| /* |
| * i386 emulator main execution loop |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| */ |
| #include "config.h" |
| #include "exec.h" |
| #include "disas.h" |
| |
| #if !defined(CONFIG_SOFTMMU) |
| #undef EAX |
| #undef ECX |
| #undef EDX |
| #undef EBX |
| #undef ESP |
| #undef EBP |
| #undef ESI |
| #undef EDI |
| #undef EIP |
| #include <signal.h> |
| #include <sys/ucontext.h> |
| #endif |
| |
| int tb_invalidated_flag; |
| |
| //#define DEBUG_EXEC |
| //#define DEBUG_SIGNAL |
| |
| #if defined(TARGET_ARM) || defined(TARGET_SPARC) |
| /* XXX: unify with i386 target */ |
| void cpu_loop_exit(void) |
| { |
| longjmp(env->jmp_env, 1); |
| } |
| #endif |
| #ifndef TARGET_SPARC |
| #define reg_T2 |
| #endif |
| |
| /* exit the current TB from a signal handler. The host registers are |
| restored in a state compatible with the CPU emulator |
| */ |
| void cpu_resume_from_signal(CPUState *env1, void *puc) |
| { |
| #if !defined(CONFIG_SOFTMMU) |
| struct ucontext *uc = puc; |
| #endif |
| |
| env = env1; |
| |
| /* XXX: restore cpu registers saved in host registers */ |
| |
| #if !defined(CONFIG_SOFTMMU) |
| if (puc) { |
| /* XXX: use siglongjmp ? */ |
| sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); |
| } |
| #endif |
| longjmp(env->jmp_env, 1); |
| } |
| |
| |
| static TranslationBlock *tb_find_slow(target_ulong pc, |
| target_ulong cs_base, |
| unsigned int flags) |
| { |
| TranslationBlock *tb, **ptb1; |
| int code_gen_size; |
| unsigned int h; |
| target_ulong phys_pc, phys_page1, phys_page2, virt_page2; |
| uint8_t *tc_ptr; |
| |
| spin_lock(&tb_lock); |
| |
| tb_invalidated_flag = 0; |
| |
| regs_to_env(); /* XXX: do it just before cpu_gen_code() */ |
| |
| /* find translated block using physical mappings */ |
| phys_pc = get_phys_addr_code(env, pc); |
| phys_page1 = phys_pc & TARGET_PAGE_MASK; |
| phys_page2 = -1; |
| h = tb_phys_hash_func(phys_pc); |
| ptb1 = &tb_phys_hash[h]; |
| for(;;) { |
| tb = *ptb1; |
| if (!tb) |
| goto not_found; |
| if (tb->pc == pc && |
| tb->page_addr[0] == phys_page1 && |
| tb->cs_base == cs_base && |
| tb->flags == flags) { |
| /* check next page if needed */ |
| if (tb->page_addr[1] != -1) { |
| virt_page2 = (pc & TARGET_PAGE_MASK) + |
| TARGET_PAGE_SIZE; |
| phys_page2 = get_phys_addr_code(env, virt_page2); |
| if (tb->page_addr[1] == phys_page2) |
| goto found; |
| } else { |
| goto found; |
| } |
| } |
| ptb1 = &tb->phys_hash_next; |
| } |
| not_found: |
| /* if no translated code available, then translate it now */ |
| tb = tb_alloc(pc); |
| if (!tb) { |
| /* flush must be done */ |
| tb_flush(env); |
| /* cannot fail at this point */ |
| tb = tb_alloc(pc); |
| /* don't forget to invalidate previous TB info */ |
| tb_invalidated_flag = 1; |
| } |
| tc_ptr = code_gen_ptr; |
| tb->tc_ptr = tc_ptr; |
| tb->cs_base = cs_base; |
| tb->flags = flags; |
| cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size); |
| code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1)); |
| |
| /* check next page if needed */ |
| virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK; |
| phys_page2 = -1; |
| if ((pc & TARGET_PAGE_MASK) != virt_page2) { |
| phys_page2 = get_phys_addr_code(env, virt_page2); |
| } |
| tb_link_phys(tb, phys_pc, phys_page2); |
| |
| found: |
| /* we add the TB in the virtual pc hash table */ |
| env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb; |
| spin_unlock(&tb_lock); |
| return tb; |
| } |
| |
| static inline TranslationBlock *tb_find_fast(void) |
| { |
| TranslationBlock *tb; |
| target_ulong cs_base, pc; |
| unsigned int flags; |
| |
| /* we record a subset of the CPU state. It will |
| always be the same before a given translated block |
| is executed. */ |
| #if defined(TARGET_I386) |
| flags = env->hflags; |
| flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK)); |
| cs_base = env->segs[R_CS].base; |
| pc = cs_base + env->eip; |
| #elif defined(TARGET_ARM) |
| flags = env->thumb | (env->vfp.vec_len << 1) |
| | (env->vfp.vec_stride << 4); |
| if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) |
| flags |= (1 << 6); |
| if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) |
| flags |= (1 << 7); |
| cs_base = 0; |
| pc = env->regs[15]; |
| #elif defined(TARGET_SPARC) |
| #ifdef TARGET_SPARC64 |
| flags = (env->pstate << 2) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2); |
| #else |
