| /* |
| * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash |
| * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from |
| * Samsung Electronic. |
| * |
| * Copyright (c) 2006 Openedhand Ltd. |
| * Written by Andrzej Zaborowski <balrog@zabor.org> |
| * |
| * Support for additional features based on "MT29F2G16ABCWP 2Gx16" |
| * datasheet from Micron Technology and "NAND02G-B2C" datasheet |
| * from ST Microelectronics. |
| * |
| * This code is licensed under the GNU GPL v2. |
| * |
| * Contributions after 2012-01-13 are licensed under the terms of the |
| * GNU GPL, version 2 or (at your option) any later version. |
| */ |
| |
| #ifndef NAND_IO |
| |
| #include "qemu/osdep.h" |
| #include "hw/hw.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/qdev-properties-system.h" |
| #include "hw/block/flash.h" |
| #include "sysemu/block-backend.h" |
| #include "migration/vmstate.h" |
| #include "qapi/error.h" |
| #include "qemu/error-report.h" |
| #include "qemu/module.h" |
| #include "qom/object.h" |
| |
| # define NAND_CMD_READ0 0x00 |
| # define NAND_CMD_READ1 0x01 |
| # define NAND_CMD_READ2 0x50 |
| # define NAND_CMD_LPREAD2 0x30 |
| # define NAND_CMD_NOSERIALREAD2 0x35 |
| # define NAND_CMD_RANDOMREAD1 0x05 |
| # define NAND_CMD_RANDOMREAD2 0xe0 |
| # define NAND_CMD_READID 0x90 |
| # define NAND_CMD_RESET 0xff |
| # define NAND_CMD_PAGEPROGRAM1 0x80 |
| # define NAND_CMD_PAGEPROGRAM2 0x10 |
| # define NAND_CMD_CACHEPROGRAM2 0x15 |
| # define NAND_CMD_BLOCKERASE1 0x60 |
| # define NAND_CMD_BLOCKERASE2 0xd0 |
| # define NAND_CMD_READSTATUS 0x70 |
| # define NAND_CMD_COPYBACKPRG1 0x85 |
| |
| # define NAND_IOSTATUS_ERROR (1 << 0) |
| # define NAND_IOSTATUS_PLANE0 (1 << 1) |
| # define NAND_IOSTATUS_PLANE1 (1 << 2) |
| # define NAND_IOSTATUS_PLANE2 (1 << 3) |
| # define NAND_IOSTATUS_PLANE3 (1 << 4) |
| # define NAND_IOSTATUS_READY (1 << 6) |
| # define NAND_IOSTATUS_UNPROTCT (1 << 7) |
| |
| # define MAX_PAGE 0x800 |
| # define MAX_OOB 0x40 |
| |
| typedef struct NANDFlashState NANDFlashState; |
| struct NANDFlashState { |
| DeviceState parent_obj; |
| |
| uint8_t manf_id, chip_id; |
| uint8_t buswidth; /* in BYTES */ |
| int size, pages; |
| int page_shift, oob_shift, erase_shift, addr_shift; |
| uint8_t *storage; |
| BlockBackend *blk; |
| int mem_oob; |
| |
| uint8_t cle, ale, ce, wp, gnd; |
| |
| uint8_t io[MAX_PAGE + MAX_OOB + 0x400]; |
| uint8_t *ioaddr; |
| int iolen; |
| |
| uint32_t cmd; |
| uint64_t addr; |
| int addrlen; |
| int status; |
| int offset; |
| |
| void (*blk_write)(NANDFlashState *s); |
| void (*blk_erase)(NANDFlashState *s); |
| /* |
| * Returns %true when block containing (@addr + @offset) is |
| * successfully loaded, otherwise %false. |
| */ |
| bool (*blk_load)(NANDFlashState *s, uint64_t addr, unsigned offset); |
| |
| uint32_t ioaddr_vmstate; |
| }; |
| |
| #define TYPE_NAND "nand" |
| |
| OBJECT_DECLARE_SIMPLE_TYPE(NANDFlashState, NAND) |
| |
| static void mem_and(uint8_t *dest, const uint8_t *src, size_t n) |
| { |
| /* Like memcpy() but we logical-AND the data into the destination */ |
| int i; |
| for (i = 0; i < n; i++) { |
| dest[i] &= src[i]; |
| } |
| } |
| |
| # define NAND_NO_AUTOINCR 0x00000001 |
| # define NAND_BUSWIDTH_16 0x00000002 |
| # define NAND_NO_PADDING 0x00000004 |
| # define NAND_CACHEPRG 0x00000008 |
| # define NAND_COPYBACK 0x00000010 |
| # define NAND_IS_AND 0x00000020 |
| # define NAND_4PAGE_ARRAY 0x00000040 |
