| /* |
| * Copyright 2008 IBM Corporation |
| * 2008 Red Hat, Inc. |
| * Copyright 2011 Intel Corporation |
| * Copyright 2016 Veertu, Inc. |
| * Copyright 2017 The Android Open Source Project |
| * |
| * QEMU Hypervisor.framework support |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of version 2 of the GNU General Public |
| * License as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| * |
| * This file contain code under public domain from the hvdos project: |
| * https://github.com/mist64/hvdos |
| * |
| * Parts Copyright (c) 2011 NetApp, Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/error-report.h" |
| #include "qemu/main-loop.h" |
| #include "exec/address-spaces.h" |
| #include "exec/exec-all.h" |
| #include "exec/gdbstub.h" |
| #include "sysemu/cpus.h" |
| #include "sysemu/hvf.h" |
| #include "sysemu/hvf_int.h" |
| #include "sysemu/runstate.h" |
| #include "qemu/guest-random.h" |
| |
| HVFState *hvf_state; |
| |
| #ifdef __aarch64__ |
| #define HV_VM_DEFAULT NULL |
| #endif |
| |
| /* Memory slots */ |
| |
| hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size) |
| { |
| hvf_slot *slot; |
| int x; |
| for (x = 0; x < hvf_state->num_slots; ++x) { |
| slot = &hvf_state->slots[x]; |
| if (slot->size && start < (slot->start + slot->size) && |
| (start + size) > slot->start) { |
| return slot; |
| } |
| } |
| return NULL; |
| } |
| |
| struct mac_slot { |
| int present; |
| uint64_t size; |
| uint64_t gpa_start; |
| uint64_t gva; |
| }; |
| |
| struct mac_slot mac_slots[32]; |
| |
| static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags) |
| { |
| struct mac_slot *macslot; |
| hv_return_t ret; |
| |
| macslot = &mac_slots[slot->slot_id]; |
| |
| if (macslot->present) { |
| if (macslot->size != slot->size) { |
| macslot->present = 0; |
| ret = hv_vm_unmap(macslot->gpa_start, macslot->size); |
| assert_hvf_ok(ret); |
| } |
| } |
| |
| if (!slot->size) { |
| return 0; |
| } |
| |
| macslot->present = 1; |
| macslot->gpa_start = slot->start; |
| macslot->size = slot->size; |
| ret = hv_vm_map(slot->mem, slot->start, slot->size, flags); |
| assert_hvf_ok(ret); |
| return 0; |
| } |
| |
| static void hvf_set_phys_mem(MemoryRegionSection *section, bool add) |
| { |
| hvf_slot *mem; |
| MemoryRegion *area = section->mr; |
| bool writable = !area->readonly && !area->rom_device; |
| hv_memory_flags_t flags; |
| uint64_t page_size = qemu_real_host_page_size(); |
| |
| if (!memory_region_is_ram(area)) { |
| if (writable) { |
| return; |
| } else if (!memory_region_is_romd(area)) { |
| /* |
| * If the memory device is not in romd_mode, then we actually want |
| * to remove the hvf memory slot so all accesses will trap. |
| */ |
| add = false; |
| } |
| } |
| |
| if (!QEMU_IS_ALIGNED(int128_get64(section->size), page_size) || |
| !QEMU_IS_ALIGNED(section->offset_within_address_space, page_size)) { |
| /* Not page aligned, so we can not map as RAM */ |
| add = false; |
| } |
| |
| mem = hvf_find_overlap_slot( |
| section->offset_within_address_space, |
| int128_get64(section->size)); |
| |
| if (mem && add) { |
| if (mem->size == int128_get64(section->size) && |
| mem->start == section->offset_within_address_space && |
| mem->mem == (memory_region_get_ram_ptr(area) + |
| section->offset_within_region)) { |
| return; /* Same region was attempted to register, go away. */ |
| } |
| } |
| |
| /* Region needs to be reset. set the size to 0 and remap it. */ |
| if (mem) { |
| mem->size = 0; |
| if (do_hvf_set_memory(mem, 0)) { |
| error_report("Failed to reset overlapping slot"); |
| abort(); |
| } |
| } |
| |
| if (!add) { |