| flags = env->psrs | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1); |
| #endif |
| cs_base = env->npc; |
| pc = env->pc; |
| #elif defined(TARGET_PPC) |
| flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) | |
| (msr_se << MSR_SE) | (msr_le << MSR_LE); |
| cs_base = 0; |
| pc = env->nip; |
| #elif defined(TARGET_MIPS) |
| flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK); |
| cs_base = 0; |
| pc = env->PC; |
| #else |
| #error unsupported CPU |
| #endif |
| tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]; |
| if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base || |
| tb->flags != flags, 0)) { |
| tb = tb_find_slow(pc, cs_base, flags); |
| /* Note: we do it here to avoid a gcc bug on Mac OS X when |
| doing it in tb_find_slow */ |
| if (tb_invalidated_flag) { |
| /* as some TB could have been invalidated because |
| of memory exceptions while generating the code, we |
| must recompute the hash index here */ |
| T0 = 0; |
| } |
| } |
| return tb; |
| } |
| |
| |
| /* main execution loop */ |
| |
| int cpu_exec(CPUState *env1) |
| { |
| int saved_T0, saved_T1; |
| #if defined(reg_T2) |
| int saved_T2; |
| #endif |
| CPUState *saved_env; |
| #if defined(TARGET_I386) |
| #ifdef reg_EAX |
| int saved_EAX; |
| #endif |
| #ifdef reg_ECX |
| int saved_ECX; |
| #endif |
| #ifdef reg_EDX |
| int saved_EDX; |
| #endif |
| #ifdef reg_EBX |
| int saved_EBX; |
| #endif |
| #ifdef reg_ESP |
| int saved_ESP; |
| #endif |
| #ifdef reg_EBP |
| int saved_EBP; |
| #endif |
| #ifdef reg_ESI |
| int saved_ESI; |
| #endif |
| #ifdef reg_EDI |
| int saved_EDI; |
| #endif |
| #elif defined(TARGET_SPARC) |
| #if defined(reg_REGWPTR) |
| uint32_t *saved_regwptr; |
| #endif |
| #endif |
| #ifdef __sparc__ |
| int saved_i7, tmp_T0; |
| #endif |
| int ret, interrupt_request; |
| void (*gen_func)(void); |
| TranslationBlock *tb; |
| uint8_t *tc_ptr; |
| |
| #if defined(TARGET_I386) |
| /* handle exit of HALTED state */ |
| if (env1->hflags & HF_HALTED_MASK) { |
| /* disable halt condition */ |
| if ((env1->interrupt_request & CPU_INTERRUPT_HARD) && |
| (env1->eflags & IF_MASK)) { |
| env1->hflags &= ~HF_HALTED_MASK; |
| } else { |
| return EXCP_HALTED; |
| } |
| } |
| #elif defined(TARGET_PPC) |
| if (env1->halted) { |
| if (env1->msr[MSR_EE] && |
| (env1->interrupt_request & |
| (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) { |
| env1->halted = 0; |
| } else { |
| return EXCP_HALTED; |
| } |
| } |
| #elif defined(TARGET_SPARC) |
| if (env1->halted) { |
| if ((env1->interrupt_request & CPU_INTERRUPT_HARD) && |
| (env1->psret != 0)) { |
| env1->halted = 0; |
| } else { |
| return EXCP_HALTED; |
| } |
| } |
| #elif defined(TARGET_ARM) |
| if (env1->halted) { |
| /* An interrupt wakes the CPU even if the I and F CPSR bits are |
| set. */ |
| if (env1->interrupt_request |
| & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) { |
| env1->halted = 0; |
| } else { |
| return EXCP_HALTED; |
| } |
| } |
| #elif defined(TARGET_MIPS) |
| if (env1->halted) { |
| if (env1->interrupt_request & |
| (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) { |
| env1->halted = 0; |
| } else { |
| return EXCP_HALTED; |
| } |
| } |
| #endif |
| |
| cpu_single_env = env1; |
| |
| /* first we save global registers */ |
| saved_env = env; |
| env = env1; |
| saved_T0 = T0; |
| saved_T1 = T1; |
| #if defined(reg_T2) |
| saved_T2 = T2; |
| #endif |
| #ifdef __sparc__ |
| /* we also save i7 because longjmp may not restore it */ |
| asm volatile ("mov %%i7, %0" : "=r" (saved_i7)); |
| #endif |
| |
| #if defined(TARGET_I386) |
| #ifdef reg_EAX |
| saved_EAX = EAX; |
| #endif |
| #ifdef reg_ECX |
| saved_ECX = ECX; |
| #endif |
| #ifdef reg_EDX |
| saved_EDX = EDX; |
| #endif |
| #ifdef reg_EBX |
| saved_EBX = EBX; |
| #endif |
| #ifdef reg_ESP |
| saved_ESP = ESP; |
| #endif |
| #ifdef reg_EBP |
| saved_EBP = EBP; |
| #endif |
| #ifdef reg_ESI |
| saved_ESI = ESI; |
| #endif |
| #ifdef reg_EDI |
| saved_EDI = EDI; |
| #endif |
| |
| env_to_regs(); |
| /* put eflags in CPU temporary format */ |
| CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| DF = 1 - (2 * ((env->eflags >> 10) & 1)); |
| CC_OP = CC_OP_EFLAGS; |
| env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| #elif defined(TARGET_ARM) |
| #elif defined(TARGET_SPARC) |
| #if defined(reg_REGWPTR) |
| saved_regwptr = REGWPTR; |
| #endif |
| #elif defined(TARGET_PPC) |
| #elif defined(TARGET_MIPS) |
| #else |