| # define NAND_NO_READRDY 0x00000100 |
| # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK) |
| |
| # define NAND_IO |
| |
| # define PAGE(addr) ((addr) >> ADDR_SHIFT) |
| # define PAGE_START(page) (PAGE(page) * (NAND_PAGE_SIZE + OOB_SIZE)) |
| # define PAGE_MASK ((1 << ADDR_SHIFT) - 1) |
| # define OOB_SHIFT (PAGE_SHIFT - 5) |
| # define OOB_SIZE (1 << OOB_SHIFT) |
| # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT)) |
| # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8)) |
| |
| # define NAND_PAGE_SIZE 256 |
| # define PAGE_SHIFT 8 |
| # define PAGE_SECTORS 1 |
| # define ADDR_SHIFT 8 |
| # include "nand.c" |
| # define NAND_PAGE_SIZE 512 |
| # define PAGE_SHIFT 9 |
| # define PAGE_SECTORS 1 |
| # define ADDR_SHIFT 8 |
| # include "nand.c" |
| # define NAND_PAGE_SIZE 2048 |
| # define PAGE_SHIFT 11 |
| # define PAGE_SECTORS 4 |
| # define ADDR_SHIFT 16 |
| # include "nand.c" |
| |
| /* Information based on Linux drivers/mtd/nand/raw/nand_ids.c */ |
| static const struct { |
| int size; |
| int width; |
| int page_shift; |
| int erase_shift; |
| uint32_t options; |
| } nand_flash_ids[0x100] = { |
| [0 ... 0xff] = { 0 }, |
| |
| [0x6b] = { 4, 8, 9, 4, 0 }, |
| [0xe3] = { 4, 8, 9, 4, 0 }, |
| [0xe5] = { 4, 8, 9, 4, 0 }, |
| [0xd6] = { 8, 8, 9, 4, 0 }, |
| [0xe6] = { 8, 8, 9, 4, 0 }, |
| |
| [0x33] = { 16, 8, 9, 5, 0 }, |
| [0x73] = { 16, 8, 9, 5, 0 }, |
| [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 }, |
| [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 }, |
| |
| [0x35] = { 32, 8, 9, 5, 0 }, |
| [0x75] = { 32, 8, 9, 5, 0 }, |
| [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 }, |
| [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 }, |
| |
| [0x36] = { 64, 8, 9, 5, 0 }, |
| [0x76] = { 64, 8, 9, 5, 0 }, |
| [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 }, |
| [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 }, |
| |
| [0x78] = { 128, 8, 9, 5, 0 }, |
| [0x39] = { 128, 8, 9, 5, 0 }, |
| [0x79] = { 128, 8, 9, 5, 0 }, |
| [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, |
| [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, |
| [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, |
| [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, |
| |
| [0x71] = { 256, 8, 9, 5, 0 }, |
| |
| /* |
| * These are the new chips with large page size. The pagesize and the |
| * erasesize is determined from the extended id bytes |
| */ |
| # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR) |
| # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) |
| |
| /* 512 Megabit */ |
| [0xa2] = { 64, 8, 0, 0, LP_OPTIONS }, |
| [0xf2] = { 64, 8, 0, 0, LP_OPTIONS }, |
| [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 }, |
| [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 }, |
| |
| /* 1 Gigabit */ |
| [0xa1] = { 128, 8, 0, 0, LP_OPTIONS }, |
| [0xf1] = { 128, 8, 0, 0, LP_OPTIONS }, |
| [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 }, |
| [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 }, |
| |
| /* 2 Gigabit */ |
| [0xaa] = { 256, 8, 0, 0, LP_OPTIONS }, |
| [0xda] = { 256, 8, 0, 0, LP_OPTIONS }, |
| [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 }, |
| [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 }, |
| |
| /* 4 Gigabit */ |
| [0xac] = { 512, 8, 0, 0, LP_OPTIONS }, |
| [0xdc] = { 512, 8, 0, 0, LP_OPTIONS }, |
| [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 }, |
