blob: 7db9d3099ed965623ebab097052670e19c893078 [file] [log] [blame]
/*
* Copyright 2008 IBM Corporation
* 2008 Red Hat, Inc.
* Copyright 2011 Intel Corporation
* Copyright 2016 Veertu, Inc.
* Copyright 2017 The Android Open Source Project
*
* QEMU Hypervisor.framework support
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* This file contain code under public domain from the hvdos project:
* https://github.com/mist64/hvdos
*
* Parts Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "exec/address-spaces.h"
#include "exec/exec-all.h"
#include "exec/gdbstub.h"
#include "sysemu/cpus.h"
#include "sysemu/hvf.h"
#include "sysemu/hvf_int.h"
#include "sysemu/runstate.h"
#include "qemu/guest-random.h"
HVFState *hvf_state;
#ifdef __aarch64__
#define HV_VM_DEFAULT NULL
#endif
/* Memory slots */
hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
{
hvf_slot *slot;
int x;
for (x = 0; x < hvf_state->num_slots; ++x) {
slot = &hvf_state->slots[x];
if (slot->size && start < (slot->start + slot->size) &&
(start + size) > slot->start) {
return slot;
}
}
return NULL;
}
struct mac_slot {
int present;
uint64_t size;
uint64_t gpa_start;
uint64_t gva;
};
struct mac_slot mac_slots[32];
static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
{
struct mac_slot *macslot;
hv_return_t ret;
macslot = &mac_slots[slot->slot_id];
if (macslot->present) {
if (macslot->size != slot->size) {
macslot->present = 0;
ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
assert_hvf_ok(ret);
}
}
if (!slot->size) {
return 0;
}
macslot->present = 1;
macslot->gpa_start = slot->start;
macslot->size = slot->size;
ret = hv_vm_map(slot->mem, slot->start, slot->size, flags);
assert_hvf_ok(ret);
return 0;
}
static void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
{
hvf_slot *mem;
MemoryRegion *area = section->mr;
bool writable = !area->readonly && !area->rom_device;
hv_memory_flags_t flags;
uint64_t page_size = qemu_real_host_page_size();
if (!memory_region_is_ram(area)) {
if (writable) {
return;
} else if (!memory_region_is_romd(area)) {
/*
* If the memory device is not in romd_mode, then we actually want
* to remove the hvf memory slot so all accesses will trap.
*/
add = false;
}
}
if (!QEMU_IS_ALIGNED(int128_get64(section->size), page_size) ||
!QEMU_IS_ALIGNED(section->offset_within_address_space, page_size)) {
/* Not page aligned, so we can not map as RAM */
add = false;
}
mem = hvf_find_overlap_slot(
section->offset_within_address_space,
int128_get64(section->size));
if (mem && add) {
if (mem->size == int128_get64(section->size) &&
mem->start == section->offset_within_address_space &&
mem->mem == (memory_region_get_ram_ptr(area) +
section->offset_within_region)) {
return; /* Same region was attempted to register, go away. */
}
}
/* Region needs to be reset. set the size to 0 and remap it. */
if (mem) {
mem->size = 0;
if (do_hvf_set_memory(mem, 0)) {
error_report("Failed to reset overlapping slot");
abort();
}
}
if (!add) {
return;
}
if (area->readonly ||
(!memory_region_is_ram(area) && memory_region_is_romd(area))) {
flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
} else {
flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
}
/* Now make a new slot. */
int x;
for (x = 0; x < hvf_state->num_slots; ++x) {
mem = &hvf_state->slots[x];
if (!mem->size) {
break;
}
}
if (x == hvf_state->num_slots) {
error_report("No free slots");
abort();
}
mem->size = int128_get64(section->size);
mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
mem->start = section->offset_within_address_space;
mem->region = area;
if (do_hvf_set_memory(mem, flags)) {
error_report("Error registering new memory slot");
abort();
}
}
static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
{
if (!cpu->vcpu_dirty) {
hvf_get_registers(cpu);
cpu->vcpu_dirty = true;
}
}
static void hvf_cpu_synchronize_state(CPUState *cpu)
{
if (!cpu->vcpu_dirty) {
run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
}
}
static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu,
run_on_cpu_data arg)
{
/* QEMU state is the reference, push it to HVF now and on next entry */
cpu->vcpu_dirty = true;
}
static void hvf_cpu_synchronize_post_reset(CPUState *cpu)
{
run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
}
static void hvf_cpu_synchronize_post_init(CPUState *cpu)
{
run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
}
static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
{
run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
}
static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
{
hvf_slot *slot;
slot = hvf_find_overlap_slot(
section->offset_within_address_space,
int128_get64(section->size));
/* protect region against writes; begin tracking it */
if (on) {
slot->flags |= HVF_SLOT_LOG;
hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
HV_MEMORY_READ | HV_MEMORY_EXEC);
/* stop tracking region*/
} else {
slot->flags &= ~HVF_SLOT_LOG;
hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC);
}
}
static void hvf_log_start(MemoryListener *listener,
MemoryRegionSection *section, int old, int new)
{
if (old != 0) {
return;
}
hvf_set_dirty_tracking(section, 1);
}
static void hvf_log_stop(MemoryListener *listener,
MemoryRegionSection *section, int old, int new)
{
if (new != 0) {
return;
}
hvf_set_dirty_tracking(section, 0);
}
static void hvf_log_sync(MemoryListener *listener,
MemoryRegionSection *section)
{
/*
* sync of dirty pages is handled elsewhere; just make sure we keep
* tracking the region.