| #error unsupported target CPU |
| #endif |
| env->exception_index = -1; |
| |
| /* prepare setjmp context for exception handling */ |
| for(;;) { |
| if (setjmp(env->jmp_env) == 0) { |
| env->current_tb = NULL; |
| /* if an exception is pending, we execute it here */ |
| if (env->exception_index >= 0) { |
| if (env->exception_index >= EXCP_INTERRUPT) { |
| /* exit request from the cpu execution loop */ |
| ret = env->exception_index; |
| break; |
| } else if (env->user_mode_only) { |
| /* if user mode only, we simulate a fake exception |
| which will be hanlded outside the cpu execution |
| loop */ |
| #if defined(TARGET_I386) |
| do_interrupt_user(env->exception_index, |
| env->exception_is_int, |
| env->error_code, |
| env->exception_next_eip); |
| #endif |
| ret = env->exception_index; |
| break; |
| } else { |
| #if defined(TARGET_I386) |
| /* simulate a real cpu exception. On i386, it can |
| trigger new exceptions, but we do not handle |
| double or triple faults yet. */ |
| do_interrupt(env->exception_index, |
| env->exception_is_int, |
| env->error_code, |
| env->exception_next_eip, 0); |
| #elif defined(TARGET_PPC) |
| do_interrupt(env); |
| #elif defined(TARGET_MIPS) |
| do_interrupt(env); |
| #elif defined(TARGET_SPARC) |
| do_interrupt(env->exception_index); |
| #elif defined(TARGET_ARM) |
| do_interrupt(env); |
| #endif |
| } |
| env->exception_index = -1; |
| } |
| #ifdef USE_KQEMU |
| if (kqemu_is_ok(env) && env->interrupt_request == 0) { |
| int ret; |
| env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
| ret = kqemu_cpu_exec(env); |
| /* put eflags in CPU temporary format */ |
| CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| DF = 1 - (2 * ((env->eflags >> 10) & 1)); |
| CC_OP = CC_OP_EFLAGS; |
| env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| if (ret == 1) { |
| /* exception */ |
| longjmp(env->jmp_env, 1); |
| } else if (ret == 2) { |
| /* softmmu execution needed */ |
| } else { |
| if (env->interrupt_request != 0) { |
| /* hardware interrupt will be executed just after */ |
| } else { |
| /* otherwise, we restart */ |
| longjmp(env->jmp_env, 1); |
| } |
| } |
| } |
| #endif |
| |
| T0 = 0; /* force lookup of first TB */ |
| for(;;) { |
| #ifdef __sparc__ |
| /* g1 can be modified by some libc? functions */ |
| tmp_T0 = T0; |
| #endif |
| interrupt_request = env->interrupt_request; |
| if (__builtin_expect(interrupt_request, 0)) { |
| #if defined(TARGET_I386) |
| /* if hardware interrupt pending, we execute it */ |
| if ((interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->eflags & IF_MASK) && |
| !(env->hflags & HF_INHIBIT_IRQ_MASK)) { |
| int intno; |
| env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
| intno = cpu_get_pic_interrupt(env); |
| if (loglevel & CPU_LOG_TB_IN_ASM) { |
| fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno); |
| } |
| do_interrupt(intno, 0, 0, 0, 1); |
| /* ensure that no TB jump will be modified as |
| the program flow was changed */ |
| #ifdef __sparc__ |
| tmp_T0 = 0; |
| #else |
| T0 = 0; |
| #endif |
| } |
| #elif defined(TARGET_PPC) |
| #if 0 |
| if ((interrupt_request & CPU_INTERRUPT_RESET)) { |
| cpu_ppc_reset(env); |
| } |
| #endif |
| if (msr_ee != 0) { |
| if ((interrupt_request & CPU_INTERRUPT_HARD)) { |
| /* Raise it */ |
| env->exception_index = EXCP_EXTERNAL; |
| env->error_code = 0; |
| do_interrupt(env); |
| env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
| #ifdef __sparc__ |
| tmp_T0 = 0; |
| #else |
| T0 = 0; |
| #endif |
| } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) { |
| /* Raise it */ |
| env->exception_index = EXCP_DECR; |
| env->error_code = 0; |
| do_interrupt(env); |
| env->interrupt_request &= ~CPU_INTERRUPT_TIMER; |
| #ifdef __sparc__ |
| tmp_T0 = 0; |
| #else |
| T0 = 0; |
| #endif |
| } |
| } |
| #elif defined(TARGET_MIPS) |
| if ((interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->CP0_Status & (1 << CP0St_IE)) && |
| (env->CP0_Status & env->CP0_Cause & 0x0000FF00) && |
| !(env->hflags & MIPS_HFLAG_EXL) && |
| !(env->hflags & MIPS_HFLAG_ERL) && |
| !(env->hflags & MIPS_HFLAG_DM)) { |
| /* Raise it */ |
| env->exception_index = EXCP_EXT_INTERRUPT; |
| env->error_code = 0; |
| do_interrupt(env); |
| env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
| #ifdef __sparc__ |
| tmp_T0 = 0; |
| #else |
| T0 = 0; |
| #endif |
| } |
| #elif defined(TARGET_SPARC) |
| if ((interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->psret != 0)) { |