| [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 }, |
| |
| /* 8 Gigabit */ |
| [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS }, |
| [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS }, |
| [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 }, |
| [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 }, |
| |
| /* 16 Gigabit */ |
| [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS }, |
| [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS }, |
| [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 }, |
| [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 }, |
| }; |
| |
| static void nand_reset(DeviceState *dev) |
| { |
| NANDFlashState *s = NAND(dev); |
| s->cmd = NAND_CMD_READ0; |
| s->addr = 0; |
| s->addrlen = 0; |
| s->iolen = 0; |
| s->offset = 0; |
| s->status &= NAND_IOSTATUS_UNPROTCT; |
| s->status |= NAND_IOSTATUS_READY; |
| } |
| |
| static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value) |
| { |
| s->ioaddr[s->iolen++] = value; |
| for (value = s->buswidth; --value;) { |
| s->ioaddr[s->iolen++] = 0; |
| } |
| } |
| |
| /* |
| * nand_load_block: Load block containing (s->addr + @offset). |
| * Returns length of data available at @offset in this block. |
| */ |
| static unsigned nand_load_block(NANDFlashState *s, unsigned offset) |
| { |
| unsigned iolen; |
| |
| if (!s->blk_load(s, s->addr, offset)) { |
| return 0; |
| } |
| |
| iolen = (1 << s->page_shift); |
| if (s->gnd) { |
| iolen += 1 << s->oob_shift; |
| } |
| assert(offset <= iolen); |
| iolen -= offset; |
| |
| return iolen; |
| } |
| |
| static void nand_command(NANDFlashState *s) |
| { |
| switch (s->cmd) { |
| case NAND_CMD_READ0: |
| s->iolen = 0; |
| break; |
| |
| case NAND_CMD_READID: |
| s->ioaddr = s->io; |
| s->iolen = 0; |
| nand_pushio_byte(s, s->manf_id); |
| nand_pushio_byte(s, s->chip_id); |
| nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */ |
| if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { |
| /* Page Size, Block Size, Spare Size; bit 6 indicates |
| * 8 vs 16 bit width NAND. |
| */ |
| nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15); |
| } else { |
| nand_pushio_byte(s, 0xc0); /* Multi-plane */ |
| } |
| break; |
| |
| case NAND_CMD_RANDOMREAD2: |
| case NAND_CMD_NOSERIALREAD2: |
| if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)) |
| break; |
| s->iolen = nand_load_block(s, s->addr & ((1 << s->addr_shift) - 1)); |
| break; |
| |
| case NAND_CMD_RESET: |
| nand_reset(DEVICE(s)); |
| break; |
| |
| case NAND_CMD_PAGEPROGRAM1: |
| s->ioaddr = s->io; |
| s->iolen = 0; |
| break; |
| |
| case NAND_CMD_PAGEPROGRAM2: |
| if (s->wp) { |
| s->blk_write(s); |
| } |
| break; |
| |
| case NAND_CMD_BLOCKERASE1: |
| break; |
| |
| case NAND_CMD_BLOCKERASE2: |
| s->addr &= (1ull << s->addrlen * 8) - 1; |
| s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ? |
| 16 : 8; |
| |
| if (s->wp) { |
| s->blk_erase(s); |
| } |
| break; |
| |
| case NAND_CMD_READSTATUS: |
| s->ioaddr = s->io; |
| s->iolen = 0; |
| nand_pushio_byte(s, s->status); |
| break; |
| |
| default: |
| printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd); |
| } |
| } |
| |
| static int nand_pre_save(void *opaque) |
| { |
| NANDFlashState *s = NAND(opaque); |
| |
| s->ioaddr_vmstate = s->ioaddr - s->io; |
| |
| return 0; |
| } |
| |
| static int nand_post_load(void *opaque, int version_id) |
| { |
| NANDFlashState *s = NAND(opaque); |
| |
| if (s->ioaddr_vmstate > sizeof(s->io)) { |
