| /* Interface between the opcode library and its callers. |
| Written by Cygnus Support, 1993. |
| |
| The opcode library (libopcodes.a) provides instruction decoders for |
| a large variety of instruction sets, callable with an identical |
| interface, for making instruction-processing programs more independent |
| of the instruction set being processed. */ |
| |
| #ifndef DIS_ASM_H |
| #define DIS_ASM_H |
| |
| #include <stdio.h> |
| #include <string.h> |
| #include <inttypes.h> |
| |
| #define PARAMS(x) x |
| typedef void *PTR; |
| typedef uint64_t bfd_vma; |
| typedef uint8_t bfd_byte; |
| |
| enum bfd_flavour { |
| bfd_target_unknown_flavour, |
| bfd_target_aout_flavour, |
| bfd_target_coff_flavour, |
| bfd_target_ecoff_flavour, |
| bfd_target_elf_flavour, |
| bfd_target_ieee_flavour, |
| bfd_target_nlm_flavour, |
| bfd_target_oasys_flavour, |
| bfd_target_tekhex_flavour, |
| bfd_target_srec_flavour, |
| bfd_target_ihex_flavour, |
| bfd_target_som_flavour, |
| bfd_target_os9k_flavour, |
| bfd_target_versados_flavour, |
| bfd_target_msdos_flavour, |
| bfd_target_evax_flavour |
| }; |
| |
| enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN }; |
| |
| enum bfd_architecture |
| { |
| bfd_arch_unknown, /* File arch not known */ |
| bfd_arch_obscure, /* Arch known, not one of these */ |
| bfd_arch_m68k, /* Motorola 68xxx */ |
| #define bfd_mach_m68000 1 |
| #define bfd_mach_m68008 2 |
| #define bfd_mach_m68010 3 |
| #define bfd_mach_m68020 4 |
| #define bfd_mach_m68030 5 |
| #define bfd_mach_m68040 6 |
| #define bfd_mach_m68060 7 |
| bfd_arch_vax, /* DEC Vax */ |
| bfd_arch_i960, /* Intel 960 */ |
| /* The order of the following is important. |
| lower number indicates a machine type that |
| only accepts a subset of the instructions |
| available to machines with higher numbers. |
| The exception is the "ca", which is |
| incompatible with all other machines except |
| "core". */ |
| |
| #define bfd_mach_i960_core 1 |
| #define bfd_mach_i960_ka_sa 2 |
| #define bfd_mach_i960_kb_sb 3 |
| #define bfd_mach_i960_mc 4 |
| #define bfd_mach_i960_xa 5 |
| #define bfd_mach_i960_ca 6 |
| #define bfd_mach_i960_jx 7 |
| #define bfd_mach_i960_hx 8 |
| |
| bfd_arch_a29k, /* AMD 29000 */ |
| bfd_arch_sparc, /* SPARC */ |
| #define bfd_mach_sparc 1 |
| /* The difference between v8plus and v9 is that v9 is a true 64 bit env. */ |
| #define bfd_mach_sparc_sparclet 2 |
| #define bfd_mach_sparc_sparclite 3 |
| #define bfd_mach_sparc_v8plus 4 |
| #define bfd_mach_sparc_v8plusa 5 /* with ultrasparc add'ns */ |
| #define bfd_mach_sparc_v9 6 |
| #define bfd_mach_sparc_v9a 7 /* with ultrasparc add'ns */ |
| /* Nonzero if MACH has the v9 instruction set. */ |
| #define bfd_mach_sparc_v9_p(mach) \ |
| ((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9a) |
| bfd_arch_mips, /* MIPS Rxxxx */ |
| #define bfd_mach_mips3000 3000 |
| #define bfd_mach_mips3900 3900 |
| #define bfd_mach_mips4000 4000 |
| #define bfd_mach_mips4010 4010 |
| #define bfd_mach_mips4100 4100 |
| #define bfd_mach_mips4300 4300 |
| #define bfd_mach_mips4400 4400 |
| #define bfd_mach_mips4600 4600 |
| #define bfd_mach_mips4650 4650 |
| #define bfd_mach_mips5000 5000 |
| #define bfd_mach_mips6000 6000 |
| #define bfd_mach_mips8000 8000 |
| #define bfd_mach_mips10000 10000 |
| #define bfd_mach_mips16 16 |
| bfd_arch_i386, /* Intel 386 */ |
| #define bfd_mach_i386_i386 0 |
| #define bfd_mach_i386_i8086 1 |
| bfd_arch_we32k, /* AT&T WE32xxx */ |
| bfd_arch_tahoe, /* CCI/Harris Tahoe */ |
| bfd_arch_i860, /* Intel 860 */ |
| bfd_arch_romp, /* IBM ROMP PC/RT */ |
| bfd_arch_alliant, /* Alliant */ |
| bfd_arch_convex, /* Convex */ |
| bfd_arch_m88k, /* Motorola 88xxx */ |
| bfd_arch_pyramid, /* Pyramid Technology */ |
| bfd_arch_h8300, /* Hitachi H8/300 */ |
| #define bfd_mach_h8300 1 |
| #define bfd_mach_h8300h 2 |
| #define bfd_mach_h8300s 3 |
| bfd_arch_powerpc, /* PowerPC */ |
