size = sizeof(uint32_t),
.info = &vmstate_vscr,
.flags = VMS_SINGLE,
.offset = 0
},
VMSTATE_END_OF_LIST()
},
};
static bool vsx_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
return cpu->env.insns_flags2 & PPC2_VSX;
}
static const VMStateDescription vmstate_vsx = {
.name = "cpu/vsx",
.version_id = 1,
.minimum_version_id = 1,
.needed = vsx_needed,
.fields = (VMStateField[]) {
VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
VMSTATE_END_OF_LIST()
},
};
#ifdef TARGET_PPC64
/* Transactional memory state */
static bool tm_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
return msr_ts;
}
static const VMStateDescription vmstate_tm = {
.name = "cpu/tm",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.needed = tm_needed,
.fields = (VMStateField []) {
VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
VMSTATE_END_OF_LIST()
},
};
#endif
static bool sr_needed(void *opaque)
{
#ifdef TARGET_PPC64
PowerPCCPU *cpu = opaque;
return !(cpu->env.mmu_model & POWERPC_MMU_64);
#else
return true;
#endif
}
static const VMStateDescription vmstate_sr = {
.name = "cpu/sr",
.version_id = 1,
.minimum_version_id = 1,
.needed = sr_needed,
.fields = (VMStateField[]) {
VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
VMSTATE_END_OF_LIST()
},
};
#ifdef TARGET_PPC64
static int get_slbe(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
ppc_slb_t *v = pv;
v->esid = qemu_get_be64(f);
v->vsid = qemu_get_be64(f);
return 0;
}
static int put_slbe(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, QJSON *vmdesc)
{
ppc_slb_t *v = pv;
qemu_put_be64(f, v->esid);
qemu_put_be64(f, v->vsid);
return 0;
}
static const VMStateInfo vmstate_info_slbe = {
.name = "slbe",
.get = get_slbe,
.put = put_slbe,
};
#define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v) \
VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)
#define VMSTATE_SLB_ARRAY(_f, _s, _n) \
VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)
static bool slb_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
/* We don't support any of the old segment table based 64-bit CPUs */
return cpu->env.mmu_model & POWERPC_MMU_64;
}
static int slb_post_load(void *opaque, int version_id)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
int i;
/*
* We've pulled in the raw esid and vsid values from the migration
* stream, but we need to recompute the page size pointers
*/
for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
/* Migration source had bad values in its SLB */
return -1;
}
}
return 0;
}
static const VMStateDescription vmstate_slb = {
.name = "cpu/slb",
.version_id = 1,
.minimum_version_id = 1,
.needed = slb_needed,
.post_load = slb_post_load,
.fields = (VMStateField[]) {
VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
VMSTATE_END_OF_LIST()
}
};
#endif /* TARGET_PPC64 */
static const VMStateDescription vmstate_tlb6xx_entry = {
.name = "cpu/tlb6xx_entry",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
VMSTATE_END_OF_LIST()
},
};
static bool tlb6xx_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
return env->nb_tlb && (env->tlb_type == TLB_6XX);
}
static const VMStateDescription vmstate_tlb6xx = {
.name = "cpu/tlb6xx",
.version_id = 1,
.minimum_version_id = 1,
.needed = tlb6xx_needed,
.fields = (VMStateField[]) {
VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
env.nb_tlb,
vmstate_tlb6xx_entry,
ppc6xx_tlb_t),
VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_tlbemb_entry = {
.name = "cpu/tlbemb_entry",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(RPN, ppcemb_tlb_t),
VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
VMSTATE_UINTTL(PID, ppcemb_tlb_t),
VMSTATE_UINTTL(size, ppcemb_tlb_t),
VMSTATE_UINT32(prot, ppcemb_tlb_t),
VMSTATE_UINT32(attr, ppcemb_tlb_t),
VMSTATE_END_OF_LIST()
},
};
static bool tlbemb_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
return env->nb_tlb && (env->tlb_type == TLB_EMB);
}
static bool pbr403_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
uint32_t pvr = cpu->env.spr[SPR_PVR];
return (pvr & 0xffff0000) == 0x00200000;
}
static const VMStateDescription vmstate_pbr403 = {
.name = "cpu/pbr403",
.version_id = 1,
.minimum_version_id = 1,
.needed = pbr403_needed,
.fields = (VMStateField[]) {
VMSTATE_UINTTL_ARRAY(env.pb, PowerPCCPU, 4),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_tlbemb = {
.name = "cpu/tlb6xx",
.version_id = 1,
.minimum_version_id = 1,
.needed = tlbemb_needed,
.fields = (VMStateField[]) {
VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
env.nb_tlb,
vmstate_tlbemb_entry,
ppcemb_tlb_t),
/* 403 protection registers */
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_pbr403,
NULL
}
};
static const VMStateDescription vmstate_tlbmas_entry = {
.name = "cpu/tlbmas_entry",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(mas8, ppcmas_tlb_t),
VMSTATE_UINT32(mas1, ppcmas_tlb_t),
VMSTATE_UINT64(mas2, ppcmas_tlb_t),
VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
VMSTATE_END_OF_LIST()
},
};
static bool tlbmas_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
return env->nb_tlb && (env->tlb_type == TLB_MAS);
}
static const VMStateDescription vmstate_tlbmas = {
.name = "cpu/tlbmas",
.version_id = 1,
.minimum_version_id = 1,
.needed = tlbmas_needed,
.fields = (VMStateField[]) {
VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
env.nb_tlb,
vmstate_tlbmas_entry,
ppcmas_tlb_t),
VMSTATE_END_OF_LIST()
}
};
static bool compat_needed(void *opaque)
{
PowerPCCPU *cpu = opaque;
assert(!(cpu->compat_pvr && !cpu->vhyp));
return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
}
static const VMStateDescription vmstate_compat = {
.name = "cpu/compat",
.version_id = 1,
.minimum_version_id = 1,
.needed = compat_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(compat_pvr, PowerPCCPU),
VMSTATE_END_OF_LIST()
}
};
const VMStateDescription vmstate_ppc_cpu = {
.name = "cpu",
.version_id = 5,
.minimum_version_id = 5,
.minimum_version_id_old = 4,
.load_state_old = cpu_load_old,
.pre_save = cpu_pre_save,
.post_load = cpu_post_load,
.fields = (VMStateField[]) {
VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */
/* User mode architected state */
VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
#if !defined(TARGET_PPC64)
VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
#endif
VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
VMSTATE_UINTTL(env.nip, PowerPCCPU),
/* SPRs */
VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
VMSTATE_UINT64(env.spe_acc, PowerPCCPU),
/* Reservation */
VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),
/* Supervisor mode architected state */
VMSTATE_UINTTL(env.msr, PowerPCCPU),
/* Internal state */
VMSTATE_UINTTL(env.hflags_nmsr, PowerPCCPU),
/* FIXME: access_type? */
/* Sanity checking */
VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
cpu_pre_2_8_migration),
VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_fpu,
&vmstate_altivec,
&vmstate_vsx,
&vmstate_sr,
#ifdef TARGET_PPC64
&vmstate_tm,
&vmstate_slb,
#endif /* TARGET_PPC64 */
&vmstate_tlb6xx,
&vmstate_tlbemb,
&vmstate_tlbmas,
&vmstate_compat,
NULL
}
};