| return -EINVAL; |
| } |
| s->ioaddr = s->io + s->ioaddr_vmstate; |
| |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_nand = { |
| .name = "nand", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .pre_save = nand_pre_save, |
| .post_load = nand_post_load, |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT8(cle, NANDFlashState), |
| VMSTATE_UINT8(ale, NANDFlashState), |
| VMSTATE_UINT8(ce, NANDFlashState), |
| VMSTATE_UINT8(wp, NANDFlashState), |
| VMSTATE_UINT8(gnd, NANDFlashState), |
| VMSTATE_BUFFER(io, NANDFlashState), |
| VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState), |
| VMSTATE_INT32(iolen, NANDFlashState), |
| VMSTATE_UINT32(cmd, NANDFlashState), |
| VMSTATE_UINT64(addr, NANDFlashState), |
| VMSTATE_INT32(addrlen, NANDFlashState), |
| VMSTATE_INT32(status, NANDFlashState), |
| VMSTATE_INT32(offset, NANDFlashState), |
| /* XXX: do we want to save s->storage too? */ |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void nand_realize(DeviceState *dev, Error **errp) |
| { |
| int pagesize; |
| NANDFlashState *s = NAND(dev); |
| int ret; |
| |
| |
| s->buswidth = nand_flash_ids[s->chip_id].width >> 3; |
| s->size = nand_flash_ids[s->chip_id].size << 20; |
| if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { |
| s->page_shift = 11; |
| s->erase_shift = 6; |
| } else { |
| s->page_shift = nand_flash_ids[s->chip_id].page_shift; |
| s->erase_shift = nand_flash_ids[s->chip_id].erase_shift; |
| } |
| |
| switch (1 << s->page_shift) { |
| case 256: |
| nand_init_256(s); |
| break; |
| case 512: |
| nand_init_512(s); |
| break; |
| case 2048: |
| nand_init_2048(s); |
| break; |
| default: |
| error_setg(errp, "Unsupported NAND block size %#x", |
| 1 << s->page_shift); |
| return; |
| } |
| |
| pagesize = 1 << s->oob_shift; |
| s->mem_oob = 1; |
| if (s->blk) { |
| if (!blk_supports_write_perm(s->blk)) { |
| error_setg(errp, "Can't use a read-only drive"); |
| return; |
| } |
| ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE, |
| BLK_PERM_ALL, errp); |
| if (ret < 0) { |
| return; |
| } |
| if (blk_getlength(s->blk) >= |
| (s->pages << s->page_shift) + (s->pages << s->oob_shift)) { |
| pagesize = 0; |
| s->mem_oob = 0; |
| } |
| } else { |
| pagesize += 1 << s->page_shift; |
| } |
| if (pagesize) { |
| s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize), |
| 0xff, s->pages * pagesize); |
| } |
| /* Give s->ioaddr a sane value in case we save state before it is used. */ |
| s->ioaddr = s->io; |
| } |
| |
| static Property nand_properties[] = { |
| DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0), |
| DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0), |
| DEFINE_PROP_DRIVE("drive", NANDFlashState, blk), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void nand_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = nand_realize; |
| device_class_set_legacy_reset(dc, nand_reset); |
| dc->vmsd = &vmstate_nand; |
| device_class_set_props(dc, nand_properties); |
| set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); |
| } |
| |
| static const TypeInfo nand_info = { |
| .name = TYPE_NAND, |
| .parent = TYPE_DEVICE, |
| .instance_size = sizeof(NANDFlashState), |
| .class_init = nand_class_init, |
| }; |
| |
| static void nand_register_types(void) |
| { |
| type_register_static(&nand_info); |
| } |
| |
| /* |
| * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip |
| * outputs are R/B and eight I/O pins. |