| bfd_arch_rs6000, /* IBM RS/6000 */ |
| bfd_arch_hppa, /* HP PA RISC */ |
| bfd_arch_d10v, /* Mitsubishi D10V */ |
| bfd_arch_z8k, /* Zilog Z8000 */ |
| #define bfd_mach_z8001 1 |
| #define bfd_mach_z8002 2 |
| bfd_arch_h8500, /* Hitachi H8/500 */ |
| bfd_arch_sh, /* Hitachi SH */ |
| #define bfd_mach_sh 0 |
| #define bfd_mach_sh3 0x30 |
| #define bfd_mach_sh3e 0x3e |
| #define bfd_mach_sh4 0x40 |
| bfd_arch_alpha, /* Dec Alpha */ |
| bfd_arch_arm, /* Advanced Risc Machines ARM */ |
| #define bfd_mach_arm_2 1 |
| #define bfd_mach_arm_2a 2 |
| #define bfd_mach_arm_3 3 |
| #define bfd_mach_arm_3M 4 |
| #define bfd_mach_arm_4 5 |
| #define bfd_mach_arm_4T 6 |
| bfd_arch_ns32k, /* National Semiconductors ns32000 */ |
| bfd_arch_w65, /* WDC 65816 */ |
| bfd_arch_tic30, /* Texas Instruments TMS320C30 */ |
| bfd_arch_v850, /* NEC V850 */ |
| #define bfd_mach_v850 0 |
| bfd_arch_arc, /* Argonaut RISC Core */ |
| #define bfd_mach_arc_base 0 |
| bfd_arch_m32r, /* Mitsubishi M32R/D */ |
| #define bfd_mach_m32r 0 /* backwards compatibility */ |
| bfd_arch_mn10200, /* Matsushita MN10200 */ |
| bfd_arch_mn10300, /* Matsushita MN10300 */ |
| bfd_arch_last |
| }; |
| |
| typedef struct symbol_cache_entry |
| { |
| const char *name; |
| union |
| { |
| PTR p; |
| bfd_vma i; |
| } udata; |
| } asymbol; |
| |
| typedef int (*fprintf_ftype) PARAMS((FILE*, const char*, ...)); |
| |
| enum dis_insn_type { |
| dis_noninsn, /* Not a valid instruction */ |
| dis_nonbranch, /* Not a branch instruction */ |
| dis_branch, /* Unconditional branch */ |
| dis_condbranch, /* Conditional branch */ |
| dis_jsr, /* Jump to subroutine */ |
| dis_condjsr, /* Conditional jump to subroutine */ |
| dis_dref, /* Data reference instruction */ |
| dis_dref2 /* Two data references in instruction */ |
| }; |
| |
| /* This struct is passed into the instruction decoding routine, |
| and is passed back out into each callback. The various fields are used |
| for conveying information from your main routine into your callbacks, |
| for passing information into the instruction decoders (such as the |
| addresses of the callback functions), or for passing information |
| back from the instruction decoders to their callers. |
| |
| It must be initialized before it is first passed; this can be done |
| by hand, or using one of the initialization macros below. */ |
| |
| typedef struct disassemble_info { |
| fprintf_ftype fprintf_func; |
| FILE *stream; |
| PTR application_data; |
| |
| /* Target description. We could replace this with a pointer to the bfd, |
| but that would require one. There currently isn't any such requirement |
| so to avoid introducing one we record these explicitly. */ |
| /* The bfd_flavour. This can be bfd_target_unknown_flavour. */ |
| enum bfd_flavour flavour; |
| /* The bfd_arch value. */ |
| enum bfd_architecture arch; |
| /* The bfd_mach value. */ |
| unsigned long mach; |
| /* Endianness (for bi-endian cpus). Mono-endian cpus can ignore this. */ |
| enum bfd_endian endian; |
| |
| /* An array of pointers to symbols either at the location being disassembled |
| or at the start of the function being disassembled. The array is sorted |
| so that the first symbol is intended to be the one used. The others are |
| present for any misc. purposes. This is not set reliably, but if it is |
| not NULL, it is correct. */ |
| asymbol **symbols; |
| /* Number of symbols in array. */ |
| int num_symbols; |
| |
| /* For use by the disassembler. |
| The top 16 bits are reserved for public use (and are documented here). |
| The bottom 16 bits are for the internal use of the disassembler. */ |
| unsigned long flags; |
| #define INSN_HAS_RELOC 0x80000000 |
| PTR private_data; |
| |
| /* Function used to get bytes to disassemble. MEMADDR is the |
| address of the stuff to be disassembled, MYADDR is the address to |