| return; |
| } |
| |
| if (area->readonly || |
| (!memory_region_is_ram(area) && memory_region_is_romd(area))) { |
| flags = HV_MEMORY_READ | HV_MEMORY_EXEC; |
| } else { |
| flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC; |
| } |
| |
| /* Now make a new slot. */ |
| int x; |
| |
| for (x = 0; x < hvf_state->num_slots; ++x) { |
| mem = &hvf_state->slots[x]; |
| if (!mem->size) { |
| break; |
| } |
| } |
| |
| if (x == hvf_state->num_slots) { |
| error_report("No free slots"); |
| abort(); |
| } |
| |
| mem->size = int128_get64(section->size); |
| mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region; |
| mem->start = section->offset_within_address_space; |
| mem->region = area; |
| |
| if (do_hvf_set_memory(mem, flags)) { |
| error_report("Error registering new memory slot"); |
| abort(); |
| } |
| } |
| |
| static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) |
| { |
| if (!cpu->vcpu_dirty) { |
| hvf_get_registers(cpu); |
| cpu->vcpu_dirty = true; |
| } |
| } |
| |
| static void hvf_cpu_synchronize_state(CPUState *cpu) |
| { |
| if (!cpu->vcpu_dirty) { |
| run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL); |
| } |
| } |
| |
| static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu, |
| run_on_cpu_data arg) |
| { |
| /* QEMU state is the reference, push it to HVF now and on next entry */ |
| cpu->vcpu_dirty = true; |
| } |
| |
| static void hvf_cpu_synchronize_post_reset(CPUState *cpu) |
| { |
| run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL); |
| } |
| |
| static void hvf_cpu_synchronize_post_init(CPUState *cpu) |
| { |
| run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL); |
| } |
| |
| static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu) |
| { |
| run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL); |
| } |
| |
| static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on) |
| { |
| hvf_slot *slot; |
| |
| slot = hvf_find_overlap_slot( |
| section->offset_within_address_space, |
| int128_get64(section->size)); |
| |
| /* protect region against writes; begin tracking it */ |
| if (on) { |
| slot->flags |= HVF_SLOT_LOG; |
| hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size, |
| HV_MEMORY_READ | HV_MEMORY_EXEC); |
| /* stop tracking region*/ |
| } else { |
| slot->flags &= ~HVF_SLOT_LOG; |
| hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size, |
| HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC); |
| } |
| } |
| |
| static void hvf_log_start(MemoryListener *listener, |
| MemoryRegionSection *section, int old, int new) |
| { |
| if (old != 0) { |
| return; |
| } |
| |
| hvf_set_dirty_tracking(section, 1); |
| } |
| |
| static void hvf_log_stop(MemoryListener *listener, |
| MemoryRegionSection *section, int old, int new) |
| { |
| if (new != 0) { |
| return; |
| } |
| |
| hvf_set_dirty_tracking(section, 0); |
| } |
| |
| static void hvf_log_sync(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| /* |
| * sync of dirty pages is handled elsewhere; just make sure we keep |
| * tracking the region. |
| */ |
| hvf_set_dirty_tracking(section, 1); |
| } |
| |
| static void hvf_region_add(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| hvf_set_phys_mem(section, true); |
| } |
| |
| static void hvf_region_del(MemoryListener *listener, |
| MemoryRegionSection *section) |
| { |
| hvf_set_phys_mem(section, false); |
| } |
| |
| static MemoryListener hvf_memory_listener = { |
| .name = "hvf", |
| .priority = 10, |
| .region_add = hvf_region_add, |
| .region_del = hvf_region_del, |
| .log_start = hvf_log_start, |
| .log_stop = hvf_log_stop, |