| int pil = env->interrupt_index & 15; |
| int type = env->interrupt_index & 0xf0; |
| |
| if (((type == TT_EXTINT) && |
| (pil == 15 || pil > env->psrpil)) || |
| type != TT_EXTINT) { |
| env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
| do_interrupt(env->interrupt_index); |
| env->interrupt_index = 0; |
| #ifdef __sparc__ |
| tmp_T0 = 0; |
| #else |
| T0 = 0; |
| #endif |
| } |
| } else if (interrupt_request & CPU_INTERRUPT_TIMER) { |
| //do_interrupt(0, 0, 0, 0, 0); |
| env->interrupt_request &= ~CPU_INTERRUPT_TIMER; |
| } else if (interrupt_request & CPU_INTERRUPT_HALT) { |
| env1->halted = 1; |
| return EXCP_HALTED; |
| } |
| #elif defined(TARGET_ARM) |
| if (interrupt_request & CPU_INTERRUPT_FIQ |
| && !(env->uncached_cpsr & CPSR_F)) { |
| env->exception_index = EXCP_FIQ; |
| do_interrupt(env); |
| } |
| if (interrupt_request & CPU_INTERRUPT_HARD |
| && !(env->uncached_cpsr & CPSR_I)) { |
| env->exception_index = EXCP_IRQ; |
| do_interrupt(env); |
| } |
| #endif |
| if (env->interrupt_request & CPU_INTERRUPT_EXITTB) { |
| env->interrupt_request &= ~CPU_INTERRUPT_EXITTB; |
| /* ensure that no TB jump will be modified as |
| the program flow was changed */ |
| #ifdef __sparc__ |
| tmp_T0 = 0; |
| #else |
| T0 = 0; |
| #endif |
| } |
| if (interrupt_request & CPU_INTERRUPT_EXIT) { |
| env->interrupt_request &= ~CPU_INTERRUPT_EXIT; |
| env->exception_index = EXCP_INTERRUPT; |
| cpu_loop_exit(); |
| } |
| } |
| #ifdef DEBUG_EXEC |
| if ((loglevel & CPU_LOG_TB_CPU)) { |
| #if defined(TARGET_I386) |
| /* restore flags in standard format */ |
| #ifdef reg_EAX |
| env->regs[R_EAX] = EAX; |
| #endif |
| #ifdef reg_EBX |
| env->regs[R_EBX] = EBX; |
| #endif |
| #ifdef reg_ECX |
| env->regs[R_ECX] = ECX; |
| #endif |
| #ifdef reg_EDX |
| env->regs[R_EDX] = EDX; |
| #endif |
| #ifdef reg_ESI |
| env->regs[R_ESI] = ESI; |
| #endif |
| #ifdef reg_EDI |
| env->regs[R_EDI] = EDI; |
| #endif |
| #ifdef reg_EBP |
| env->regs[R_EBP] = EBP; |
| #endif |
| #ifdef reg_ESP |
| env->regs[R_ESP] = ESP; |
| #endif |
| env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
| cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP); |
| env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C); |
| #elif defined(TARGET_ARM) |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #elif defined(TARGET_SPARC) |
| REGWPTR = env->regbase + (env->cwp * 16); |
| env->regwptr = REGWPTR; |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #elif defined(TARGET_PPC) |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #elif defined(TARGET_MIPS) |
| cpu_dump_state(env, logfile, fprintf, 0); |
| #else |
| #error unsupported target CPU |
| #endif |
| } |
| #endif |
| tb = tb_find_fast(); |
| #ifdef DEBUG_EXEC |
| if ((loglevel & CPU_LOG_EXEC)) { |
| fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n", |
| (long)tb->tc_ptr, tb->pc, |
| lookup_symbol(tb->pc)); |
| } |
| #endif |
| #ifdef __sparc__ |
| T0 = tmp_T0; |
| #endif |
| /* see if we can patch the calling TB. When the TB |
| spans two pages, we cannot safely do a direct |
| jump. */ |
| { |
| if (T0 != 0 && |
| #if USE_KQEMU |
| (env->kqemu_enabled != 2) && |
| #endif |
| tb->page_addr[1] == -1 |
| #if defined(TARGET_I386) && defined(USE_CODE_COPY) |
| && (tb->cflags & CF_CODE_COPY) == |
| (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY) |
| #endif |
| ) { |
| spin_lock(&tb_lock); |
| tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb); |
| #if defined(USE_CODE_COPY) |
| /* propagates the FP use info */ |
| ((TranslationBlock *)(T0 & ~3))->cflags |= |
| (tb->cflags & CF_FP_USED); |
| #endif |
| spin_unlock(&tb_lock); |
| } |
| } |
| tc_ptr = tb->tc_ptr; |
| env->current_tb = tb; |
| /* execute the generated code */ |
| gen_func = (void *)tc_ptr; |
| #if defined(__sparc__) |
| __asm__ __volatile__("call %0\n\t" |
| "mov %%o7,%%i0" |
| : /* no outputs */ |
| : "r" (gen_func) |
| : "i0", "i1", "i2", "i3", "i4", "i5"); |
| #elif defined(__arm__) |
| asm volatile ("mov pc, %0\n\t" |
| ".global exec_loop\n\t" |
| "exec_loop:\n\t" |
| : /* no outputs */ |
| : "r" (gen_func) |
| : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14"); |
| #elif defined(TARGET_I386) && defined(USE_CODE_COPY) |
| { |
| if (!(tb->cflags & CF_CODE_COPY)) { |
| if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) { |
| save_native_fp_state(env); |
| } |
| gen_func(); |