| put the bytes in, and LENGTH is the number of bytes to read. |
| INFO is a pointer to this struct. |
| Returns an errno value or 0 for success. */ |
| int (*read_memory_func) |
| PARAMS ((bfd_vma memaddr, bfd_byte *myaddr, int length, |
| struct disassemble_info *info)); |
| |
| /* Function which should be called if we get an error that we can't |
| recover from. STATUS is the errno value from read_memory_func and |
| MEMADDR is the address that we were trying to read. INFO is a |
| pointer to this struct. */ |
| void (*memory_error_func) |
| PARAMS ((int status, bfd_vma memaddr, struct disassemble_info *info)); |
| |
| /* Function called to print ADDR. */ |
| void (*print_address_func) |
| PARAMS ((bfd_vma addr, struct disassemble_info *info)); |
| |
| /* Function called to determine if there is a symbol at the given ADDR. |
| If there is, the function returns 1, otherwise it returns 0. |
| This is used by ports which support an overlay manager where |
| the overlay number is held in the top part of an address. In |
| some circumstances we want to include the overlay number in the |
| address, (normally because there is a symbol associated with |
| that address), but sometimes we want to mask out the overlay bits. */ |
| int (* symbol_at_address_func) |
| PARAMS ((bfd_vma addr, struct disassemble_info * info)); |
| |
| /* These are for buffer_read_memory. */ |
| bfd_byte *buffer; |
| bfd_vma buffer_vma; |
| int buffer_length; |
| |
| /* This variable may be set by the instruction decoder. It suggests |
| the number of bytes objdump should display on a single line. If |
| the instruction decoder sets this, it should always set it to |
| the same value in order to get reasonable looking output. */ |
| int bytes_per_line; |
| |
| /* the next two variables control the way objdump displays the raw data */ |
| /* For example, if bytes_per_line is 8 and bytes_per_chunk is 4, the */ |
| /* output will look like this: |
| 00: 00000000 00000000 |
| with the chunks displayed according to "display_endian". */ |
| int bytes_per_chunk; |
| enum bfd_endian display_endian; |
| |
| /* Results from instruction decoders. Not all decoders yet support |
| this information. This info is set each time an instruction is |
| decoded, and is only valid for the last such instruction. |
| |
| To determine whether this decoder supports this information, set |
| insn_info_valid to 0, decode an instruction, then check it. */ |
| |
| char insn_info_valid; /* Branch info has been set. */ |
| char branch_delay_insns; /* How many sequential insn's will run before |
| a branch takes effect. (0 = normal) */ |
| char data_size; /* Size of data reference in insn, in bytes */ |
| enum dis_insn_type insn_type; /* Type of instruction */ |
| bfd_vma target; /* Target address of branch or dref, if known; |
| zero if unknown. */ |
| bfd_vma target2; /* Second target address for dref2 */ |
| |
| } disassemble_info; |
| |
| |
| /* Standard disassemblers. Disassemble one instruction at the given |
| target address. Return number of bytes processed. */ |
| typedef int (*disassembler_ftype) |
| PARAMS((bfd_vma, disassemble_info *)); |
| |
| extern int print_insn_big_mips PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_little_mips PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_i386 PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_m68k PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_z8001 PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_z8002 PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_h8300 PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_h8300h PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_h8300s PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_h8500 PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_alpha PARAMS ((bfd_vma, disassemble_info*)); |
| extern disassembler_ftype arc_get_disassembler PARAMS ((int, int)); |