| .log_sync = hvf_log_sync, |
| }; |
| |
| static void dummy_signal(int sig) |
| { |
| } |
| |
| bool hvf_allowed; |
| |
| static int hvf_accel_init(MachineState *ms) |
| { |
| int x; |
| hv_return_t ret; |
| HVFState *s; |
| |
| ret = hv_vm_create(HV_VM_DEFAULT); |
| assert_hvf_ok(ret); |
| |
| s = g_new0(HVFState, 1); |
| |
| s->num_slots = ARRAY_SIZE(s->slots); |
| for (x = 0; x < s->num_slots; ++x) { |
| s->slots[x].size = 0; |
| s->slots[x].slot_id = x; |
| } |
| |
| QTAILQ_INIT(&s->hvf_sw_breakpoints); |
| |
| hvf_state = s; |
| memory_listener_register(&hvf_memory_listener, &address_space_memory); |
| |
| return hvf_arch_init(); |
| } |
| |
| static inline int hvf_gdbstub_sstep_flags(void) |
| { |
| return SSTEP_ENABLE | SSTEP_NOIRQ; |
| } |
| |
| static void hvf_accel_class_init(ObjectClass *oc, void *data) |
| { |
| AccelClass *ac = ACCEL_CLASS(oc); |
| ac->name = "HVF"; |
| ac->init_machine = hvf_accel_init; |
| ac->allowed = &hvf_allowed; |
| ac->gdbstub_supported_sstep_flags = hvf_gdbstub_sstep_flags; |
| } |
| |
| static const TypeInfo hvf_accel_type = { |
| .name = TYPE_HVF_ACCEL, |
| .parent = TYPE_ACCEL, |
| .class_init = hvf_accel_class_init, |
| }; |
| |
| static void hvf_type_init(void) |
| { |
| type_register_static(&hvf_accel_type); |
| } |
| |
| type_init(hvf_type_init); |
| |
| static void hvf_vcpu_destroy(CPUState *cpu) |
| { |
| hv_return_t ret = hv_vcpu_destroy(cpu->accel->fd); |
| assert_hvf_ok(ret); |
| |
| hvf_arch_vcpu_destroy(cpu); |
| g_free(cpu->accel); |
| cpu->accel = NULL; |
| } |
| |
| static int hvf_init_vcpu(CPUState *cpu) |
| { |
| int r; |
| |
| cpu->accel = g_new0(AccelCPUState, 1); |
| |
| /* init cpu signals */ |
| struct sigaction sigact; |
| |
| memset(&sigact, 0, sizeof(sigact)); |
| sigact.sa_handler = dummy_signal; |
| sigaction(SIG_IPI, &sigact, NULL); |
| |
| pthread_sigmask(SIG_BLOCK, NULL, &cpu->accel->unblock_ipi_mask); |
| sigdelset(&cpu->accel->unblock_ipi_mask, SIG_IPI); |
| |
| #ifdef __aarch64__ |
| r = hv_vcpu_create(&cpu->accel->fd, |
| (hv_vcpu_exit_t **)&cpu->accel->exit, NULL); |
| #else |
| r = hv_vcpu_create((hv_vcpuid_t *)&cpu->accel->fd, HV_VCPU_DEFAULT); |
| #endif |
| cpu->vcpu_dirty = 1; |
| assert_hvf_ok(r); |
| |
| cpu->accel->guest_debug_enabled = false; |
| |
| return hvf_arch_init_vcpu(cpu); |
| } |
| |
| /* |
| * The HVF-specific vCPU thread function. This one should only run when the host |
| * CPU supports the VMX "unrestricted guest" feature. |
| */ |
| static void *hvf_cpu_thread_fn(void *arg) |
| { |
| CPUState *cpu = arg; |
| |
| int r; |
| |
| assert(hvf_enabled()); |
| |
| rcu_register_thread(); |
| |
| qemu_mutex_lock_iothread(); |
| qemu_thread_get_self(cpu->thread); |
| |
| cpu->thread_id = qemu_get_thread_id(); |
| cpu->can_do_io = 1; |
| current_cpu = cpu; |
| |
| hvf_init_vcpu(cpu); |
| |
| /* signal CPU creation */ |
| cpu_thread_signal_created(cpu); |
| qemu_guest_random_seed_thread_part2(cpu->random_seed); |
| |
| do { |
| if (cpu_can_run(cpu)) { |
| r = hvf_vcpu_exec(cpu); |
| if (r == EXCP_DEBUG) { |
| cpu_handle_guest_debug(cpu); |
| } |
| } |
| qemu_wait_io_event(cpu); |
| } while (!cpu->unplug || cpu_can_run(cpu)); |
| |
| hvf_vcpu_destroy(cpu); |
| cpu_thread_signal_destroyed(cpu); |
| qemu_mutex_unlock_iothread(); |
| rcu_unregister_thread(); |
| return NULL; |
| } |
| |
| static void hvf_start_vcpu_thread(CPUState *cpu) |
| { |
| char thread_name[VCPU_THREAD_NAME_SIZE]; |
| |
| /* |
| * HVF currently does not support TCG, and only runs in |
| * unrestricted-guest mode. |
| */ |
| assert(hvf_enabled()); |
| |
| cpu->thread = g_malloc0(sizeof(QemuThread)); |