| * |
| * CE, WP and R/B are active low. |
| */ |
| void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale, |
| uint8_t ce, uint8_t wp, uint8_t gnd) |
| { |
| NANDFlashState *s = NAND(dev); |
| |
| s->cle = cle; |
| s->ale = ale; |
| s->ce = ce; |
| s->wp = wp; |
| s->gnd = gnd; |
| if (wp) { |
| s->status |= NAND_IOSTATUS_UNPROTCT; |
| } else { |
| s->status &= ~NAND_IOSTATUS_UNPROTCT; |
| } |
| } |
| |
| void nand_getpins(DeviceState *dev, int *rb) |
| { |
| *rb = 1; |
| } |
| |
| void nand_setio(DeviceState *dev, uint32_t value) |
| { |
| int i; |
| NANDFlashState *s = NAND(dev); |
| |
| if (!s->ce && s->cle) { |
| if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { |
| if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2) |
| return; |
| if (value == NAND_CMD_RANDOMREAD1) { |
| s->addr &= ~((1 << s->addr_shift) - 1); |
| s->addrlen = 0; |
| return; |
| } |
| } |
| if (value == NAND_CMD_READ0) { |
| s->offset = 0; |
| } else if (value == NAND_CMD_READ1) { |
| s->offset = 0x100; |
| value = NAND_CMD_READ0; |
| } else if (value == NAND_CMD_READ2) { |
| s->offset = 1 << s->page_shift; |
| value = NAND_CMD_READ0; |
| } |
| |
| s->cmd = value; |
| |
| if (s->cmd == NAND_CMD_READSTATUS || |
| s->cmd == NAND_CMD_PAGEPROGRAM2 || |
| s->cmd == NAND_CMD_BLOCKERASE1 || |
| s->cmd == NAND_CMD_BLOCKERASE2 || |
| s->cmd == NAND_CMD_NOSERIALREAD2 || |
| s->cmd == NAND_CMD_RANDOMREAD2 || |
| s->cmd == NAND_CMD_RESET) { |
| nand_command(s); |
| } |
| |
| if (s->cmd != NAND_CMD_RANDOMREAD2) { |
| s->addrlen = 0; |
| } |
| } |
| |
| if (s->ale) { |
| unsigned int shift = s->addrlen * 8; |
| uint64_t mask = ~(0xffull << shift); |
| uint64_t v = (uint64_t)value << shift; |
| |
| s->addr = (s->addr & mask) | v; |
| s->addrlen ++; |
| |
| switch (s->addrlen) { |
| case 1: |
| if (s->cmd == NAND_CMD_READID) { |
| nand_command(s); |
| } |
| break; |
| case 2: /* fix cache address as a byte address */ |
| s->addr <<= (s->buswidth - 1); |
| break; |
| case 3: |
| if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) && |
| (s->cmd == NAND_CMD_READ0 || |
| s->cmd == NAND_CMD_PAGEPROGRAM1)) { |
| nand_command(s); |
| } |
| break; |
| case 4: |
| if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) && |
| nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */ |
| (s->cmd == NAND_CMD_READ0 || |
| s->cmd == NAND_CMD_PAGEPROGRAM1)) { |
| nand_command(s); |
| } |
| break; |
| case 5: |
| if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) && |
| nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */ |
| (s->cmd == NAND_CMD_READ0 || |
| s->cmd == NAND_CMD_PAGEPROGRAM1)) { |
| nand_command(s); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) { |
| if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) { |
| for (i = s->buswidth; i--; value >>= 8) { |
| s->io[s->iolen ++] = (uint8_t) (value & 0xff); |
| } |
| } |
| } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) { |
| if ((s->addr & ((1 << s->addr_shift) - 1)) < |
| (1 << s->page_shift) + (1 << s->oob_shift)) { |
| for (i = s->buswidth; i--; s->addr++, value >>= 8) { |
| s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] = |
| (uint8_t) (value & 0xff); |
| } |
| } |
| } |
| } |
| |
| uint32_t nand_getio(DeviceState *dev) |
| { |
| int offset; |
| uint32_t x = 0; |
| NANDFlashState *s = NAND(dev); |
| |
| /* Allow sequential reading */ |
| if (!s->iolen && s->cmd == NAND_CMD_READ0) { |
| offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset; |