| } else { |
| if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) { |
| restore_native_fp_state(env); |
| } |
| /* we work with native eflags */ |
| CC_SRC = cc_table[CC_OP].compute_all(); |
| CC_OP = CC_OP_EFLAGS; |
| asm(".globl exec_loop\n" |
| "\n" |
| "debug1:\n" |
| " pushl %%ebp\n" |
| " fs movl %10, %9\n" |
| " fs movl %11, %%eax\n" |
| " andl $0x400, %%eax\n" |
| " fs orl %8, %%eax\n" |
| " pushl %%eax\n" |
| " popf\n" |
| " fs movl %%esp, %12\n" |
| " fs movl %0, %%eax\n" |
| " fs movl %1, %%ecx\n" |
| " fs movl %2, %%edx\n" |
| " fs movl %3, %%ebx\n" |
| " fs movl %4, %%esp\n" |
| " fs movl %5, %%ebp\n" |
| " fs movl %6, %%esi\n" |
| " fs movl %7, %%edi\n" |
| " fs jmp *%9\n" |
| "exec_loop:\n" |
| " fs movl %%esp, %4\n" |
| " fs movl %12, %%esp\n" |
| " fs movl %%eax, %0\n" |
| " fs movl %%ecx, %1\n" |
| " fs movl %%edx, %2\n" |
| " fs movl %%ebx, %3\n" |
| " fs movl %%ebp, %5\n" |
| " fs movl %%esi, %6\n" |
| " fs movl %%edi, %7\n" |
| " pushf\n" |
| " popl %%eax\n" |
| " movl %%eax, %%ecx\n" |
| " andl $0x400, %%ecx\n" |
| " shrl $9, %%ecx\n" |
| " andl $0x8d5, %%eax\n" |
| " fs movl %%eax, %8\n" |
| " movl $1, %%eax\n" |
| " subl %%ecx, %%eax\n" |
| " fs movl %%eax, %11\n" |
| " fs movl %9, %%ebx\n" /* get T0 value */ |
| " popl %%ebp\n" |
| : |
| : "m" (*(uint8_t *)offsetof(CPUState, regs[0])), |
| "m" (*(uint8_t *)offsetof(CPUState, regs[1])), |
| "m" (*(uint8_t *)offsetof(CPUState, regs[2])), |
| "m" (*(uint8_t *)offsetof(CPUState, regs[3])), |
| "m" (*(uint8_t *)offsetof(CPUState, regs[4])), |
| "m" (*(uint8_t *)offsetof(CPUState, regs[5])), |
| "m" (*(uint8_t *)offsetof(CPUState, regs[6])), |
| "m" (*(uint8_t *)offsetof(CPUState, regs[7])), |
| "m" (*(uint8_t *)offsetof(CPUState, cc_src)), |
| "m" (*(uint8_t *)offsetof(CPUState, tmp0)), |
| "a" (gen_func), |
| "m" (*(uint8_t *)offsetof(CPUState, df)), |
| "m" (*(uint8_t *)offsetof(CPUState, saved_esp)) |
| : "%ecx", "%edx" |
| ); |
| } |
| } |
| #elif defined(__ia64) |
| struct fptr { |
| void *ip; |
| void *gp; |
| } fp; |
| |
| fp.ip = tc_ptr; |
| fp.gp = code_gen_buffer + 2 * (1 << 20); |
| (*(void (*)(void)) &fp)(); |
| #else |
| gen_func(); |
| #endif |
| env->current_tb = NULL; |
| /* reset soft MMU for next block (it can currently |
| only be set by a memory fault) */ |
| #if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU) |
| if (env->hflags & HF_SOFTMMU_MASK) { |
| env->hflags &= ~HF_SOFTMMU_MASK; |
| /* do not allow linking to another block */ |
| T0 = 0; |
| } |
| #endif |
| #if defined(USE_KQEMU) |
| #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000) |
| if (kqemu_is_ok(env) && |
| (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) { |
| cpu_loop_exit(); |
| } |
| #endif |
| } |
| } else { |
| env_to_regs(); |
| } |
| } /* for(;;) */ |
| |
| |
| #if defined(TARGET_I386) |
| #if defined(USE_CODE_COPY) |
| if (env->native_fp_regs) { |
| save_native_fp_state(env); |
| } |
| #endif |
| /* restore flags in standard format */ |
| env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK); |
| |
| /* restore global registers */ |
| #ifdef reg_EAX |
| EAX = saved_EAX; |
| #endif |
| #ifdef reg_ECX |
| ECX = saved_ECX; |
| #endif |
| #ifdef reg_EDX |
| EDX = saved_EDX; |
| #endif |
| #ifdef reg_EBX |
| EBX = saved_EBX; |
| #endif |
| #ifdef reg_ESP |
| ESP = saved_ESP; |
| #endif |
| #ifdef reg_EBP |
| EBP = saved_EBP; |
| #endif |
| #ifdef reg_ESI |
| ESI = saved_ESI; |
| #endif |
| #ifdef reg_EDI |
| EDI = saved_EDI; |
| #endif |
| #elif defined(TARGET_ARM) |
| /* XXX: Save/restore host fpu exception state?. */ |
| #elif defined(TARGET_SPARC) |
| #if defined(reg_REGWPTR) |
| REGWPTR = saved_regwptr; |
| #endif |
| #elif defined(TARGET_PPC) |
| #elif defined(TARGET_MIPS) |
| #else |
| #error unsupported target CPU |
| #endif |
| #ifdef __sparc__ |
| asm volatile ("mov %0, %%i7" : : "r" (saved_i7)); |
| #endif |
| T0 = saved_T0; |
| T1 = saved_T1; |
| #if defined(reg_T2) |
| T2 = saved_T2; |
| #endif |
| env = saved_env; |
| /* fail safe : never use cpu_single_env outside cpu_exec() */ |
| cpu_single_env = NULL; |
| return ret; |
| } |
| |
| /* must only be called from the generated code as an exception can be |
| generated */ |
| void tb_invalidate_page_range(target_ulong start, target_ulong end) |
| { |
| /* XXX: cannot enable it yet because it yields to MMU exception |
| where NIP != read address on PowerPC */ |
| #if 0 |
| target_ulong phys_addr; |