| cpu->halt_cond = g_malloc0(sizeof(QemuCond)); |
| qemu_cond_init(cpu->halt_cond); |
| |
| snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF", |
| cpu->cpu_index); |
| qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn, |
| cpu, QEMU_THREAD_JOINABLE); |
| } |
| |
| static int hvf_insert_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len) |
| { |
| struct hvf_sw_breakpoint *bp; |
| int err; |
| |
| if (type == GDB_BREAKPOINT_SW) { |
| bp = hvf_find_sw_breakpoint(cpu, addr); |
| if (bp) { |
| bp->use_count++; |
| return 0; |
| } |
| |
| bp = g_new(struct hvf_sw_breakpoint, 1); |
| bp->pc = addr; |
| bp->use_count = 1; |
| err = hvf_arch_insert_sw_breakpoint(cpu, bp); |
| if (err) { |
| g_free(bp); |
| return err; |
| } |
| |
| QTAILQ_INSERT_HEAD(&hvf_state->hvf_sw_breakpoints, bp, entry); |
| } else { |
| err = hvf_arch_insert_hw_breakpoint(addr, len, type); |
| if (err) { |
| return err; |
| } |
| } |
| |
| CPU_FOREACH(cpu) { |
| err = hvf_update_guest_debug(cpu); |
| if (err) { |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| static int hvf_remove_breakpoint(CPUState *cpu, int type, hwaddr addr, hwaddr len) |
| { |
| struct hvf_sw_breakpoint *bp; |
| int err; |
| |
| if (type == GDB_BREAKPOINT_SW) { |
| bp = hvf_find_sw_breakpoint(cpu, addr); |
| if (!bp) { |
| return -ENOENT; |
| } |
| |
| if (bp->use_count > 1) { |
| bp->use_count--; |
| return 0; |
| } |
| |
| err = hvf_arch_remove_sw_breakpoint(cpu, bp); |
| if (err) { |
| return err; |
| } |
| |
| QTAILQ_REMOVE(&hvf_state->hvf_sw_breakpoints, bp, entry); |
| g_free(bp); |
| } else { |
| err = hvf_arch_remove_hw_breakpoint(addr, len, type); |
| if (err) { |
| return err; |
| } |
| } |
| |
| CPU_FOREACH(cpu) { |
| err = hvf_update_guest_debug(cpu); |
| if (err) { |
| return err; |
| } |
| } |
| return 0; |
| } |
| |
| static void hvf_remove_all_breakpoints(CPUState *cpu) |
| { |
| struct hvf_sw_breakpoint *bp, *next; |
| CPUState *tmpcpu; |
| |
| QTAILQ_FOREACH_SAFE(bp, &hvf_state->hvf_sw_breakpoints, entry, next) { |
| if (hvf_arch_remove_sw_breakpoint(cpu, bp) != 0) { |
| /* Try harder to find a CPU that currently sees the breakpoint. */ |
| CPU_FOREACH(tmpcpu) |
| { |
| if (hvf_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) { |
| break; |
| } |
| } |
| } |
| QTAILQ_REMOVE(&hvf_state->hvf_sw_breakpoints, bp, entry); |
| g_free(bp); |
| } |
| hvf_arch_remove_all_hw_breakpoints(); |
| |
| CPU_FOREACH(cpu) { |
| hvf_update_guest_debug(cpu); |
| } |
| } |
| |
| static void hvf_accel_ops_class_init(ObjectClass *oc, void *data) |
| { |
| AccelOpsClass *ops = ACCEL_OPS_CLASS(oc); |
| |
| ops->create_vcpu_thread = hvf_start_vcpu_thread; |
| ops->kick_vcpu_thread = hvf_kick_vcpu_thread; |
| |
| ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset; |
| ops->synchronize_post_init = hvf_cpu_synchronize_post_init; |
| ops->synchronize_state = hvf_cpu_synchronize_state; |
| ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm; |
| |
| ops->insert_breakpoint = hvf_insert_breakpoint; |
| ops->remove_breakpoint = hvf_remove_breakpoint; |
| ops->remove_all_breakpoints = hvf_remove_all_breakpoints; |
| ops->update_guest_debug = hvf_update_guest_debug; |
| ops->supports_guest_debug = hvf_arch_supports_guest_debug; |
| }; |
| static const TypeInfo hvf_accel_ops_type = { |
| .name = ACCEL_OPS_NAME("hvf"), |
| |
| .parent = TYPE_ACCEL_OPS, |
| .class_init = hvf_accel_ops_class_init, |
| .abstract = true, |
| }; |
| static void hvf_accel_ops_register_types(void) |
| { |
| type_register_static(&hvf_accel_ops_type); |
| } |
| type_init(hvf_accel_ops_register_types); |