| s->offset = 0; |
| s->iolen = nand_load_block(s, offset); |
| } |
| |
| if (s->ce || s->iolen <= 0) { |
| return 0; |
| } |
| |
| for (offset = s->buswidth; offset--;) { |
| x |= s->ioaddr[offset] << (offset << 3); |
| } |
| /* after receiving READ STATUS command all subsequent reads will |
| * return the status register value until another command is issued |
| */ |
| if (s->cmd != NAND_CMD_READSTATUS) { |
| s->addr += s->buswidth; |
| s->ioaddr += s->buswidth; |
| s->iolen -= s->buswidth; |
| } |
| return x; |
| } |
| |
| uint32_t nand_getbuswidth(DeviceState *dev) |
| { |
| NANDFlashState *s = (NANDFlashState *) dev; |
| return s->buswidth << 3; |
| } |
| |
| DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id) |
| { |
| DeviceState *dev; |
| |
| if (nand_flash_ids[chip_id].size == 0) { |
| hw_error("%s: Unsupported NAND chip ID.\n", __func__); |
| } |
| dev = qdev_new(TYPE_NAND); |
| qdev_prop_set_uint8(dev, "manufacturer_id", manf_id); |
| qdev_prop_set_uint8(dev, "chip_id", chip_id); |
| if (blk) { |
| qdev_prop_set_drive_err(dev, "drive", blk, &error_fatal); |
| } |
| |
| qdev_realize(dev, NULL, &error_fatal); |
| return dev; |
| } |
| |
| type_init(nand_register_types) |
| |
| #else |
| |
| /* Program a single page */ |
| static void glue(nand_blk_write_, NAND_PAGE_SIZE)(NANDFlashState *s) |
| { |
| uint64_t off, page, sector, soff; |
| uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200]; |
| if (PAGE(s->addr) >= s->pages) |
| return; |
| |
| if (!s->blk) { |
| mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) + |
| s->offset, s->io, s->iolen); |
| } else if (s->mem_oob) { |
| sector = SECTOR(s->addr); |
| off = (s->addr & PAGE_MASK) + s->offset; |
| soff = SECTOR_OFFSET(s->addr); |
| if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, |
| PAGE_SECTORS << BDRV_SECTOR_BITS, iobuf, 0) < 0) { |
| printf("%s: read error in sector %" PRIu64 "\n", __func__, sector); |
| return; |
| } |
| |
| mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, NAND_PAGE_SIZE - off)); |
| if (off + s->iolen > NAND_PAGE_SIZE) { |
| page = PAGE(s->addr); |
| mem_and(s->storage + (page << OOB_SHIFT), s->io + NAND_PAGE_SIZE - off, |
| MIN(OOB_SIZE, off + s->iolen - NAND_PAGE_SIZE)); |
| } |
| |
| if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, |
| PAGE_SECTORS << BDRV_SECTOR_BITS, iobuf, 0) < 0) { |
| printf("%s: write error in sector %" PRIu64 "\n", __func__, sector); |
| } |
| } else { |
| off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset; |
| sector = off >> 9; |
| soff = off & 0x1ff; |
| if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, |
| (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, iobuf, 0) < 0) { |
| printf("%s: read error in sector %" PRIu64 "\n", __func__, sector); |
| return; |
| } |
| |
| mem_and(iobuf + soff, s->io, s->iolen); |
| |
| if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, |
| (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, iobuf, 0) < 0) { |
| printf("%s: write error in sector %" PRIu64 "\n", __func__, sector); |
| } |
| } |
| s->offset = 0; |
| } |
| |
| /* Erase a single block */ |
| static void glue(nand_blk_erase_, NAND_PAGE_SIZE)(NANDFlashState *s) |
| { |
| uint64_t i, page, addr; |
| uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, }; |
| addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1); |
| |
| if (PAGE(addr) >= s->pages) { |
| return; |
| } |