| phys_addr = get_phys_addr_code(env, start); |
| tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0); |
| #endif |
| } |
| |
| #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY) |
| |
| void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector) |
| { |
| CPUX86State *saved_env; |
| |
| saved_env = env; |
| env = s; |
| if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) { |
| selector &= 0xffff; |
| cpu_x86_load_seg_cache(env, seg_reg, selector, |
| (selector << 4), 0xffff, 0); |
| } else { |
| load_seg(seg_reg, selector); |
| } |
| env = saved_env; |
| } |
| |
| void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32) |
| { |
| CPUX86State *saved_env; |
| |
| saved_env = env; |
| env = s; |
| |
| helper_fsave((target_ulong)ptr, data32); |
| |
| env = saved_env; |
| } |
| |
| void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32) |
| { |
| CPUX86State *saved_env; |
| |
| saved_env = env; |
| env = s; |
| |
| helper_frstor((target_ulong)ptr, data32); |
| |
| env = saved_env; |
| } |
| |
| #endif /* TARGET_I386 */ |
| |
| #if !defined(CONFIG_SOFTMMU) |
| |
| #if defined(TARGET_I386) |
| |
| /* 'pc' is the host PC at which the exception was raised. 'address' is |
| the effective address of the memory exception. 'is_write' is 1 if a |
| write caused the exception and otherwise 0'. 'old_set' is the |
| signal set which should be restored */ |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set, |
| void *puc) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(h2g(address), pc, puc)) { |
| return 1; |
| } |
| |
| /* see if it is an MMU fault */ |
| ret = cpu_x86_handle_mmu_fault(env, address, is_write, |
| ((env->hflags & HF_CPL_MASK) == 3), 0); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, puc); |
| } |
| if (ret == 1) { |
| #if 0 |
| printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", |
| env->eip, env->cr[2], env->error_code); |
| #endif |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| raise_exception_err(env->exception_index, env->error_code); |
| } else { |
| /* activate soft MMU for this block */ |
| env->hflags |= HF_SOFTMMU_MASK; |
| cpu_resume_from_signal(env, puc); |
| } |
| /* never comes here */ |
| return 1; |
| } |
| |
| #elif defined(TARGET_ARM) |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set, |
| void *puc) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(h2g(address), pc, puc)) { |
| return 1; |
| } |
| /* see if it is an MMU fault */ |
| ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, puc); |
| } |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| cpu_loop_exit(); |
| } |
| #elif defined(TARGET_SPARC) |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set, |
| void *puc) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(h2g(address), pc, puc)) { |
| return 1; |
| } |
| /* see if it is an MMU fault */ |
| ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, puc); |
| } |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| cpu_loop_exit(); |
| } |
| #elif defined (TARGET_PPC) |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set, |
| void *puc) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(h2g(address), pc, puc)) { |
| return 1; |
| } |
| |
| /* see if it is an MMU fault */ |
| ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, puc); |
| } |
| if (ret == 1) { |
| #if 0 |
| printf("PF exception: NIP=0x%08x error=0x%x %p\n", |
| env->nip, env->error_code, tb); |
| #endif |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| do_raise_exception_err(env->exception_index, env->error_code); |
| } else { |
| /* activate soft MMU for this block */ |
| cpu_resume_from_signal(env, puc); |
| } |
| /* never comes here */ |
| return 1; |
| } |
| |
| #elif defined (TARGET_MIPS) |
| static inline int handle_cpu_signal(unsigned long pc, unsigned long address, |
| int is_write, sigset_t *old_set, |
| void *puc) |
| { |
| TranslationBlock *tb; |
| int ret; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| #if defined(DEBUG_SIGNAL) |
| printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", |
| pc, address, is_write, *(unsigned long *)old_set); |
| #endif |
| /* XXX: locking issue */ |
| if (is_write && page_unprotect(h2g(address), pc, puc)) { |
| return 1; |
| } |
| |
| /* see if it is an MMU fault */ |
| ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0); |
| if (ret < 0) |
| return 0; /* not an MMU fault */ |
| if (ret == 0) |