| extern int print_insn_big_arm PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_little_arm PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_sparc PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_big_a29k PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_little_a29k PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_i960 PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_sh PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_shl PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_hppa PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_m32r PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_m88k PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_mn10200 PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_mn10300 PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_ns32k PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_big_powerpc PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_little_powerpc PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_rs6000 PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_w65 PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_d10v PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_v850 PARAMS ((bfd_vma, disassemble_info*)); |
| extern int print_insn_tic30 PARAMS ((bfd_vma, disassemble_info*)); |
| |
| #if 0 |
| /* Fetch the disassembler for a given BFD, if that support is available. */ |
| extern disassembler_ftype disassembler PARAMS ((bfd *)); |
| #endif |
| |
| |
| /* This block of definitions is for particular callers who read instructions |
| into a buffer before calling the instruction decoder. */ |
| |
| /* Here is a function which callers may wish to use for read_memory_func. |
| It gets bytes from a buffer. */ |
| extern int buffer_read_memory |
| PARAMS ((bfd_vma, bfd_byte *, int, struct disassemble_info *)); |
| |
| /* This function goes with buffer_read_memory. |
| It prints a message using info->fprintf_func and info->stream. */ |
| extern void perror_memory PARAMS ((int, bfd_vma, struct disassemble_info *)); |
| |
| |
| /* Just print the address in hex. This is included for completeness even |
| though both GDB and objdump provide their own (to print symbolic |
| addresses). */ |
| extern void generic_print_address |
| PARAMS ((bfd_vma, struct disassemble_info *)); |
| |
| /* Always true. */ |
| extern int generic_symbol_at_address |
| PARAMS ((bfd_vma, struct disassemble_info *)); |
| |
| /* Macro to initialize a disassemble_info struct. This should be called |
| by all applications creating such a struct. */ |
| #define INIT_DISASSEMBLE_INFO(INFO, STREAM, FPRINTF_FUNC) \ |
| (INFO).flavour = bfd_target_unknown_flavour, \ |
| (INFO).arch = bfd_arch_unknown, \ |
| (INFO).mach = 0, \ |
| (INFO).endian = BFD_ENDIAN_UNKNOWN, \ |
| INIT_DISASSEMBLE_INFO_NO_ARCH(INFO, STREAM, FPRINTF_FUNC) |
| |
| /* Call this macro to initialize only the internal variables for the |
| disassembler. Architecture dependent things such as byte order, or machine |
| variant are not touched by this macro. This makes things much easier for |
| GDB which must initialize these things seperatly. */ |
| |
| #define INIT_DISASSEMBLE_INFO_NO_ARCH(INFO, STREAM, FPRINTF_FUNC) \ |
| (INFO).fprintf_func = (FPRINTF_FUNC), \ |
| (INFO).stream = (STREAM), \ |
| (INFO).symbols = NULL, \ |
| (INFO).num_symbols = 0, \ |
| (INFO).buffer = NULL, \ |
| (INFO).buffer_vma = 0, \ |
| (INFO).buffer_length = 0, \ |
| (INFO).read_memory_func = buffer_read_memory, \ |
| (INFO).memory_error_func = perror_memory, \ |
| (INFO).print_address_func = generic_print_address, \ |
| (INFO).symbol_at_address_func = generic_symbol_at_address, \ |
| (INFO).flags = 0, \ |
| (INFO).bytes_per_line = 0, \ |
| (INFO).bytes_per_chunk = 0, \ |
| (INFO).display_endian = BFD_ENDIAN_UNKNOWN, \ |
| (INFO).insn_info_valid = 0 |
| |
| #endif /* ! defined (DIS_ASM_H) */ |