| |
| if (!s->blk) { |
| memset(s->storage + PAGE_START(addr), |
| 0xff, (NAND_PAGE_SIZE + OOB_SIZE) << s->erase_shift); |
| } else if (s->mem_oob) { |
| memset(s->storage + (PAGE(addr) << OOB_SHIFT), |
| 0xff, OOB_SIZE << s->erase_shift); |
| i = SECTOR(addr); |
| page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift))); |
| for (; i < page; i ++) |
| if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, |
| BDRV_SECTOR_SIZE, iobuf, 0) < 0) { |
| printf("%s: write error in sector %" PRIu64 "\n", __func__, i); |
| } |
| } else { |
| addr = PAGE_START(addr); |
| page = addr >> 9; |
| if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, |
| BDRV_SECTOR_SIZE, iobuf, 0) < 0) { |
| printf("%s: read error in sector %" PRIu64 "\n", __func__, page); |
| } |
| memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1); |
| if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, |
| BDRV_SECTOR_SIZE, iobuf, 0) < 0) { |
| printf("%s: write error in sector %" PRIu64 "\n", __func__, page); |
| } |
| |
| memset(iobuf, 0xff, 0x200); |
| i = (addr & ~0x1ff) + 0x200; |
| for (addr += ((NAND_PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200; |
| i < addr; i += 0x200) { |
| if (blk_pwrite(s->blk, i, BDRV_SECTOR_SIZE, iobuf, 0) < 0) { |
| printf("%s: write error in sector %" PRIu64 "\n", |
| __func__, i >> 9); |
| } |
| } |
| |
| page = i >> 9; |
| if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, |
| BDRV_SECTOR_SIZE, iobuf, 0) < 0) { |
| printf("%s: read error in sector %" PRIu64 "\n", __func__, page); |
| } |
| memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1); |
| if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, |
| BDRV_SECTOR_SIZE, iobuf, 0) < 0) { |
| printf("%s: write error in sector %" PRIu64 "\n", __func__, page); |
| } |
| } |
| } |
| |
| static bool glue(nand_blk_load_, NAND_PAGE_SIZE)(NANDFlashState *s, |
| uint64_t addr, unsigned offset) |
| { |
| if (PAGE(addr) >= s->pages) { |
| return false; |
| } |
| |
| if (offset > NAND_PAGE_SIZE + OOB_SIZE) { |
| return false; |
| } |
| |
| if (s->blk) { |
| if (s->mem_oob) { |
| if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, |
| PAGE_SECTORS << BDRV_SECTOR_BITS, s->io, 0) < 0) { |
| printf("%s: read error in sector %" PRIu64 "\n", |
| __func__, SECTOR(addr)); |
| } |
| memcpy(s->io + SECTOR_OFFSET(s->addr) + NAND_PAGE_SIZE, |
| s->storage + (PAGE(s->addr) << OOB_SHIFT), |
| OOB_SIZE); |
| s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset; |
| } else { |
| if (blk_pread(s->blk, PAGE_START(addr), |
| (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, s->io, 0) |
| < 0) { |
| printf("%s: read error in sector %" PRIu64 "\n", |
| __func__, PAGE_START(addr) >> 9); |
| } |
| s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset; |
| } |
| } else { |
| memcpy(s->io, s->storage + PAGE_START(s->addr) + |
| offset, NAND_PAGE_SIZE + OOB_SIZE - offset); |
| s->ioaddr = s->io; |
| } |
| |
| return true; |
| } |
| |
| static void glue(nand_init_, NAND_PAGE_SIZE)(NANDFlashState *s) |
| { |
| s->oob_shift = PAGE_SHIFT - 5; |
| s->pages = s->size >> PAGE_SHIFT; |
| s->addr_shift = ADDR_SHIFT; |
| |
| s->blk_erase = glue(nand_blk_erase_, NAND_PAGE_SIZE); |
| s->blk_write = glue(nand_blk_write_, NAND_PAGE_SIZE); |
| s->blk_load = glue(nand_blk_load_, NAND_PAGE_SIZE); |
| } |
| |
| # undef NAND_PAGE_SIZE |
| # undef PAGE_SHIFT |
| # undef PAGE_SECTORS |
| # undef ADDR_SHIFT |
| #endif /* NAND_IO */ |