| return 1; /* the MMU fault was handled without causing real CPU fault */ |
| |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, puc); |
| } |
| if (ret == 1) { |
| #if 0 |
| printf("PF exception: NIP=0x%08x error=0x%x %p\n", |
| env->nip, env->error_code, tb); |
| #endif |
| /* we restore the process signal mask as the sigreturn should |
| do it (XXX: use sigsetjmp) */ |
| sigprocmask(SIG_SETMASK, old_set, NULL); |
| do_raise_exception_err(env->exception_index, env->error_code); |
| } else { |
| /* activate soft MMU for this block */ |
| cpu_resume_from_signal(env, puc); |
| } |
| /* never comes here */ |
| return 1; |
| } |
| |
| #else |
| #error unsupported target CPU |
| #endif |
| |
| #if defined(__i386__) |
| |
| #if defined(USE_CODE_COPY) |
| static void cpu_send_trap(unsigned long pc, int trap, |
| struct ucontext *uc) |
| { |
| TranslationBlock *tb; |
| |
| if (cpu_single_env) |
| env = cpu_single_env; /* XXX: find a correct solution for multithread */ |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc, uc); |
| } |
| sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); |
| raise_exception_err(trap, env->error_code); |
| } |
| #endif |
| |
| int cpu_signal_handler(int host_signum, struct siginfo *info, |
| void *puc) |
| { |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| int trapno; |
| |
| #ifndef REG_EIP |
| /* for glibc 2.1 */ |
| #define REG_EIP EIP |
| #define REG_ERR ERR |
| #define REG_TRAPNO TRAPNO |
| #endif |
| pc = uc->uc_mcontext.gregs[REG_EIP]; |
| trapno = uc->uc_mcontext.gregs[REG_TRAPNO]; |
| #if defined(TARGET_I386) && defined(USE_CODE_COPY) |
| if (trapno == 0x00 || trapno == 0x05) { |
| /* send division by zero or bound exception */ |
| cpu_send_trap(pc, trapno, uc); |
| return 1; |
| } else |
| #endif |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| trapno == 0xe ? |
| (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0, |
| &uc->uc_sigmask, puc); |
| } |
| |
| #elif defined(__x86_64__) |
| |
| int cpu_signal_handler(int host_signum, struct siginfo *info, |
| void *puc) |
| { |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| |
| pc = uc->uc_mcontext.gregs[REG_RIP]; |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? |
| (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0, |
| &uc->uc_sigmask, puc); |
| } |
| |
| #elif defined(__powerpc__) |
| |
| /*********************************************************************** |
| * signal context platform-specific definitions |
| * From Wine |
| */ |
| #ifdef linux |
| /* All Registers access - only for local access */ |
| # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name) |
| /* Gpr Registers access */ |
| # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context) |
| # define IAR_sig(context) REG_sig(nip, context) /* Program counter */ |
| # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */ |
| # define CTR_sig(context) REG_sig(ctr, context) /* Count register */ |
| # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */ |
| # define LR_sig(context) REG_sig(link, context) /* Link register */ |
| # define CR_sig(context) REG_sig(ccr, context) /* Condition register */ |
| /* Float Registers access */ |
| # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num]) |
| # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4))) |
| /* Exception Registers access */ |
| # define DAR_sig(context) REG_sig(dar, context) |
| # define DSISR_sig(context) REG_sig(dsisr, context) |
| # define TRAP_sig(context) REG_sig(trap, context) |
| #endif /* linux */ |
| |
| #ifdef __APPLE__ |
| # include <sys/ucontext.h> |
| typedef struct ucontext SIGCONTEXT; |
| /* All Registers access - only for local access */ |
| # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name) |
| # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name) |
| # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name) |
| # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name) |
| /* Gpr Registers access */ |
| # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context) |
| # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */ |
| # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */ |
| # define CTR_sig(context) REG_sig(ctr, context) |
| # define XER_sig(context) REG_sig(xer, context) /* Link register */ |
| # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */ |
| # define CR_sig(context) REG_sig(cr, context) /* Condition register */ |