*/
hvf_set_dirty_tracking(section, 1);
}
static void hvf_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
hvf_set_phys_mem(section, true);
}
static void hvf_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
hvf_set_phys_mem(section, false);
}
static MemoryListener hvf_memory_listener = {
.name = "hvf",
.priority = 10,
.region_add = hvf_region_add,
.region_del = hvf_region_del,
.log_start = hvf_log_start,
.log_stop = hvf_log_stop,
.log_sync = hvf_log_sync,
};
static void dummy_signal(int sig)
{
}
bool hvf_allowed;
static int hvf_accel_init(MachineState *ms)
{
int x;
hv_return_t ret;
HVFState *s;
ret = hv_vm_create(HV_VM_DEFAULT);
assert_hvf_ok(ret);
s = g_new0(HVFState, 1);
s->num_slots = ARRAY_SIZE(s->slots);
for (x = 0; x < s->num_slots; ++x) {
s->slots[x].size = 0;
s->slots[x].slot_id = x;
}
QTAILQ_INIT(&s->hvf_sw_breakpoints);
hvf_state = s;
memory_listener_register(&hvf_memory_listener, &address_space_memory);
return hvf_arch_init();
}
static inline int hvf_gdbstub_sstep_flags(void)
{
return SSTEP_ENABLE | SSTEP_NOIRQ;
}
static void hvf_accel_class_init(ObjectClass *oc, void *data)
{
AccelClass *ac = ACCEL_CLASS(oc);
ac->name = "HVF";
ac->init_machine = hvf_accel_init;
ac->allowed = &hvf_allowed;
ac->gdbstub_supported_sstep_flags = hvf_gdbstub_sstep_flags;
}
static const TypeInfo hvf_accel_type = {
.name = TYPE_HVF_ACCEL,
.parent = TYPE_ACCEL,
.class_init = hvf_accel_class_init,
};
static void hvf_type_init(void)
{
type_register_static(&hvf_accel_type);
}
type_init(hvf_type_init);
static void hvf_vcpu_destroy(CPUState *cpu)
{
hv_return_t ret = hv_vcpu_destroy(cpu->accel->fd);
assert_hvf_ok(ret);
hvf_arch_vcpu_destroy(cpu);
g_free(cpu->accel);
cpu->accel = NULL;
}
static int hvf_init_vcpu(CPUState *cpu)
{
int r;
cpu->accel = g_new0(AccelCPUState, 1);
/* init cpu signals */
struct sigaction sigact;
memset(&sigact, 0, sizeof(sigact));
sigact.sa_handler = dummy_signal;
sigaction(SIG_IPI, &sigact, NULL);
pthread_sigmask(SIG_BLOCK, NULL, &cpu->accel->unblock_ipi_mask);
sigdelset(&cpu->accel->unblock_ipi_mask, SIG_IPI);
#ifdef __aarch64__
r = hv_vcpu_create(&cpu->accel->fd,
(hv_vcpu_exit_t **)&cpu->accel->exit, NULL);
#else
r = hv_vcpu_create((hv_vcpuid_t *)&cpu->accel->fd, HV_VCPU_DEFAULT);
#endif
cpu->vcpu_dirty = 1;
assert_hvf_ok(r);
cpu->accel->guest_debug_enabled = false;
return hvf_arch_init_vcpu(cpu);
}
/*
* The HVF-specific vCPU thread function. This one should only run when the host
* CPU supports the VMX "unrestricted guest" feature.