| /* Float Registers access */ |
| # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context) |
| # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context)) |
| /* Exception Registers access */ |
| # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */ |
| # define DSISR_sig(context) EXCEPREG_sig(dsisr, context) |
| # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */ |
| #endif /* __APPLE__ */ |
| |
| int cpu_signal_handler(int host_signum, struct siginfo *info, |
| void *puc) |
| { |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| int is_write; |
| |
| pc = IAR_sig(uc); |
| is_write = 0; |
| #if 0 |
| /* ppc 4xx case */ |
| if (DSISR_sig(uc) & 0x00800000) |
| is_write = 1; |
| #else |
| if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000)) |
| is_write = 1; |
| #endif |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, &uc->uc_sigmask, puc); |
| } |
| |
| #elif defined(__alpha__) |
| |
| int cpu_signal_handler(int host_signum, struct siginfo *info, |
| void *puc) |
| { |
| struct ucontext *uc = puc; |
| uint32_t *pc = uc->uc_mcontext.sc_pc; |
| uint32_t insn = *pc; |
| int is_write = 0; |
| |
| /* XXX: need kernel patch to get write flag faster */ |
| switch (insn >> 26) { |
| case 0x0d: // stw |
| case 0x0e: // stb |
| case 0x0f: // stq_u |
| case 0x24: // stf |
| case 0x25: // stg |
| case 0x26: // sts |
| case 0x27: // stt |
| case 0x2c: // stl |
| case 0x2d: // stq |
| case 0x2e: // stl_c |
| case 0x2f: // stq_c |
| is_write = 1; |
| } |
| |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, &uc->uc_sigmask, puc); |
| } |
| #elif defined(__sparc__) |
| |
| int cpu_signal_handler(int host_signum, struct siginfo *info, |
| void *puc) |
| { |
| uint32_t *regs = (uint32_t *)(info + 1); |
| void *sigmask = (regs + 20); |
| unsigned long pc; |
| int is_write; |
| uint32_t insn; |
| |
| /* XXX: is there a standard glibc define ? */ |
| pc = regs[1]; |
| /* XXX: need kernel patch to get write flag faster */ |
| is_write = 0; |
| insn = *(uint32_t *)pc; |
| if ((insn >> 30) == 3) { |
| switch((insn >> 19) & 0x3f) { |
| case 0x05: // stb |
| case 0x06: // sth |
| case 0x04: // st |
| case 0x07: // std |
| case 0x24: // stf |
| case 0x27: // stdf |
| case 0x25: // stfsr |
| is_write = 1; |
| break; |
| } |
| } |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, sigmask, NULL); |
| } |
| |
| #elif defined(__arm__) |
| |
| int cpu_signal_handler(int host_signum, struct siginfo *info, |
| void *puc) |
| { |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| int is_write; |
| |
| pc = uc->uc_mcontext.gregs[R15]; |
| /* XXX: compute is_write */ |
| is_write = 0; |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, |
| &uc->uc_sigmask); |
| } |
| |
| #elif defined(__mc68000) |
| |
| int cpu_signal_handler(int host_signum, struct siginfo *info, |
| void *puc) |
| { |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| int is_write; |
| |
| pc = uc->uc_mcontext.gregs[16]; |
| /* XXX: compute is_write */ |
| is_write = 0; |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, |
| &uc->uc_sigmask, puc); |
| } |
| |
| #elif defined(__ia64) |
| |
| #ifndef __ISR_VALID |
| /* This ought to be in <bits/siginfo.h>... */ |
| # define __ISR_VALID 1 |
| # define si_flags _sifields._sigfault._si_pad0 |
| #endif |
| |
| int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc) |
| { |
| struct ucontext *uc = puc; |
| unsigned long ip; |
| int is_write = 0; |
| |
| ip = uc->uc_mcontext.sc_ip; |
| switch (host_signum) { |
| case SIGILL: |
| case SIGFPE: |
| case SIGSEGV: |
| case SIGBUS: |
| case SIGTRAP: |
| if (info->si_code && (info->si_flags & __ISR_VALID)) |
| /* ISR.W (write-access) is bit 33: */ |
| is_write = (info->si_isr >> 33) & 1; |
| break; |
| |
| default: |
| break; |
| } |
| return handle_cpu_signal(ip, (unsigned long)info->si_addr, |
| is_write, |
| &uc->uc_sigmask, puc); |
| } |
| |
| #elif defined(__s390__) |
| |
| int cpu_signal_handler(int host_signum, struct siginfo *info, |
| void *puc) |
| { |
| struct ucontext *uc = puc; |
| unsigned long pc; |
| int is_write; |
| |
| pc = uc->uc_mcontext.psw.addr; |
| /* XXX: compute is_write */ |
| is_write = 0; |
| return handle_cpu_signal(pc, (unsigned long)info->si_addr, |
| is_write, |
| &uc->uc_sigmask, puc); |
| } |
| |
| #else |
| |
| #error host CPU specific signal handler needed |
| |
| #endif |
| |
| #endif /* !defined(CONFIG_SOFTMMU) */ |