*/
static void *hvf_cpu_thread_fn(void *arg)
{
CPUState *cpu = arg;
int r;
assert(hvf_enabled());
rcu_register_thread();
qemu_mutex_lock_iothread();
qemu_thread_get_self(cpu->thread);
cpu->thread_id = qemu_get_thread_id();
cpu->can_do_io = 1;
current_cpu = cpu;
hvf_init_vcpu(cpu);
/* signal CPU creation */
cpu_thread_signal_created(cpu);
qemu_guest_random_seed_thread_part2(cpu->random_seed);
do {
if (cpu_can_run(cpu)) {
r = hvf_vcpu_exec(cpu);
if (r == EXCP_DEBUG) {
cpu_handle_guest_debug(cpu);
}
}
qemu_wait_io_event(cpu);
} while (!cpu->unplug || cpu_can_run(cpu));
hvf_vcpu_destroy(cpu);
cpu_thread_signal_destroyed(cpu);
qemu_mutex_unlock_iothread();
rcu_unregister_thread();
return NULL;
}
static void hvf_start_vcpu_thread(CPUState *cpu)
{
char thread_name[VCPU_THREAD_NAME_SIZE];
/*
* HVF currently does not support TCG, and only runs in
* unrestricted-guest mode.
*/
assert(hvf_enabled());
cpu->thread = g_malloc0(sizeof(QemuThread));
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
qemu_cond_init(cpu->halt_cond);
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
cpu->cpu_index);
qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn,
cpu, QEMU_THREAD_JOINABLE);
}
static int hvf_insert_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len)
{
struct hvf_sw_breakpoint *bp;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = hvf_find_sw_breakpoint(cpu, addr);
if (bp) {
bp->use_count++;
return 0;
}
bp = g_new(struct hvf_sw_breakpoint, 1);
bp->pc = addr;
bp->use_count = 1;
err = hvf_arch_insert_sw_breakpoint(cpu, bp);
if (err) {
g_free(bp);
return err;
}
QTAILQ_INSERT_HEAD(&hvf_state->hvf_sw_breakpoints, bp, entry);
} else {
err = hvf_arch_insert_hw_breakpoint(addr, len, type);
if (err) {
return err;
}
}
CPU_FOREACH(cpu) {
err = hvf_update_guest_debug(cpu);
if (err) {
return err;
}
}
return 0;
}
static int hvf_remove_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len)
{
struct hvf_sw_breakpoint *bp;
int err;
if (type == GDB_BREAKPOINT_SW) {
bp = hvf_find_sw_breakpoint(cpu, addr);
if (!bp) {
return -ENOENT;
}
if (bp->use_count > 1) {
bp->use_count--;
return 0;
}
err = hvf_arch_remove_sw_breakpoint(cpu, bp);
if (err) {
return err;
}
QTAILQ_REMOVE(&hvf_state->hvf_sw_breakpoints, bp, entry);
g_free(bp);
} else {
err = hvf_arch_remove_hw_breakpoint(addr, len, type);
if (err) {
return err;
}
}
CPU_FOREACH(cpu) {
err = hvf_update_guest_debug(cpu);
if (err) {
return err;
}
}
return 0;
}
static void hvf_remove_all_breakpoints(CPUState *cpu)
{
struct hvf_sw_breakpoint *bp, *next;
CPUState *tmpcpu;
QTAILQ_FOREACH_SAFE(bp, &hvf_state->hvf_sw_breakpoints, entry, next) {
if (hvf_arch_remove_sw_breakpoint(cpu, bp) != 0) {
/* Try harder to find a CPU that currently sees the breakpoint. */
CPU_FOREACH(tmpcpu)
{
if (hvf_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
break;
}
}
}
QTAILQ_REMOVE(&hvf_state->hvf_sw_breakpoints, bp, entry);
g_free(bp);
}
hvf_arch_remove_all_hw_breakpoints();
CPU_FOREACH(cpu) {
hvf_update_guest_debug(cpu);
}
}
static void hvf_accel_ops_class_init(ObjectClass *oc, void *data)
{
AccelOpsClass *ops = ACCEL_OPS_CLASS(oc);
ops->create_vcpu_thread = hvf_start_vcpu_thread;
ops->kick_vcpu_thread = hvf_kick_vcpu_thread;
ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset;
ops->synchronize_post_init = hvf_cpu_synchronize_post_init;
ops->synchronize_state = hvf_cpu_synchronize_state;
ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm;
ops->insert_breakpoint = hvf_insert_breakpoint;
ops->remove_breakpoint = hvf_remove_breakpoint;
ops->remove_all_breakpoints = hvf_remove_all_breakpoints;
ops->update_guest_debug = hvf_update_guest_debug;
ops->supports_guest_debug = hvf_arch_supports_guest_debug;
};
static const TypeInfo hvf_accel_ops_type = {
.name = ACCEL_OPS_NAME("hvf"),
.parent = TYPE_ACCEL_OPS,
.class_init = hvf_accel_ops_class_init,
.abstract = true,
};
static void hvf_accel_ops_register_types(void)
{
type_register_static(&hvf_accel_ops_type);
}
type_init(hvf_accel_ops_register_types);